
Computer Vision Toolbox™
Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision Toolbox™ Reference
© COPYRIGHT 2000–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 5.0 (Release 2012a)
September 2012 Online only Revised for Version 5.1 (Release R2012b)
March 2013 Online only Revised for Version 5.2 (Release R2013a)
September 2013 Online only Revised for Version 5.3 (Release R2013b)
March 2014 Online only Revised for Version 6.0 (Release R2014a)
October 2014 Online only Revised for Version 6.1 (Release R2014b)
March 2015 Online only Revised for Version 6.2 (Release R2015a)
September 2015 Online only Revised for Version 7.0 (Release R2015b)
March 2016 Online only Revised for Version 7.1 (Release R2016a)
September 2016 Online only Revised for Version 7.2 (Release R2016b)
March 2017 Online only Revised for Version 7.3 (Release R2017a)
September 2017 Online only Revised for Version 8.0 (Release R2017b)
March 2018 Online only Revised for Version 8.1 (Release R2018a)
September 2018 Online only Revised for Version 8.2 (Release R2018b)
March 2019 Online only Revised for Version 9.0 (Release R2019a)

Blocks — Alphabetical List
1

Alphabetical List
2

Functions Alphabetical
3

v

Contents

Blocks — Alphabetical List

1

2-D Autocorrelation
Compute 2-D autocorrelation of input matrix

Library
Statistics

visionstatistics

Description
The 2-D Autocorrelation block computes the two-dimensional autocorrelation of the input
matrix. Assume that input matrix A has dimensions (Ma, Na). The equation for the two-
dimensional discrete autocorrelation is

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) ⋅ con j(A(m + i, n + j))

where 0 ≤ i < 2Ma− 1 and 0 ≤ j < 2Na− 1.

The output of this block has dimensions (2Ma− 1, 2Na− 1).

1 Blocks — Alphabetical List

1-2

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of intensity
values or a scalar, vector, or
matrix that represents one
plane of the RGB video stream

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes
–

Output Autocorrelation of the input
matrix

Same as Input port Yes

If the data type of the input is floating point, the output of the block has the same data
type.

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D Autocorrelation block for
fixed-point signals.

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-4.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

 2-D Autocorrelation

1-3

Parameters
Rounding mode

Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”.
Product output

Specify the product output data type. See “Fixed-Point Data Types” on page 1-3 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator
Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-3 and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

1 Blocks — Alphabetical List

1-4

Output
Choose how to specify the output word length and fraction length.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink® documentation.

See Also
2-D Correlation Computer Vision Toolbox
2-D Histogram Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
2-D Median Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
2-D Maximum Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 2-D Autocorrelation

1-5

Introduced before R2006a

1 Blocks — Alphabetical List

1-6

2-D Convolution
Compute 2-D discrete convolution of two input matrices

Library
Filtering

visionfilter

Description
The 2-D Convolution block computes the two-dimensional convolution of two input
matrices. Assume that matrix A has dimensions (Ma, Na) and matrix B has dimensions
(Mb, Nb). When the block calculates the full output size, the equation for the 2-D discrete
convolution is

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) * B(i−m, j− n)

where 0 ≤ i < Ma + Mb− 1 and 0 ≤ j < Na + Nb− 1.

 2-D Convolution

1-7

Port Input/Output Supported Data Types
Complex
Values
Supported

I1 Matrix of intensity values or
a matrix that represents one
plane of the RGB video
stream

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

I2 Matrix of intensity values or
a matrix that represents one
plane of the RGB video
stream

Same as I1 port Yes

Output Convolution of the input
matrices

Same as I1 port Yes

If the data type of the input is floating point, the output of the block has the same data
type.

The dimensions of the output are dictated by the Output size parameter. Assume that the
input at port I1 has dimensions (Ma, Na) and the input at port I2 has dimensions (Mb,
Nb). If, for the Output size parameter, you choose Full, the output is the full two-
dimensional convolution with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output size
parameter, you choose Same as input port I1, the output is the central part of the
convolution with the same dimensions as the input at port I1. If, for the Output size
parameter, you choose Valid, the output is only those parts of the convolution that are
computed without the zero-padded edges of any input. This output has dimensions (Ma-
Mb+1, Na-Nb+1). However, if all(size(I1)<size(I2)), the block errors out.

If you select the Normalized output check box, the block's output is divided by
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))), where I1p is the portion of the I1
matrix that aligns with the I2 matrix. See “Example 2” on page 1-11 for more
information.

Note When you select the Normalized output check box, the block input cannot be
fixed point.

1 Blocks — Alphabetical List

1-8

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D Convolution block for fixed-
point signals.

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-14.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

Examples

Example 1
Suppose I1, the first input matrix, has dimensions (4,3) and I2, the second input matrix,
has dimensions (2,2). If, for the Output size parameter, you choose Full, the block uses
the following equations to determine the number of rows and columns of the output
matrix:

 2-D Convolution

1-9

The resulting matrix is

If, for the Output size parameter, you choose Same as input port I1, the output is
the central part of Cfull with the same dimensions as the input at port I1, (4,3). However,
since a 4-by-3 matrix cannot be extracted from the exact center of Cfull, the block leaves
more rows and columns on the top and left side of the Cfull matrix and outputs:

If, for the Output size parameter, you choose Valid, the block uses the following
equations to determine the number of rows and columns of the output matrix:

1 Blocks — Alphabetical List

1-10

In this case, it is always possible to extract the exact center of Cfull. Therefore, the block
outputs

Example 2
In convolution, the value of an output element is computed as a weighted sum of
neighboring elements.

For example, suppose the first input matrix represents an image and is defined as

I1 = [17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
 3 5 7
 4 9 2]

The following figure shows how to compute the (1,1) output element (zero-based
indexing) using these steps:

1 Rotate the second input matrix, I2, 180 degrees about its center element.

 2-D Convolution

1-11

2 Slide the center element of I2 so that it lies on top of the (0,0) element of I1.
3 Multiply each element of the rotated I2 matrix by the element of I1 underneath.
4 Sum the individual products from step 3.

Hence the (1,1) output element is
0 ⋅ 2 + 0 ⋅ 9 + 0 ⋅ 4 + 0 ⋅ 7 + 17 ⋅ 5 + 24 ⋅ 3 + 0 ⋅ 6 + 23 ⋅ 1 + 5 ⋅ 8 = 220.

1 Blocks — Alphabetical List

1-12

4

1

9

3

8

2

7

6

5

Values of rotated I2 matrix

Alignment of I2 matrix

Alignment of center
element of I2

Image pixel values

17 24 1 8 15

23 5

11 9

16

20

147

22

3

25 2

2119

64

1210

18

13

Computing the (1,1) Output of Convolution

The normalized convolution of the (1,1) output element is 220/
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.3459, where I1p = [0 0 0; 0
17 24; 0 23 5].

 2-D Convolution

1-13

Parameters
Output size

This parameter controls the size of the output scalar, vector, or matrix produced as a
result of the convolution between the two inputs. If you choose Full, the output has
dimensions (Ma+Mb-1, Na+Nb-1). If you choose Same as input port I1, the
output has the same dimensions as the input at port I1. If you choose Valid, output
has dimensions (Ma-Mb+1, Na-Nb+1).

Normalized output
If you select this check box, the block's output is normalized.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the Overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-9 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Product Output inherits its sign according to the inputs. If either or both input I1
and I2 are signed, the Product Output will be signed. Otherwise, the Product Output
is unsigned. The following table shows all cases.

Sign of Input I1 Sign of Input I2 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed

1 Blocks — Alphabetical List

1-14

Sign of Input I1 Sign of Input I2 Sign of Product Output
signed unsigned signed
signed signed signed

Accumulator
Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-9 and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

 2-D Convolution

1-15

See Also
2-D FIR Filter Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-16

2-D Correlation
Compute 2-D cross-correlation of two input matrices

Library
Statistics

visionstatistics

Description
The 2-D Correlation block computes the two-dimensional cross-correlation of two input
matrices. Assume that matrix A has dimensions (Ma, Na) and matrix B has dimensions
(Mb, Nb). When the block calculates the full output size, the equation for the two-
dimensional discrete cross-correlation is

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) ⋅ con j(B(m + i, n + j))

where 0 ≤ i < Ma + Mb− 1 and 0 ≤ j < Na + Nb− 1.

Port Input/Output Supported Data Types
Complex
Values
Supported

I1 Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

 2-D Correlation

1-17

Port Input/Output Supported Data Types
Complex
Values
Supported

I2 Scalar, vector, or matrix of
intensity values or a scalar,
vector, or matrix that
represents one plane of the
RGB video stream

Same as I1 port Yes

Output Convolution of the input
matrices

Same as I1 port Yes

If the data type of the input is floating point, the output of the block is the same data type.

The dimensions of the output are dictated by the Output size parameter and the sizes of
the inputs at ports I1 and I2. For example, assume that the input at port I1 has
dimensions (Ma, Na) and the input at port I2 has dimensions (Mb, Nb). If, for the Output
size parameter, you choose Full, the output is the full two-dimensional cross-correlation
with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output size parameter, you choose
Same as input port I1, the output is the central part of the cross-correlation with
the same dimensions as the input at port I1. If, for the Output size parameter, you
choose Valid, the output is only those parts of the cross-correlation that are computed
without the zero-padded edges of any input. This output has dimensions (Ma-Mb+1, Na-
Nb+1). However, if all(size(I1)<size(I2)), the block errors out.

If you select the Normalized output check box, the block's output is divided by
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))), where I1p is the portion of the I1
matrix that aligns with the I2 matrix. See “Example 2” on page 1-21 for more
information.

Note When you select the Normalized output check box, the block input cannot be
fixed point.

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D Correlation block for fixed-
point signals.

1 Blocks — Alphabetical List

1-18

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-23.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

Examples

Example 1
Suppose I1, the first input matrix, has dimensions (4,3). I2, the second input matrix, has
dimensions (2,2). If, for the Output size parameter, you choose Full, the block uses the
following equations to determine the number of rows and columns of the output matrix:

The resulting matrix is

 2-D Correlation

1-19

If, for the Output size parameter, you choose Same as input port I1, the output is
the central part of Cfull with the same dimensions as the input at port I1, (4,3). However,
since a 4-by-3 matrix cannot be extracted from the exact center of Cfull , the block leaves
more rows and columns on the top and left side of the Cfull matrix and outputs:

If, for the Output size parameter, you choose Valid, the block uses the following
equations to determine the number of rows and columns of the output matrix:

In this case, it is always possible to extract the exact center of Cfull . Therefore, the block
outputs

1 Blocks — Alphabetical List

1-20

Example 2
In cross-correlation, the value of an output element is computed as a weighted sum of
neighboring elements.

For example, suppose the first input matrix represents an image and is defined as

I1 = [17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
 3 5 7
 4 9 2]

The following figure shows how to compute the (2,4) output element (zero-based
indexing) using these steps:

1 Slide the center element of I2 so that lies on top of the (1,3) element of I1.
2 Multiply each weight in I2 by the element of I1 underneath.
3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is
1 ⋅ 8 + 8 ⋅ 1 + 15 ⋅ 6 + 7 ⋅ 3 + 14 ⋅ 5 + 16 ⋅ 7 + 13 ⋅ 4 + 20 ⋅ 9 + 22 ⋅ 2 = 585.

 2-D Correlation

1-21

6

9

1

7

2

8

3

4

5

Values of I2 matrix

Alignment of I2 matrix

Alignment of center
element of I2

Image pixel values

17 24 1 8 15

23 5

11 9

16

20

147

22

3

25 2

2119

64

1210

18

13

Computing the (2,4) Output of Cross-Correlation

The normalized cross-correlation of the (2,4) output element is 585/
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.8070, where I1p = [1 8 15;
7 14 16; 13 20 22].

1 Blocks — Alphabetical List

1-22

Parameters
Output size

This parameter controls the size of the output scalar, vector, or matrix produced as a
result of the cross-correlation between the two inputs. If you choose Full, the output
has dimensions (Ma+Mb-1, Na+Nb-1). If you choose Same as input port I1, the
output has the same dimensions as the input at port I1. If you choose Valid, output
has dimensions (Ma-Mb+1, Na-Nb+1).

Normalized output
If you select this check box, the block's output is normalized.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Overflow mode
Select the Overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 1-18 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Product Output inherits its sign according to the inputs. If either or both input I1
and I2 are signed, the Product Output will be signed. Otherwise, the Product Output
is unsigned. The table below show all cases.

Sign of Input I1 Sign of Input I2 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed

 2-D Correlation

1-23

Sign of Input I1 Sign of Input I2 Sign of Product Output
signed unsigned signed
signed signed signed

Accumulator
Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-18 and“Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1 Blocks — Alphabetical List

1-24

See Also
2-D Autocorrelation Computer Vision Toolbox
2-D Histogram Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
2-D Median Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
2-D Maximum Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 2-D Correlation

1-25

2-D DCT
Compute 2-D discrete cosine transform (DCT)

Library
Transforms

visiontransforms

Description
The 2-D DCT block calculates the two-dimensional discrete cosine transform of the input
signal. The equation for the two-dimensional DCT is

F m n
MN

C m C n f x y
x m

M

y

y

N

x

M

(,) () () (,) cos
()

cos
(

=
+ +

=

-

=

-

ÂÂ
2 2 1

2

2

0

1

0

1
p 11

2

)n

N

p

where C(m), C(n) = 1/ 2 for m, n = 0 and C(m), C(n) = 1 otherwise.

The number of rows and columns of the input signal must be powers of two. The output of
this block has dimensions the same dimensions as the input.

1 Blocks — Alphabetical List

1-26

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output 2-D DCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the block is the same
data type.

Use the Sine and cosine computation parameter to specify how the block computes the
sine and cosine terms in the DCT algorithm. If you select Trigonometric fcn, the block
computes the sine and cosine values during the simulation. If you select Table lookup,
the block computes and stores the trigonometric values before the simulation starts. In
this case, the block requires extra memory.

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D DCT block for fixed-point
signals. Inputs are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type.

 2-D DCT

1-27

The output of the multiplier is in the product output data type when at least one of the
inputs to the multiplier is real. When both inputs to the multiplier are complex, the result
of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”. You can set the sine table,

1 Blocks — Alphabetical List

1-28

product output, accumulator, and output data types in the block mask as discussed in the
next section.

Parameters
Sine and cosine computation

Specify how the block computes the sine and cosine terms in the DCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine values
during the simulation. If you select Table lookup, the block computes and stores
the trigonometric values before the simulation starts. In this case, the block requires
extra memory.

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; they always round to Nearest.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-27 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

 2-D DCT

1-29

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-27 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-27 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

WLidealoutput = WLinput + f loor(log2(DCTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

1 Blocks — Alphabetical List

1-30

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool. For more
information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, W.H, C.H. Smith, and S.C. Fralick, “A fast computational algorithm for the
discrete cosine transform,” IEEE Trans. Commun., vol. COM-25, pp. 1004-1009.
1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for the discrete Fourier
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
803-816, Aug. 1984.

See Also
2-D IDCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

 2-D DCT

1-31

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-32

2-D FFT
Compute two-dimensional fast Fourier transform of input

Library
Transforms

visiontransforms

Description
The 2-D FFT block computes the fast Fourier transform (FFT). The block does the
computation of a two-dimensional M-by-N input matrix in two steps. First it computes the
one-dimensional FFT along one dimension (row or column). Then it computes the FFT of
the output of the first step along the other dimension (column or row).

The output of the 2-D FFT block is equivalent to the MATLAB® fft2 function:

y = fft2(A) % Equivalent MATLAB code

Computing the FFT of each dimension of the input matrix is equivalent to calculating the
two-dimensional discrete Fourier transform (DFT), which is defined by the following
equation:

F(m, n) = ∑
x = 0

M − 1
∑

y = 0

N − 1
f (x, y)e− j2πmx

M e− j2πny
N

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.

The output of this block has the same dimensions as the input. If the input signal has a
floating-point data type, the data type of the output signal uses the same floating-point
data type. Otherwise, the output can be any fixed-point data type. The block computes
scaled and unscaled versions of the FFT.

 2-D FFT

1-33

The input to this block can be floating-point or fixed-point, real or complex, and conjugate
symmetric. The block uses one of two possible FFT implementations. You can select an
implementation based on the FFTW library [1], [2], or an implementation based on a
collection of Radix-2 algorithms. You can select Auto to allow the block to choose the
implementation.

Port Description

Port Description Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned

integer

Yes

Output 2-D FFT of the input Same as Input port Yes

FFTW Implementation
The FFTW implementation provides an optimized FFT calculation including support for
power-of-two and non-power-of-two transform lengths in both simulation and code
generation. Generated code using the FFTW implementation will be restricted to those
computers which are capable of running MATLAB. The input data type must be floating-
point.

Radix-2 Implementation
The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data,
and allows the block to provide portable C-code generation using the “Simulink Coder”.
The dimensions of the input matrix, M and N, must be powers of two. To work with other
input sizes, use the Image Pad block to pad or truncate these dimensions to powers of
two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

1 Blocks — Alphabetical List

1-34

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Butterfly operation and radix-2 DIT in conjunction with the
half-length and double-signal algorithms

Radix-2 DIF in conjunction with the half-length and double-
signal algorithms

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used for fixed-point
signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible
trigonometric values of the twiddle factor

 2-D FFT

1-35

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these
values in a table and retrieves them during simulation. The number of table entries for
fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the FFT block for fixed-point signals.
You can set the sine table, accumulator, product output, and output data types displayed
in the diagrams in the FFT dialog box as discussed in “Parameters” on page 1-38.

Inputs to the FFT block are first cast to the output data type and stored in the output
buffer. Each butterfly stage then processes signals in the accumulator data type, with the
final output of the butterfly being cast back into the output data type. The block multiplies
in a twiddle factor before each butterfly stage in a decimation-in-time FFT and after each
butterfly stage in a decimation-in-frequency FFT.

1 Blocks — Alphabetical List

1-36

The multiplier output appears in the accumulator data type because both of the inputs to
the multiplier are complex. For details on the complex multiplication performed, refer to
“Multiplication Data Types”.

 2-D FFT

1-37

Parameters
FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The
block restricts generated code with FFTW implementation to host computers capable
of running MATLAB.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point
data, or for portable C-code generation using the “Simulink Coder”. The dimensions
of the input matrix, M and N, must be powers of two. To work with other input sizes,
use the Image Pad block to pad or truncate these dimensions to powers of two, or if
possible choose the FFTW implementation. See “Radix-2 Implementation” on page 1-
34.

Set this parameter to Auto to let the block choose the FFT implementation. For non-
power-of-two transform lengths, the block restricts generated code to MATLAB host
computers.

Output in bit-reversed order
Designate the order of the output channel elements relative to the ordering of the
input elements. When you select this check box, the output channel elements appear
in bit-reversed order relative to the input ordering. If you clear this check box, the
output channel elements appear in linear order relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation. For more
information, see “Bit-Reversed Order” on page 1-41.

Scale result by FFT length
When you select this parameter, the block divides the output of the FFT by the FFT
length. This option is useful when you want the output of the FFT to stay in the same
amplitude range as its input. This is particularly useful when working with fixed-point
data types.

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; instead, they always round to Nearest.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

1 Blocks — Alphabetical List

1-38

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-36 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-36 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

 2-D FFT

1-39

Output data type
Specify the output data type. See “Fixed-Point Data Types” on page 1-36 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

• When you select the Divide butterfly outputs by two check box, the ideal
output word and fraction lengths are the same as the input word and fraction
lengths.

• When you clear the Divide butterfly outputs by two check box, the block
computes the ideal output word and fraction lengths according to the following
equations:

WLidealoutput = WLinput + f loor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1 Blocks — Alphabetical List

1-40

Example

Bit-Reversed Order
Two numbers are bit-reversed values of each other when the binary representation of one
is the mirror image of the binary representation of the other. For example, in a three-bit
system, one and four are bit-reversed values of each other because the three-bit binary
representation of one, 001, is the mirror image of the three-bit binary representation of
four, 100. The following diagram shows the row indices in linear order. To put them in bit-
reversed order

1 Translate the indices into their binary representation with the minimum number of
bits. In this example, the minimum number of bits is three because the binary
representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original binary
representation.

3 Translate the indices back to their decimal representation.

The row indices now appear in bit-reversed order.

If, on the 2-D FFT block parameters dialog box, you select the Output in bit-reversed
order check box, the block bit-reverses the order of both the columns and the rows. The
next diagram illustrates the linear and bit-reversed outputs of the 2-D FFT block. The
output values are the same, but they appear in different order.

 2-D FFT

1-41

245 13 10 5 10 5 13 9 0 4 15 9 21 6 15 9 21 6 13 9

9 1 14 3

- - + - - - - +

- -

i i i i i.

11 14 31 16 3 5 9 17 7 23 9 17 7 23 9 16 3 5 9

18 5 6 3 19

i i i i i i

i i

+ + - + -

- -

.

-- + - - - + - +

+ + -

24 5 4 4 3 10 4 5 7 16 4 12 4 11 4 5 5 1 4

18 5 6 3 5

i i i i i i

i i

.

44 19 24 5 5 1 4 12 5 11 3 5 7 16 4 34 0 5

4 3 10 3 1 1

i i i i i i

i

+ - + - - +

- - -

.

. . . ii i i i i i i- + - - - - - - + +

+

5 6 13 1 11 5 11 27 6 6 6 2 6 3 4 8 7 6 2 13

8 4 2

.

. .44 11 9 18 4 25 1 4 5 1 1 3 4 5 4 17 6 9 4 2 2 13 1 2i i i i i i i+ - - - - - - - + - -.77

8 4 2 4 11 9 4 5 1 1 18 4 25 1 0 6 2 7 2 2 13 17 6

i

i i i i i i.- - - + - + - + - - + 99 4 34 0 5

4 4 10 3 1 1 11 5 11 5 6 13 1 6 2 13 3 4 8

. .

.

i i

i i i i

+

- + + - + - - - - -7 2 6 27 6 6 6i i i- +

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the
FFT,”Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, Vol. 3, 1998, pp. 1381-1384.

See Also
2-D DCT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
bitrevorder Signal Processing Toolbox software
fft MATLAB
ifft MATLAB
“Simulink Coder” Simulink Coder™

1 Blocks — Alphabetical List

1-42

http://www.fftw.org

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies
on prebuilt dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to

a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not
installed. For more details, see .

• When the FFT length is a power of two, you can generate standalone C and C++ code
from this block.

Introduced before R2006a

 2-D FFT

1-43

2-D FIR Filter
Perform 2-D FIR filtering on input matrix

Library
Filtering

visionfilter

Description
The 2-D Finite Impulse Response (FIR) filter block filters the input matrix I using the
coefficient matrix H or the coefficient vectors HH and HV.

Port Input/Output Supported Data Types Complex Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

H Matrix of filter coefficients Same as I port. Yes
HH Vector of filter coefficients Same as I port. The input to ports HH

and HV must be the same data type.
Yes

HV Vector of filter coefficients Same as I port. The input to ports HH
and HV must be the same data type.

Yes

1 Blocks — Alphabetical List

1-44

Port Input/Output Supported Data Types Complex Values
Supported

PVal Scalar value that represents
the constant pad value

Input must have the same data type
as the input to I port.

Yes

Output Scalar, vector, or matrix of
filtered values

Same as I port. Yes

If the input has a floating-point data type, then the output uses the same data type.
Otherwise, the output can be any fixed-point data type.

Select the Separable filter coefficients check box if your filter coefficients are
separable. Using separable filter coefficients reduces the amount of calculations the block
must perform to compute the output. For example, suppose your input image is M-by-N
and your filter coefficient matrix is x-by-y. For a nonseparable filter with the Output size
parameter set to Same as input port I, it would take

x ⋅ y ⋅M ⋅ N

multiply-accumulate (MAC) operations for the block to calculate the output. For a
separable filter, it would only take

(x + y) ⋅M ⋅ N

MAC operations. If you do not know whether or not your filter coefficients are separable,
use the isfilterseparable function.

Here is an example of the function syntax, [S, HCOL, HROW] =
isfilterseparable(H). The isfilterseparable function takes the filter kernel, H,
and returns S, HCOL and HROW. Here, S is a Boolean variable that is 1 if the filter is
separable and 0 if it is not. HCOL is a vector of vertical filter coefficients, and HROW is a
vector of horizontal filter coefficients.

Use the Coefficient source parameter to specify how to define your filter coefficients. If
you select the Separable filter coefficients check box and then select a Coefficient
source of Specify via dialog, the Vertical coefficients (across height) and
Horizontal coefficients (across width) parameters appear in the dialog box. You can
use these parameters to enter vectors of vertical and horizontal filter coefficients,
respectively.

You can also use the variables HCOL and HROW, the output of the isfilterseparable
function, for these parameters. If you select the Separable filter coefficients check box

 2-D FIR Filter

1-45

and then select a Coefficient source of Input port, ports HV and HH appear on the
block. Use these ports to specify vectors of vertical and horizontal filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source
of Specify via dialog, the Coefficients parameter appears in the dialog box. Use
this parameter to enter your matrix of filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source
of Input port, port H appears on the block. Use this port to specify your filter
coefficient matrix.

The block outputs the result of the filtering operation at the Output port. The Output
size parameter and the sizes of the inputs at ports I and H dictate the dimensions of the
output. For example, assume that the input at port I has dimensions (Mi, Ni) and the input
at port H has dimensions (Mh, Nh). If you select an Output size of Full, the output has
dimensions (Mi+Mh-1, Ni+Nh-1). If you select an Output size of Same as input port
I, the output has the same dimensions as the input at port I. If you select an Output size
of Valid, the block filters the input image only where the coefficient matrix fits entirely
within it, so no padding is required. The output has dimensions (Mi-Mh+1, Ni-Nh+1).
However, if all(size(I)<size(H)), the block errors out.

Use the Padding options parameter to specify how to pad the boundary of your input
matrix. To pad your matrix with a constant value, select Constant. To pad your input
matrix by repeating its border values, select Replicate. To pad your input matrix with
its mirror image, select Symmetric. To pad your input matrix using a circular repetition
of its elements, select Circular. For more information on padding, see the Image Pad
block reference page.

If, for the Padding options parameter, you select Constant, the Pad value source
parameter appears in the dialog box. If you select Specify via dialog, the Pad value
parameter appears in the dialog box. Use this parameter to enter the constant value with
which to pad your matrix. If you select Pad value source ofInput port, the PVal port
appears on the block. Use this port to specify the constant value with which to pad your
matrix. The pad value must be real if the input image is real. You will get an error
message if the pad value is complex when the input image is real.

Use the Filtering based on parameter to specify the algorithm by which the block filters
the input matrix. If you select Convolution and set the Output size parameter to Full,
the block filters your input using the following algorithm

1 Blocks — Alphabetical List

1-46

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) * H(i−m, j− n)

where 0 ≤ i < Ma + Mh− 1 and 0 ≤ j < Na + Nh− 1. If you select Correlation and set
the Output size parameter to Full, the block filters your input using the following
algorithm

C(i, j) = ∑
m = 0

(Ma− 1)
∑

n = 0

(Na− 1)
A(m, n) ⋅ con j(H(m + i, n + j))

where 0 ≤ i < Ma + Mh− 1 and 0 ≤ j < Na + Nh− 1.

TThe imfilter function from the Image Processing Toolbox™ product similarly performs
N-D filtering of multidimensional images.

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D FIR Filter block for fixed-
point signals.

CAST ADDER CASTCOMPLEX

MULTIPLIER

Input (A) data type

Filter coefficient

(H) data type

Accumulator or

Product output

data type

Accumulator

data type

Output (C)

data typeAccumulator

data type

The result of each addition remains

in the accumulator data type

You can set the coefficient, product output, accumulator, and output data types in the
block mask as discussed in “Parameters” on page 1-48.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

 2-D FIR Filter

1-47

Parameters
Separable filter coefficients

Select this check box if your filter coefficients are separable. Using separable filter
coefficients reduces the amount of calculations the block must perform to compute
the output.

Coefficient source
Specify how to define your filter coefficients. Select Specify via dialog to enter
your coefficients in the block parameters dialog box. Select Input port to specify
your filter coefficient matrix using port H or ports HH and HV.

Coefficients
Enter your real or complex-valued filter coefficient matrix. This parameter appears if
you clear the Separable filter coefficients check box and then select a Coefficient
source of Specify via dialog. Tunable.

Vertical coefficients (across height)
Enter the vector of vertical filter coefficients for your separable filter. This parameter
appears if you select the Separable filter coefficients check box and then select a
Coefficient source of Specify via dialog.

Horizontal coefficients (across width)
Enter the vector of horizontal filter coefficients for your separable filter. This
parameter appears if you select the Separable filter coefficients check box and
then select a Coefficient source of Specify via dialog.

Output size
This parameter controls the size of the filtered output. If you choose Full, the output
has dimensions (Ma+Mh-1, Na+Nh-1). If you choose Same as input port I, the
output has the same dimensions as the input at port I If you choose Valid, output has
dimensions (Ma-Mh+1, Na-Nh+1).

Padding options
Specify how to pad the boundary of your input matrix. Select Constant to pad your
matrix with a constant value. Select Replicate to pad your input matrix by
repeating its border values. Select Symmetricto pad your input matrix with its mirror
image. Select Circular to pad your input matrix using a circular repetition of its
elements. This parameter appears if you select an Output size of Full or Same as
input port I.

1 Blocks — Alphabetical List

1-48

Pad value source
Use this parameter to specify how to define your constant boundary value. Select
Specify via dialog to enter your value in the block parameters dialog box. Select
Input port to specify your constant value using the PVal port. This parameter
appears if you select a Padding options of Constant.

Pad value
Enter the constant value with which to pad your matrix. This parameter is visible if,
for the Pad value source parameter, you select Specify via dialog. Tunable.
The pad value must be real if the input image is real. You will get an error message if
the pad value is complex when the input image is real.

Filtering based on
Specify the algorithm by which the block filters the input matrix. You can select
Convolution or Correlation.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Coefficients
Choose how to specify the word length and the fraction length of the filter
coefficients.

• When you select Inherit: Same word length as input, the word length of
the filter coefficients match that of the input to the block. In this mode, the block
automatically sets the fraction length of the coefficients to the binary-point only
scaling that provides you with the best precision possible given the value and word
length of the coefficients.

• When you select fixdt(1,16), you can enter the word length of the coefficients,
in bits. In this mode, the block automatically sets the fraction length of the
coefficients to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select fixdt(1,16,0), you can enter the word length and the fraction
length of the coefficients, in bits.

• When you select <data type expression>, you can enter the data type
expression.

 2-D FIR Filter

1-49

The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Product output

Use this parameter to specify how to designate the product output word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-47 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block:

• When you select Inherit: Same as input, these characteristics match those
of the input to the block.

• When you select fixdt([],16,0), you can enter the word length and the
fraction length of the product output, in bits.

• When you select <data type expression>, you can enter the data type
expression.

If you set the Coefficient source (on the Main tab) to Input port the Product
Output will inherit its sign according to the inputs. If either or both input I1 and I2
are signed, the Product Output will be signed. Otherwise, the Product Output is
unsigned. The following table shows all cases.

Sign of Input I1 Sign of Input I2 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed
signed unsigned signed
signed signed signed

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator

Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-47 and “Multiplication Data

1 Blocks — Alphabetical List

1-50

Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

• When you select Inherit: Same as input, these characteristics match those
of the input to the block.

• When you select Inherit: Same as product output, these characteristics
match those of the product output.

• When you select fixdt([],16,0), you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output

Choose how to specify the word length and fraction length of the output of the block:

• When you select Inherit: Same as input, these characteristics match those
of the input to the block.

• When you select fixdt([],16,0), you can enter the word length and the
fraction length of the output, in bits.

You can choose to set signedness of the output to Auto, Signed or Unsigned.
• When you select <data type expression>, you can enter the a data type

expression.

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

 2-D FIR Filter

1-51

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also
imfilter Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-52

2-D Histogram
Generate histogram of input or sequence of inputs

Library
Statistics

visionstatistics

Description
The 2-D Histogram block computes the frequency distribution of the elements in the
input. You must use the Find the histogram over parameter to specify whether the
block computes the histogram for Each column of the input or of the Entire input.
The Running histogram check box allows you to select between basic operation and
running operation, as described below.

The block distributes the elements of the input into the number of discrete bins specified
by the Number of bins parameter, n.

y = hist(u,n) % Equivalent MATLAB code

The 2-D Histogram block sorts all complex input values into bins according to their
magnitude.

The histogram value for a given bin represents the frequency of occurrence of the input
values bracketed by that bin. You specify the upper boundary of the highest-valued bin in
the Upper limit of histogram parameter, BM, and the lower boundary of the lowest-
valued bin in the Lower limit of histogram parameter, Bm. The bins have equal width of

Δ =
BM − Bm

n

and centers located at

 2-D Histogram

1-53

Bm + k + 1
2 Δ k = 0, 1, 2, ..., n− 1

Input values that fall on the border between two bins are placed into the lower valued
bin; that is, each bin includes its upper boundary. For example, a bin of width 4 centered
on the value 5 contains the input value 7, but not the input value 3. Input values greater
than the Upper limit of histogram parameter or less than Lower limit of histogram
parameter are placed into the highest valued or lowest valued bin, respectively.

The values you enter for the Upper limit of histogram and Lower limit of histogram
parameters must be real-valued scalars. NaN and inf are not valid values for the Upper
limit of histogram and Lower limit of histogram parameters.

Basic Operation
When the Running histogram check box is not selected, the 2-D Histogram block
computes the frequency distribution of the current input.

When you set the Find the histogram over parameter to Each column, the 2-D
Histogram block computes a histogram for each column of the M-by-N matrix
independently. The block outputs an n-by-N matrix, where n is the Number of bins you
specify. The jth column of the output matrix contains the histogram for the data in the jth
column of the M-by-N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D
Histogram block computes the frequency distribution for the entire input vector, matrix or
N-D array. The block outputs an n-by-1 vector, where n is the Number of bins you
specify.

Running Operation
When you select the Running histogram check box, the 2–D Histogram block computes
the frequency distribution of both the past and present data for successive inputs. The
block resets the histogram (by emptying all of the bins) when it detects a reset event at
the optional Rst port. See “Resetting the Running Histogram” on page 1-55 for more
information on how to trigger a reset.

When you set the Find the histogram over parameter to Each column, the 2-D
Histogram block computes a running histogram for each column of the M-by-N matrix.
The block outputs an n-by-N matrix, where n is the Number of bins you specify. The jth

1 Blocks — Alphabetical List

1-54

column of the output matrix contains the running histogram for the jth column of the M-
by-N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D
Histogram block computes a running histogram for the data in the first dimension of the
input. The block outputs an n-by-1 vector, where n is the Number of bins you specify.

Note When the 2-D Histogram block is used in running mode and the input data type is
non-floating point, the output of the histogram is stored as a uint32 data type. The
largest number that can be represented by this data type is 232-1. If the range of the
uint32 data type is exceeded, the output data will wrap back to 0.

Resetting the Running Histogram
The block resets the running histogram whenever a reset event is detected at the optional
Rst port. The reset signal and the input data signal must be the same rate.

You specify the reset event using the Reset port menu:

• None — Disables the Rst port

• Rising edge — Triggers a reset operation when the Rst input does one of the
following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

 2-D Histogram

1-55

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

1 Blocks — Alphabetical List

1-56

Parameters
Lower limit of histogram

Enter a real-valued scalar for the lower boundary, Bm, of the lowest-valued bin. NaN
and inf are not valid values for Bm. Tunable (Simulink).

Upper limit of histogram
Enter a real-valued scalar for the upper boundary, BM, of the highest-valued bin. NaN
and inf are not valid values for BM. Tunable (Simulink).

Number of bins
The number of bins, n, in the histogram.

Find the histogram over
Specify whether the block finds the histogram over the entire input or along each
column of the input.

Note The option will be removed in a future release.

Normalized
When selected, the output vector, v, is normalized such that sum(v) = 1.

Use of this parameter is not supported for fixed-point signals.
Running histogram

Set to enable the running histogram operation, and clear to enable basic histogram
operation. For more information, see “Basic Operation” on page 1-54 and “Running
Operation” on page 1-54.

Reset port
The type of event that resets the running histogram. For more information, see
“Resetting the Running Histogram” on page 1-55. The reset signal and the input data
signal must be the same rate. This parameter is enabled only when you select the
Running histogram check box. For more information, see “Running Operation” on
page 1-54.

Note The fixed-point parameters listed are only used for fixed-point complex inputs,
which are distributed by squared magnitude.

 2-D Histogram

1-57

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Product output data type
Specify the product output data type. See “Multiplication Data Types” for illustrations
depicting the use of the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

1 Blocks — Alphabetical List

1-58

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• 32-bit unsigned integers

Rst • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
histogram MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

 2-D Histogram

1-59

2-D IDCT
Compute 2-D inverse discrete cosine transform (IDCT)

Library
Transforms

visiontransforms

Description
The 2-D IDCT block calculates the two-dimensional inverse discrete cosine transform of
the input signal. The equation for the two-dimensional IDCT is

f (x, y) = 2
MN ∑

m = 0

M − 1
∑

n = 0

N − 1
C(m)C(n)F(m, n)cos(2x + 1)mπ

2M cos(2y + 1)nπ
2N

where F(m,n) is the DCT of the signal f(x,y) and
C m C n(), () =

1
2 for m, n = 0 and

C(m), C(n) = 1 otherwise.

The number of rows and columns of the input signal must be powers of two. The output of
this block has dimensions the same dimensions as the input.

1 Blocks — Alphabetical List

1-60

Port Input/Output Supported Data Types Complex Values
Supported

Input Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output 2-D IDCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the block is the same
data type.

Use the Sine and cosine computation parameter to specify how the block computes the
sine and cosine terms in the IDCT algorithm. If you select Trigonometric fcn, the
block computes the sine and cosine values during the simulation. If you select Table
lookup, the block computes and stores the trigonometric values before the simulation
starts. In this case, the block requires extra memory.

Fixed-Point Data Types
The following diagram shows the data types used in the 2-D IDCT block for fixed-point
signals. Inputs are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type.

 2-D IDCT

1-61

The output of the multiplier is in the product output data type when at least one of the
inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the
result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”. You can set the sine table,

1 Blocks — Alphabetical List

1-62

product output, accumulator, and output data types in the block mask as discussed in the
next section.

Parameters
Sine and cosine computation

Specify how the block computes the sine and cosine terms in the IDCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine values
during the simulation. If you select Table lookup, the block computes and stores
the trigonometric values before the simulation starts. In this case, the block requires
extra memory.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-61 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

 2-D IDCT

1-63

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-61 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-61 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

WLidealoutput = WLinput + f loor(log2(DCTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

1 Blocks — Alphabetical List

1-64

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool. For more
information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, W.H, C.H. Smith, and S.C. Fralick, “A fast computational algorithm for the
discrete cosine transform,”IEEE Trans. Commun., vol. COM-25, pp. 1004-1009.
1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for the discrete Fourier
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
803-816, Aug. 1984.

See Also
2-D DCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

 2-D IDCT

1-65

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-66

2-D IFFT
2-D Inverse fast Fourier transform of input

Library
Transforms

visiontransforms

Description
The 2-D IFFT block computes the inverse fast Fourier transform (IFFT) of an M-by-N
input matrix in two steps. First, it computes the one-dimensional IFFT along one
dimension (row or column). Next, it computes the IFFT of the output of the first step
along the other dimension (column or row).

The output of the IFFT block is equivalent to the MATLAB ifft2 function:

y = ifft2(A) % Equivalent MATLAB code

Computing the IFFT of each dimension of the input matrix is equivalent to calculating the
two-dimensional inverse discrete Fourier transform (IDFT), which is defined by the
following equation:

f (x, y) = 1
MN ∑

m = 0

M − 1
∑

n = 0

N − 1
F(m, n)e j2πmx

M e j2πny
N

where 0 ≤ x ≤ M − 1 and 0 ≤ y ≤ N − 1.

The output of this block has the same dimensions as the input. If the input signal has a
floating-point data type, the data type of the output signal uses the same floating-point
data type. Otherwise, the output can be any fixed-point data type. The block computes
scaled and unscaled versions of the IFFT.

 2-D IFFT

1-67

The input to this block can be floating-point or fixed-point, real or complex, and conjugate
symmetric. The block uses one of two possible FFT implementations. You can select an
implementation based on the FFTW library [1], [2], or an implementation based on a
collection of Radix-2 algorithms. You can select Auto to allow the block to choose the
implementation.

Port Description

Port Description Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned

integer

Yes

Output 2-D IFFT of the input Same as Input port Yes

FFTW Implementation
The FFTW implementation provides an optimized FFT calculation including support for
power-of-two and non-power-of-two transform lengths in both simulation and code
generation. Generated code using the FFTW implementation will be restricted to MATLAB
host computers. The data type must be floating-point. Refer to “Simulink Coder” for more
details on generating code.

Radix-2 Implementation
The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data,
and allows the block to provide portable C-code generation using the “Simulink Coder”.
The dimensions of the input matrix, M and N, must be powers of two. To work with other
input sizes, use the Image Pad block to pad or truncate these dimensions to powers of
two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

1 Blocks — Alphabetical List

1-68

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Butterfly operation and radix-2 DIT in conjunction with the
half-length and double-signal algorithms

Radix-2 DIF in conjunction with the half-length and double-
signal algorithms

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation
Butterfly operation and radix-2 DIT

Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used for fixed-point
signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible
trigonometric values of the twiddle factor

 2-D IFFT

1-69

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these
values in a table and retrieves them during simulation. The number of table entries for
fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the IFFT block for fixed-point signals.
You can set the sine table, accumulator, product output, and output data types displayed
in the diagrams in the IFFT dialog box as discussed in “Parameters” on page 1-72.

Inputs to the IFFT block are first cast to the output data type and stored in the output
buffer. Each butterfly stage then processes signals in the accumulator data type, with the
final output of the butterfly being cast back into the output data type. The block multiplies
in a twiddle factor before each butterfly stage in a decimation-in-time IFFT and after each
butterfly stage in a decimation-in-frequency IFFT.

1 Blocks — Alphabetical List

1-70

The multiplier output appears in the accumulator data type because both of the inputs to
the multiplier are complex. For details on the complex multiplication performed, refer to
“Multiplication Data Types”.

 2-D IFFT

1-71

Parameters
FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The
block restricts generated code with FFTW implementation to MATLAB host
computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point
data, or for portable C-code generation using the “Simulink Coder”. The dimensions
of the input matrix, M and N, must be powers of two. To work with other input sizes,
use the Image Pad block to pad or truncate these dimensions to powers of two, or if
possible choose the FFTW implementation. See “Radix-2 Implementation” on page 1-
68.

Set this parameter to Auto to let the block choose the FFT implementation. For non-
power-of-two transform lengths, the block restricts generated code to MATLAB host
computers.

Input is in bit-reversed order
Select or clear this check box to designate the order of the input channel elements.
Select this check box when the input should appear in reversed order, and clear it
when the input should appear in linear order. The block yields invalid outputs when
you do not set this parameter correctly. This check box only appears when you set the
FFT implementation parameter to Radix-2 or Auto.

For more information ordering of the output, see “Bit-Reversed Order” on page 1-41.
The 2-D FFT block bit-reverses the order of both the columns and the rows.

Input is conjugate symmetric
Select this option when the block inputs both floating point and conjugate symmetric,
and you want real-valued outputs. This parameter cannot be used for fixed-point
signals. Selecting this check box optimizes the block's computation method.

The FFT block yields conjugate symmetric output when you input real-valued data.
Taking the IFFT of a conjugate symmetric input matrix produces real-valued output.
Therefore, if the input to the block is both floating point and conjugate symmetric,
and you select this check box, the block produces real-valued outputs.

If the IFFT block inputs conjugate symmetric data and you do not select this check
box, the IFFT block outputs a complex-valued signal with small imaginary parts. The
block outputs invalid data if you select this option with non conjugate symmetric input
data.

1 Blocks — Alphabetical List

1-72

Divide output by product of FFT length in each input dimension
Select this check box to compute the scaled IFFT. The block computes scaled and
unscaled versions of the IFFT. If you select this option, the block computes the scaled
version of the IFFT. The unscaled IFFT is defined by the following equation:

f (x, y) = ∑
m = 0

M − 1
∑

n = 0

N − 1
F(m, n)e j2πmx

M e j2πny
N

where 0 ≤ x ≤ M − 1 and 0 ≤ y ≤ N − 1.

The scaled version of the IFFT multiplies the above unscaled version by 1
MN .

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; instead, they always round to Nearest.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type
Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as
input

• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-70 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

 2-D IFFT

1-73

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See“Fixed-Point Data Types” on page 1-70 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-70 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

• When you select the Divide butterfly outputs by two check box, the ideal
output word and fraction lengths are the same as the input word and fraction
lengths.

• When you clear the Divide butterfly outputs by two check box, the block
computes the ideal output word and fraction lengths according to the following
equations:

1 Blocks — Alphabetical List

1-74

WLidealoutput = WLinput + f loor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the
FFT,”Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, Vol. 3, 1998, pp. 1381-1384.

See Also
2-D DCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

 2-D IFFT

1-75

http://www.fftw.org

bitrevorder Signal Processing Toolbox software
fft MATLAB
ifft MATLAB
“Simulink Coder” Simulink

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies
on prebuilt dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to

a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not
installed. For more details, see .

• When the FFT length is a power of two, you can generate standalone C and C++ code
from this block.

Introduced before R2006a

1 Blocks — Alphabetical List

1-76

2-D Maximum
Find maximum values in input or sequence of inputs

Library
Statistics

visionstatistics

Description
The 2-D Maximum block identifies the value and/or position of the smallest element in
each row or column of the input, or along a specified dimension of the input. The 2-D
Maximum block can also track the maximum values in a sequence of inputs over a period
of time.

The 2-D Maximum block supports real and complex floating-point, fixed-point, and
Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex
fixed-point inputs must be signed. The output data type of the maximum values match the
data type of the input. The block outputs double index values, when the input is double,
and uint32 otherwise.

 2-D Maximum

1-77

Port Descriptions
Port Input/Output Supported Data Types
Input Scalar, vector or matrix of

intensity values
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and

unsigned)
• Boolean
• 8-, 16-, and 32-bit signed

integers
• 8-, 16-, and 32-bit unsigned

integers
Rst Scalar value • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed

integers
• 8-, 16-, and 32-bit unsigned

integers
Val Maximum value output based on

the “Value Mode” on page 1-79
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and

unsigned)
• Boolean
• 8-, 16-, and 32-bit signed

integers
• 8-, 16-, and 32-bit unsigned

integers
Idx One-based output location of the

maximum value based on the
“Index Mode” on page 1-80

• Double-precision floating point
• 32-bit unsigned integers

1 Blocks — Alphabetical List

1-78

Value Mode
When you set the Mode parameter to Value, the block computes the maximum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input at each sample time, and outputs the array y. Each element in y is the
maximum value in the corresponding column, row, vector, or entire input. The output y
depends on the setting of the Find the maximum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

• Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the maximum value of each vector over the second dimension
of the input. For an M-by-N input matrix, the block outputs an M-by-1 column vector at
each sample time.

• Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the maximum value of each vector over the first
dimension of the input. For an M-by-N input matrix, the block outputs a 1-by-N row
vector at each sample time.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Entire input — The output at each sample time is a scalar that contains the
maximum value in the M-by-N-by-P input matrix.

• Specified dimension — The output at each sample time depends on Dimension.
When you set Dimension to 1, the block output is the same as when you select Each
column. When you set Dimension to 2, the block output is the same as when you
select Each row. When you set Dimension to 3, the block outputs an M-by-N matrix
containing the maximum value of each vector over the third dimension of the input, at
each sample time.

For complex inputs, the block selects the value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input that has the maximum
magnitude squared as shown below. For complex value u = a + bi, the magnitude squared
is a2 + b2.

 2-D Maximum

1-79

Index Mode
When you set the Mode parameter to Index, the block computes the maximum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input, and outputs the index array I. Each element in I is an integer indexing
the maximum value in the corresponding column, row, vector, or entire input. The output I
depends on the setting of the Find the maximum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

• Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the index of the maximum value of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the index of the maximum value of each vector over the
first dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Entire input — The output at each sample time is a 1-by-3 vector that contains the
location of the maximum value in the M-by-N-by-P input matrix. For an input that is an
M-by-N matrix, the output will be a 1-by-2 vector of one-based [x y] location
coordinates for the maximum value.

• Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the indices of the maximum values of each vector over the third dimension of the
input.

1 Blocks — Alphabetical List

1-80

When a maximum value occurs more than once, the computed index corresponds to the
first occurrence. For example, when the input is the column vector [3 2 1 2 3]', the
computed one-based index of the maximum value is 1 rather than 5 when Each column
is selected.

When inputs to the block are double-precision values, the index values are double-
precision values. Otherwise, the index values are 32-bit unsigned integer values.

Value and Index Mode
When you set the Mode parameter to Value and Index, the block outputs both the
maxima and the indices.

Running Mode
When you set the Mode parameter to Running, the block tracks the maximum value of
each channel in a time sequence of M-by-N inputs. In this mode, the block treats each
element as a channel.

Resetting the Running Maximum
The block resets the running maximum whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample
time.

You specify the reset event in the Reset port menu:

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the

following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

 2-D Maximum

1-81

Rising edge

Rising edge

Not a rising edge because it is
a continuation of a rise from
a negative value to zero.Rising edge

Rising edge

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

Falling edgeFalling edge

Not a falling edge because it is
a continuation of a fall from
a positive value to zero.

Falling edge
Falling edge

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

1 Blocks — Alphabetical List

1-82

ROI Processing
To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This applies to any mode other than
running mode and when you set the Find the maximum value over parameter to
Entire input and you select the Enable ROI processing check box. ROI processing
applies only for 2-D inputs.

You can specify Rectangles, Lines, Label matrix, or Binary mask ROI type.

Use the Binary mask to specify which pixels to highlight or select.

Use the Label matrix to label regions. Pixels set to 0 represent the background. Pixels
set to 1 represent the first object, pixels set to 2, represent the second object, and so on.
Use the Label Numbers port to specify the objects in the label matrix for which the
block calculates statistics. The input to this port must be a vector of scalar values that
correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter. For more
information about the format of the input to the ROI port when you set the ROI to a
rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics

Output = Individual statistics for each ROI
Flag Port
Output

Description

0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs
Flag Port
Output

Description

0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

 2-D Maximum

1-83

Output = Individual statistics for each ROI
Flag Port
Output

Description

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs
Flag Port
Output

Description

0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types
The parameters on the Data Types pane of the block dialog are only used for complex
fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input
are formed before a comparison is made, as described in “Value Mode” on page 1-79. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Parameters
Mode

Specify the block's mode of operation:

• Value and Index — Output both the value and the index location.
• Value — Output the maximum value of each input matrix. For more information,

see “Value Mode” on page 1-79.
• Index— Output the one-based index location of the maximum value. For more

information, see “Index Mode” on page 1-80.
• Running — Track the maximum value of the input sequence over time. For more

information, see “Running Mode” on page 1-81.

For the Value, Index, and Value and Index modes, the 2-D Maximum block
produces identical results as the MATLAB max function when it is called as [y I] =

1 Blocks — Alphabetical List

1-84

max(u,[],D), where u and y are the input and output, respectively, D is the
dimension, and I is the index.

Find the maximum value over
Specify whether the block should find the maximum of the entire input each row, each
column, or dimensions specified by the Dimension parameter.

Reset port
Specify the reset event that causes the block to reset the running maximum. The rate
of the reset signal must be a positive integer multiple of the rate of the data signal
input. This parameter appears only when you set the Mode parameter to Running.
For information about the possible values of this parameter, see “Resetting the
Running Maximum” on page 1-81.

Dimension
Specify the dimension (one-based value) of the input signal, over which the maximum
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter applies only when you set the Find the maximum
value over parameter to Specified dimension.

Enable ROI processing
Select this check box to calculate the statistical value within a particular region of
each image. This parameter applies only when you set the Find the maximum value
over parameter to Entire input, and the block is not in running mode.

ROI type
Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating
if ROI is within image bounds check box appears in the dialog box. If you select
this check box, the Flag port appears on the block.

When you set this parameter to Label matrix, the Label and Label Numbers
ports appear on the block and the Output flag indicating if input label numbers
are valid check box appears in the dialog box. If you select this check box, the Flag
port appears on the block.

See “ROI Output Statistics” on page 1-83 for details.

 2-D Maximum

1-85

ROI portion to process
Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter applies only when you set the ROI type parameter
to Rectangles.

Output
Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter does not apply when you set the ROI type parameter, to
Binary mask.

Output flag indicating if ROI is within image bounds
When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Rectangles or Lines. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-83.

Output flag indicating if label numbers are valid
When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Label matrix. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-83.

Note The parameters on the Data Types pane are only used for complex fixed-point
inputs. The sum of the squares of the real and imaginary parts of such an input are
formed before a comparison is made, as described in “Value Mode” on page 1-79. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-84 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input

1 Blocks — Alphabetical List

1-86

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-84 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as product
output

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against changes by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask.

Examples

The ex_vision_2dmaximum example finds the maximum value within two ROIs. The model
outputs the maximum values and their one-based [x y] coordinate locations.

 2-D Maximum

1-87

matlab:ex_vision_2dmaximum

See Also
2-D Mean Computer Vision

System Toolbox
2-D Minimum Computer Vision

System Toolbox
MinMax Simulink
max MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-88

2-D Mean
Find mean value of each input matrix

Library
Statistics

visionstatistics

Description
The 2-D Mean block computes the mean of each row or column of the input, along vectors
of a specified dimension of the input, or of the entire input. The 2-D Mean block can also
track the mean value in a sequence of inputs over a period of time. To track the mean
value in a sequence of inputs, select the Running mean check box.

Port Description
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 2-D Mean

1-89

Port Supported Data Types
Reset • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

ROI Rectangles and lines:

• Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Binary Mask:

• Boolean
Label • 8-, 16-, and 32-bit unsigned integers
Label
Numbers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Flag • Boolean

Basic Operation
When you do not select the Running mean check box, the block computes the mean
value in each row or column of the input, along vectors of a specified dimension of the
input, or of the entire input at each individual sample time. Each element in the output
array y is the mean value of the corresponding column, row, vector, or entire input. The

1 Blocks — Alphabetical List

1-90

output array, y, depends on the setting of the Find the mean value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

• Entire input — The output at each sample time is a scalar that contains the mean
value of the M-by-N-by-P input matrix.

y = mean(u(:)) % Equivalent MATLAB code
• Each row — The output at each sample time consists of an M-by-1-by-P array, where

each element contains the mean value of each vector over the second dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is an M-
by-1 column vector.

y = mean(u,2) % Equivalent MATLAB code
• Each column — The output at each sample time consists of a 1-by-N-by-P array,

where each element contains the mean value of each vector over the first dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is a 1-
by-N row vector.

y = mean(u) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Specified dimension — The output at each sample time depends on the value of
the Dimension parameter. If you set the Dimension to 1, the output is the same as
when you select Each column. If you set the Dimension to 2, the output is the same
as when you select Each row. If you set the Dimension to 3, the output at each
sample time is an M-by-N matrix containing the mean value of each vector over the
third dimension of the input.

y = mean(u,Dimension) % Equivalent MATLAB code

The mean of a complex input is computed independently for the real and imaginary
components, as shown in the following figure.

 2-D Mean

1-91

Running Operation
When you select the Running mean check box, the block tracks the mean value of each
channel in a time sequence of inputs. In this mode, the block treats each element as a
channel.

Resetting the Running Mean
The block resets the running mean whenever a reset event is detected at the optional Rst
port. The reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs, the running mean for each channel is initialized to the value
in the corresponding channel of the current input.

You specify the reset event by the Reset port parameter:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the

following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

1 Blocks — Alphabetical List

1-92

Rising edge

Rising edge

Not a rising edge because it is
a continuation of a rise from
a negative value to zero.Rising edge

Rising edge

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

Falling edgeFalling edge

Not a falling edge because it is
a continuation of a fall from
a positive value to zero.

Falling edge
Falling edge

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a
one-sample latency. Therefore, when the block detects a reset event, there is a one-
sample delay at the reset port rate before the block applies the reset.

 2-D Mean

1-93

ROI Processing
To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the mean value over parameter is set to Entire input and the Running mean
check box is not selected. ROI processing is only supported for 2-D inputs.

• A binary mask is a binary image that enables you to specify which pixels to highlight,
or select.

• In a label matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on.
When the ROI type parameter is set to Label matrix, the Label and Label Numbers
ports appear on the block. Use the Label Numbers port to specify the objects in the
label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix.

• For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes reference page.

For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes block reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify
whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

1 Blocks — Alphabetical List

1-94

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

 2-D Mean

1-95

Fixed-Point Data Types
The following diagram shows the data types used within the Mean block for fixed-point
signals.

You can set the accumulator and output data types in the block dialog, as discussed in
“Parameters” on page 1-96.

Parameters
Running mean

Enables running operation when selected.
Reset port

Specify the reset event that causes the block to reset the running mean. The sample
time of the input to the Rst port must be a positive integer multiple of the input
sample time. This parameter appears only when you select the Running mean check
box. For more information, see “Resetting the Running Mean” on page 1-92.

Find the mean value over
Specify whether to find the mean value along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see “Basic
Operation” on page 1-90.

Dimension
Specify the dimension (one-based value) of the input signal, over which the mean is
computed. The value of this parameter cannot exceed the number of dimensions in

1 Blocks — Alphabetical List

1-96

the input signal. This parameter is only visible when the Find the mean value over
parameter is set to Specified dimension.

Enable ROI Processing
Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the mean value over
parameter is set to Entire input, and the block is not in running mode.

ROI type
Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process
Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output
Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

Output flag indicating if ROI is within image bounds
When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-94.

Output flag indicating if label numbers are valid
When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-94.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Accumulator data type
Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-96 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

 2-D Mean

1-97

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-96 for
illustrations depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Minimum

Specify the minimum value that the block should output. The default value, [], is
equivalent to -Inf. Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value, [], is
equivalent to Inf. Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

1 Blocks — Alphabetical List

1-98

Example

The ex_vision_2dmean calculates the mean value within two ROIs.

See Also
2-D Maximum Computer Vision Toolbox
2D-Median Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
mean MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 2-D Mean

1-99

matlab:ex_vision_2dmean

2-D Median
Find 2-D Median value of each input matrix

Library
Statistics

visionstatistics

Description
The 2-D Median block computes the median value of each row or column of the input,
along vectors of a specified dimension of the input, or of the entire input. The median of a
set of input values is calculated as follows:

1 The values are sorted.
2 If the number of values is odd, the median is the middle value.
3 If the number of values is even, the median is the average of the two middle values.

For a given input u, the size of the output array y depends on the setting of the Find the
median value over parameter. For example, consider a 3-dimensional input signal of size
M-by-N-by-P:

• Entire input — The output at each sample time is a scalar that contains the median
value of the M-by-N-by-P input matrix.

y = median(u(:)) % Equivalent MATLAB code

• Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the median value of each vector over the second dimension of
the input. For an input that is an M-by-N matrix, the output is an M-by-1 column
vector.

1 Blocks — Alphabetical List

1-100

y = median(u,2) % Equivalent MATLAB code
• Each column — The output at each sample time consists of a 1-by-N-by-P array,

where each element contains the median value of each vector over the first dimension
of the input. For an input that is an M-by-N matrix, the output at each sample time is a
1-by-N row vector.

y = median(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors
when the block is in this mode. Sample-based length-M row vector inputs are also
treated as M-by-1 column vectors.

• Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the median value of each vector over the third dimension of the input.

y = median(u,Dimension) % Equivalent MATLAB code

The block sorts complex inputs according to their magnitude.

Fixed-Point Data Types
For fixed-point inputs, you can specify accumulator, product output, and output data types
as discussed in “Parameters” on page 1-102. Not all these fixed-point parameters are
applicable for all types of fixed-point inputs. The following table shows when each kind of
data type and scaling is used.

 Output data type Accumulator data
type

Product output data
type

Even M X X
Odd M X
Odd M and complex X X X
Even M and complex X X X

The accumulator and output data types and scalings are used for fixed-point signals when
M is even. The result of the sum performed while calculating the average of the two
central rows of the input matrix is stored in the accumulator data type and scaling. The
total result of the average is then put into the output data type and scaling.

 2-D Median

1-101

The accumulator and product output parameters are used for complex fixed-point inputs.
The sum of the squares of the real and imaginary parts of such an input are formed before
the input elements are sorted, as described in Description on page 1-100. The results of
the squares of the real and imaginary parts are placed into the product output data type
and scaling. The result of the sum of the squares is placed into the accumulator data type
and scaling.

For fixed-point inputs that are both complex and have even M, the data types are used in
all of the ways described. Therefore, in such cases, the accumulator type is used in two
different ways.

Parameters
Sort algorithm

Specify whether to sort the elements of the input using a Quick sort or an
Insertion sort algorithm.

Find the median value over
Specify whether to find the median value along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see
Description on page 1-100.

Dimension
Specify the dimension (one-based value) of the input signal, over which the median is
computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter is only visible when the Find the median value
over parameter is set to Specified dimension.

Note Floating-point inheritance takes precedence over the data type settings defined on
this pane. When inputs are floating point, the block ignores these settings, and all internal
data types are floating point.

Rounding mode
Select the Rounding mode for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

1 Blocks — Alphabetical List

1-102

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-101
and “Multiplication Data Types” for illustrations depicting the use of the product
output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-101 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as product
output

• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-101 for
illustrations depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

 2-D Median

1-103

Minimum
Specify the minimum value that the block should output. The default value, [], is
equivalent to -Inf. Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value, [], is
equivalent to Inf. Simulink software uses this value to perform:

• Simulation range checking (see “Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, 32-, and 128-bit signed integers
• 8-, 16-, 32-, and 128-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, 32-, and 128-bit signed integers
• 8-, 16-, 32-, and 128-bit unsigned integers

1 Blocks — Alphabetical List

1-104

Examples

Calculate Median Value Over Entire Input

The ex_vision_2dmedian calculates the median value over the entire input.

See Also
2-D Maximum Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
median MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

 2-D Median

1-105

matlab:ex_vision_2dmedian

2-D Minimum
Find minimum values in input or sequence of inputs

Library
Statistics

visionstatistics

Description
The 2-D Minimum block identifies the value and/or position of the smallest element in
each row or column of the input, or along a specified dimension of the input. The 2-D
Minimum block can also track the minimum values in a sequence of inputs over a period
of time.

The 2-D Minimum block supports real and complex floating-point, fixed-point, and
Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex
fixed-point inputs must be signed. The output data type of the minimum values match the
data type of the input. The block outputs double index values, when the input is double,
and uint32 otherwise.

1 Blocks — Alphabetical List

1-106

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Scalar, vector or matrix of
intensity values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

Rst Scalar value Boolean No
Val Minimum value output based on

the “Value Mode” on page 1-107
Same as Input port Yes

Idx One-based output location of
the minimum value based on the
“Index Mode” on page 1-108

Same as Input port No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Value Mode
When you set the Mode parameter to Value, the block computes the minimum value in
each row, column, entire input, or over a specified dimension. The block outputs each
element as the minimum value in the corresponding column, row, vector, or entire input.
The output depends on the setting of the Find the minimum value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

• Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the minimum value of each vector over the second dimension of
the input. For an M-by-N input matrix, the block outputs an M-by-1 column vector at
each sample time.

• Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the minimum value of each vector over the first
dimension of the input. For an M-by-N input matrix, the block outputs a 1-by-N row
vector at each sample time.

 2-D Minimum

1-107

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Entire input — The output at each sample time is a scalar that contains the
minimum value in the M-by-N-by-P input matrix.

• Specified dimension — The output at each sample time depends on Dimension.
When you set Dimension to 1, the block output is the same as when you select Each
column. When you set Dimension to 2, the block output is the same as when you
select Each row. When you set Dimension to 3, the block outputs an M-by-N matrix
containing the minimum value of each vector over the third dimension of the input, at
each sample time.

For complex inputs, the block selects the value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input that has the minimum
magnitude squared as shown below. For complex value u = a + bi, the magnitude squared
is a2 + b2.

Index Mode
When you set the Mode parameter to Index, the block computes the minimum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input, and outputs the index array I. Each element in I is an integer indexing
the minimum value in the corresponding column, row, vector, or entire input. The output I
depends on the setting of the Find the minimum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

• Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the index of the minimum value of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the index of the minimum value of each vector over the
first dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

1 Blocks — Alphabetical List

1-108

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Entire input — The output at each sample time is a 1-by-3 vector that contains the
location of the minimum value in the M-by-N-by-P input matrix. For an input that is an
M-by-N matrix, the output will be a 1-by-2 vector of one-based [x y] location
coordinates for the minimum value.

• Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the indices of the minimum values of each vector over the third dimension of the input.

When a minimum value occurs more than once, the computed index corresponds to the
first occurrence. For example, when the input is the column vector [-1 2 3 2 -1]', the
computed one-based index of the minimum value is 1 rather than 5 when Each column
is selected.

Value and Index Mode
When you set the Mode parameter to Value and Index, the block outputs both the
minima, and the indices.

Running Mode
When you set the Mode parameter to Running, the block tracks the minimum value of
each channel in a time sequence of M-by-N inputs. In this mode, the block treats each
element as a channel.

Resetting the Running Minimum
The block resets the running minimum whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample
time.

You specify the reset event by the Reset port parameter:

• None — Disables the Rst port
• Rising edge — Triggers a reset operation when the Rst input does one of the

following:

 2-D Minimum

1-109

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

Rising edge

Rising edge

Not a rising edge because it is
a continuation of a rise from
a negative value to zero.Rising edge

Rising edge

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

Falling edgeFalling edge

Not a falling edge because it is
a continuation of a fall from
a positive value to zero.

Falling edge
Falling edge

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

1 Blocks — Alphabetical List

1-110

Note When running simulations in the Simulink MultiTasking mode, reset signals have
a one-sample latency. Therefore, when the block detects a reset event, there is a one-
sample delay at the reset port rate before the block applies the reset.

ROI Processing
To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This applies to any mode other than the
Running mode and when you set the Find the minimum value over parameter to
Entire input and you select the Enable ROI processing check box. ROI processing
applies only for 2-D inputs.

You can specify a rectangle, line, label matrix, or binary mask ROI type.

Use the binary mask to specify which pixels to highlight or select.

Use the label matrix to label regions. Pixels set to 0 represent the background. Pixels set
to 1 represent the first object, pixels set to 2, represent the second object, and so on. Use
the Label Numbers port to specify the objects in the label matrix for which the block
calculates statistics. The input to this port must be a vector of scalar values that
correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter. For more
information about the format of the input to the ROI port when you set the ROI to a
rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

 2-D Minimum

1-111

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types
The parameters on the Fixed-point pane of the dialog box are only used for complex
fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input
are formed before a comparison is made, as described in “Value Mode” on page 1-107.
The results of the squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into the accumulator data
type. These parameters are ignored for other types of inputs.

Parameters
Mode

Specify the block's mode of operation:

1 Blocks — Alphabetical List

1-112

• Value and Index — Output both the value and the index location.
• Value — Output the minimum value of each input matrix. For more information,

see “Value Mode” on page 1-107
• Index— Output the one-based index location of the minimum value. For more

information, see “Index Mode” on page 1-108
• Running — Track the minimum value of the input sequence over time. For more

information, see “Running Mode” on page 1-109.

For the Value, Index, and Value and Index modes, the 2-D Minimum block
produces identical results as the MATLAB min function when it is called as [y I] =
min(u,[],D), where u and y are the input and output, respectively, D is the
dimension, and I is the index.

Find the minimum value over
Specify whether the block should find the minimum of the entire input each row, each
column, or dimensions specified by the Dimension parameter.

Reset port
Specify the reset event that causes the block to reset the running minimum. The rate
of the reset signal must be a positive integer multiple of the rate of the data signal
input. This parameter appears only when you set the Mode parameter to Running.
For information about the possible values of this parameter, see “Resetting the
Running Minimum” on page 1-109.

Dimension
Specify the dimension (one-based value) of the input signal, over which the minimum
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter applies only when you set the Find the minimum
value over parameter to Specified dimension.

Enable ROI processing
Select this check box to calculate the statistical value within a particular region of
each image. This parameter applies only when you set the Find the minimum value
over parameter to Entire input, and the block is not in running mode.

ROI type
Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating
if ROI is within image bounds check box appears in the dialog box. If you select
this check box, the Flag port appears on the block.

 2-D Minimum

1-113

When you set this parameter to Label matrix, the Label and Label Numbers
ports appear on the block and the Output flag indicating if input label numbers
are valid check box appears in the dialog box. If you select this check box, the Flag
port appears on the block.

See Output = Individual statistics for each ROI for details.
ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter applies only when you set the ROI type parameter
to Rectangles.

Output
Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter does not apply when you set the ROI type parameter, to
Binary mask.

Output flag indicating if ROI is within image bounds
When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Rectangles or Lines. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-111.

Output flag indicating if label numbers are valid
When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Label matrix. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-111.

Note The parameters on the Data Types pane are only used for complex fixed-point
inputs. The sum of the squares of the real and imaginary parts of such an input are
formed before a comparison is made, as described in “Value Mode” on page 1-107. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

1 Blocks — Alphabetical List

1-114

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 1-112
and “Multiplication Data Types” for illustrations depicting the use of the product
output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-112 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Examples

 2-D Minimum

1-115

The ex_vision_2dminimum example finds the minimum value within two ROIs. The model
outputs the minimum values and their one-based [x y] coordinate locations.

See Also
2-D Maximum Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
MinMax Simulink
2D-Histogram Computer Vision Toolbox
min MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-116

matlab:ex_vision_2dminimum

2-D Standard Deviation
Find standard deviation of each input matrix

Library
Statistics

visionstatistics

Description
The Standard Deviation block computes the standard deviation of each row or column of
the input, along vectors of a specified dimension of the input, or of the entire input. The
Standard Deviation block can also track the standard deviation of a sequence of inputs
over a period of time. The Running standard deviation parameter selects between
basic operation and running operation.

Port Description
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 2-D Standard Deviation

1-117

Port Supported Data Types
ROI Rectangles and lines:

• Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Binary Mask:

• Boolean
Label • 8-, 16-, and 32-bit unsigned integers
Label
Numbers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Flag • Boolean

Basic Operation
When you do not select the Running standard deviation check box, the block computes
the standard deviation of each row or column of the input, along vectors of a specified
dimension of the input, or of the entire input at each individual sample time, and outputs
the array y. Each element in y contains the standard deviation of the corresponding
column, row, vector, or entire input. The output y depends on the setting of the Find the
standard deviation value over parameter. For example, consider a 3-dimensional input
signal of size M-by-N-by-P:

• Entire input — The output at each sample time is a scalar that contains the
standard deviation of the entire input.

y = std(u(:)) % Equivalent MATLAB code
• Each Row — The output at each sample time consists of an M-by-1-by-P array, where

each element contains the standard deviation of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is an M-by-1 column vector.

1 Blocks — Alphabetical List

1-118

y = std(u,0,2) % Equivalent MATLAB code
• Each Column — The output at each sample time consists of a 1-by-N-by-P array,

where each element contains the standard deviation of each vector over the first
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

y = std(u,0,1) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Specified Dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the standard deviation of each vector over the third dimension of the input.

y = std(u,0,Dimension) % Equivalent MATLAB code

For purely real or purely imaginary inputs, the standard deviation of the jth column of an
M-by-N input matrix is the square root of its variance:

y j = σ j =
∑

i = 1

M
ui j− μ j

2

M − 1 1 ≤ j ≤ N

For complex inputs, the output is the total standard deviation, which equals the square
root of the total variance, or the square root of the sum of the variances of the real and
imaginary parts. The standard deviation of each column in an M-by-N input matrix is
given by:

σ j = σ j, Re
2 + σ j, Im

2

Note The total standard deviation does not equal the sum of the real and imaginary
standard deviations.

 2-D Standard Deviation

1-119

Running Operation
When you select the Running standard deviation check box, the block tracks the
standard deviation of successive inputs to the block. In this mode, the block treats each
element as a channel.

Resetting the Running Standard Deviation
The block resets the running standard deviation whenever a reset event is detected at the
optional Rst port. The reset sample time must be a positive integer multiple of the input
sample time.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the

following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

Falling edgeFalling edge

Not a falling edge because it is
a continuation of a fall from
a positive value to zero.

Falling edge
Falling edge

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

1 Blocks — Alphabetical List

1-120

Rising edge

Rising edge

Not a rising edge because it is
a continuation of a rise from
a negative value to zero.Rising edge

Rising edge

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

ROI Processing
To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the standard deviation value over parameter is set to Entire input and the
Running standard deviation check box is not selected. ROI processing is only
supported for 2-D inputs.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix,
or binary mask. A binary mask is a binary image that enables you to specify which pixels
to highlight, or select. In a label matrix, pixels equal to 0 represent the background,
pixels equal to 1 represent the first object, pixels equal to 2 represent the second object,
and so on. When the ROI type parameter is set to Label matrix, the Label and Label
Numbers ports appear on the block. Use the Label Numbers port to specify the objects in
the label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix. For

 2-D Standard Deviation

1-121

more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

1 Blocks — Alphabetical List

1-122

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Parameters
Running standard deviation

Enables running operation when selected.
Reset port

Specify the reset event that causes the block to reset the running standard deviation.
The sample time of the input to the Rst port must be a positive integer multiple of the
input sample time. This parameter appears only when you select the Running
standard deviation check box. For more information, see “Resetting the Running
Standard Deviation” on page 1-120.

Find the standard deviation value over
Specify whether to find the standard deviation value along rows, columns, entire
input, or the dimension specified in the Dimension parameter. For more information,
see “Basic Operation” on page 1-118.

Dimension
Specify the dimension (one-based value) of the input signal, over which the standard
deviation is computed. The value of this parameter cannot exceed the number of
dimensions in the input signal. This parameter is only visible when the Find the
standard deviation value over parameter is set to Specified dimension.

 2-D Standard Deviation

1-123

Enable ROI Processing
Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the standard deviation
value over parameter is set to Entire input, and the block is not in running mode.

ROI type
Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process
Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output
Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

Output flag indicating if ROI is within image bounds
When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-121.

Output flag indicating if label numbers are valid
When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-121.

Example

1 Blocks — Alphabetical List

1-124

The ex_vision_2dstd calculates the standard deviation value within two ROIs.

See Also
2-D Mean Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
std MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 2-D Standard Deviation

1-125

matlab:ex_vision_2dstd

2-D Variance
Compute variance of input or sequence of inputs

Library
Statistics

visionstatistics

Description
The 2-D Variance block computes the unbiased variance of each row or column of the
input, along vectors of a specified dimension of the input, or of the entire input. The 2-D
Variance block can also track the variance of a sequence of inputs over a period of time.
The Running variance parameter selects between basic operation and running
operation.

Port Description
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

1 Blocks — Alphabetical List

1-126

Port Supported Data Types
Reset • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

ROI Rectangles and lines:

• Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Binary Mask:

• Boolean
Label • 8-, 16-, and 32-bit unsigned integers
Label
Numbers

• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Flag • Boolean

Basic Operation
When you do not select the Running variance check box, the block computes the
variance of each row or column of the input, along vectors of a specified dimension of the
input, or of the entire input at each individual sample time, and outputs the array y. Each
element in y is the variance of the corresponding column, row, vector, or entire input. The

 2-D Variance

1-127

output y depends on the setting of the Find the variance value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

• Entire input — The output at each sample time is a scalar that contains the
variance of the entire input.

y = var(u(:)) % Equivalent MATLAB code
• Each row — The output at each sample time consists of an M-by-1-by-P array, where

each element contains the variance of each vector over the second dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is an M-
by-1 column vector.

y = var(u,0,2) % Equivalent MATLAB code
• Each column — The output at each sample time consists of a 1-by-N-by-P array,

where each element contains the variance of each vector over the first dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is a 1-
by-N row vector.

y = var(u,0,1) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

• Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as that when you select Each column.
If Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the variance of each vector over the third dimension of the input.

y = var(u,0,Dimension) % Equivalent MATLAB code

For purely real or purely imaginary inputs, the variance of an M-by-N matrix is the square
of the standard deviation:

y = σ2 =
∑

i = 1

M
∑

j = 1

N
ui j

2−
∑

i = 1

M
∑

j = 1

N
ui j

2

M * N
M * N − 1

For complex inputs, the variance is given by the following equation:

σ2 = σRe2 + σIm2

1 Blocks — Alphabetical List

1-128

Running Operation
When you select the Running variance check box, the block tracks the variance of
successive inputs to the block. In this mode, the block treats each element as a channel.

Resetting the Running Variance
The block resets the running variance whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample
time.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the

following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

Falling edgeFalling edge

Not a falling edge because it is
a continuation of a fall from
a positive value to zero.

Falling edge
Falling edge

• Falling edge — Triggers a reset operation when the Rst input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

 2-D Variance

1-129

Rising edge

Rising edge

Not a rising edge because it is
a continuation of a rise from
a negative value to zero.Rising edge

Rising edge

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

ROI Processing
To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the variance value over parameter is set to Entire input and the Running
variance check box is not selected. ROI processing is only supported for 2-D inputs.

Use the ROI type parameter to specify whether the ROI is a binary mask, label matrix,
rectangle, or line. ROI processing is only supported for 2-D inputs.

• A binary mask is a binary image that enables you to specify which pixels to highlight,
or select.

• In a label matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on.
When the ROI type parameter is set to Label matrix, the Label and Label Numbers
ports appear on the block. Use the Label Numbers port to specify the objects in the
label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix.

1 Blocks — Alphabetical List

1-130

• For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify
whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

Output = Individual Statistics for Each ROI

Flag Port
Output

Description

0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single Statistic for All ROIs

Flag Port
Output

Description

0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

 2-D Variance

1-131

Output = Individual Statistics for Each ROI
Flag Port
Output

Description

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single Statistic for All ROIs
Flag Port
Output

Description

0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types
The parameters on the Data Types pane of the block dialog are only used for fixed-point
inputs. For purely real or purely imaginary inputs, the variance of the input is the square
of its standard deviation. For complex inputs, the output is the sum of the variance of the
real and imaginary parts of the input.

The following diagram shows the data types used within the Variance block for fixed-point
signals.

uij

The results of the magnitude-squared calculations in the figure are in the product output
data type. You can set the accumulator, product output, and output data types in the block
dialog as discussed in “Parameters” on page 1-132.

Parameters
Running variance

Enables running operation when selected.
Reset port

Specify the reset event that causes the block to reset the running variance. The
sample time of the input to the Rst port must be a positive integer multiple of the

1 Blocks — Alphabetical List

1-132

input sample time. This parameter appears only when you select the Running
variance check box. For more information, see “Resetting the Running Variance” on
page 1-129

Find the variance value over
Specify whether to find the variance along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see “Basic
Operation” on page 1-127.

Dimension
Specify the dimension (one-based value) of the input signal, over which the variance
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter is only visible when the Find the variance value
over parameter is set to Specified dimension.

Enable ROI Processing
Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the variance value over
parameter is set to Entire input, and the block is not in running mode.

Note Full ROI processing is available only if you have a Computer Vision Toolbox
license. If you do not have a Computer Vision Toolbox license, you can still use ROI
processing, but are limited to the ROI type Rectangles.

ROI type
Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process
Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output
Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

 2-D Variance

1-133

Output flag indicating if ROI is within image bounds
When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-130.

Output flag indicating if label numbers are valid
When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-130.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

Overflow mode
Select the Overflow mode for fixed-point operations.

Note See “Fixed-Point Data Types” on page 1-132 for more information on how the
product output, accumulator, and output data types are used in this block.

Input-squared product
Use this parameter to specify how to designate the input-squared product word and
fraction lengths:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the input-squared product, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the input-squared product. This block requires power-of-two
slope and a bias of zero.

Input-sum-squared product
Use this parameter to specify how to designate the input-sum-squared product word
and fraction lengths:

• When you select Same as input-squared product, these characteristics
match those of the input-squared product.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the input-sum-squared product, in bits.

1 Blocks — Alphabetical List

1-134

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the input-sum-squared product. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify the accumulator word and fraction lengths resulting
from a complex-complex multiplication in the block:

• When you select Same as input-squared product, these characteristics
match those of the input-squared product.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. This block requires power-of-two slope and
a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Same as input-squared product, these characteristics
match those of the input-squared product.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask.

 2-D Variance

1-135

Example

The ex_vision_2dvar calculates the variance value within two ROIs.

See Also
2-D Mean Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
var MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-136

matlab:ex_vision_2dvar

Autothreshold
Convert intensity image to binary image

Library
Conversions

visionconversions

Description
The Autothreshold block converts an intensity image to a binary image using a threshold
value computed using Otsu's method.

This block computes this threshold value by splitting the histogram of the input image
such that the variance of each pixel group is minimized.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

BW Scalar, vector, or matrix that
represents a binary image

Boolean No

 Autothreshold

1-137

Port Input/Output Supported Data Types
Complex
Values
Supported

Th Threshold value Same as I port No
EMetric Effectiveness metric Same as I port No

Use the Thresholding operator parameter to specify the condition the block places on
the input values. If you select > and the input value is greater than the threshold value,
the block outputs 1 at the BW port; otherwise, it outputs 0. If you select <= and the input
value is less than or equal to the threshold value, the block outputs 1; otherwise, it
outputs 0.

Select the Output threshold check box to output the calculated threshold values at the
Th port.

Select the Output effectiveness metric check box to output values that represent the
effectiveness of the thresholding at the EMetric port. This metric ranges from 0 to 1. If
every pixel has the same value, the effectiveness metric is 0. If the image has two pixel
values or the histogram of the image pixels is symmetric, the effectiveness metric is 1.

If you clear the Specify data range check box, the block assumes that floating-point
input values range from 0 to 1. To specify a different data range, select this check box.
The Minimum value of input and Maximum value of input parameters appear in the
dialog box. Use these parameters to enter the minimum and maximum values of your
input signal.

Use the When data range is exceeded parameter to specify the block's behavior when
the input values are outside the expected range. The following options are available:

• Ignore — Proceed with the computation and do not issue a warning message. If you
choose this option, the block performs the most efficient computation. However, if the
input values exceed the expected range, the block produces incorrect results.

• Saturate — Change any input values outside the range to the minimum or maximum
value of the range and proceed with the computation.

• Warn and saturate — Display a warning message in the MATLAB Command
Window, saturate values, and proceed with the computation.

• Error — Display an error dialog box and terminate the simulation.

If you clear the Scale threshold check box, the block uses the threshold value computed
by Otsu's method to convert intensity images into binary images. If you select the Scale

1 Blocks — Alphabetical List

1-138

threshold check box, the Threshold scaling factor appears in the dialog box. Enter a
scalar value. The block multiplies this scalar value with the threshold value computed by
Otsu's method and uses the result as the new threshold value.

Fixed-Point Data Types
The following diagram shows the data types used in the Autothreshold block for fixed-
point signals. You can use the default fixed-point parameters if your input has a word
length less than or equal to 16.
In this diagram, DT means data type. You can set the product, accumulator, quotient, and
effectiveness metric data types in the block mask.

Parameters
Thresholding operator

Specify the condition the block places on the input matrix values. If you select > or
<=, the block outputs 0 or 1 depending on whether the input matrix values are above,
below, or equal to the threshold value.

Output threshold
Select this check box to output the calculated threshold values at the Th port.

Output effectiveness metric
Select this check box to output values that represent the effectiveness of the
thresholding at the EMetric port.

 Autothreshold

1-139

Specify data range
If you clear this check box, the block assumes that floating-point input values range
from 0 to 1. To specify a different data range, select this check box.

Minimum value of input
Enter the minimum value of your input data. This parameter is visible if you select the
Specify data range check box.

Maximum value of input
Enter the maximum value of your input data. This parameter is visible if you select
the Specify data range check box.

When data range is exceeded
Specify the block's behavior when the input values are outside the expected range.
Your options are Ignore, Saturate, Warn and saturate, or Error. This
parameter is visible if you select the Specify data range check box.

Scale threshold
Select this check box to scale the threshold value computed by Otsu's method.

Threshold scaling factor
Enter a scalar value. The block multiplies this scalar value with the threshold value
computed by Otsu's method and uses the result as the new threshold value. This
parameter is visible if you select the Scale threshold check box.

Rounding mode

Select the rounding mode for fixed-point operations. This parameter does not apply to
the Cast to input DT step shown in “Fixed-Point Data Types” on page 1-139. For this
step, Rounding mode is always set to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1, 2, 3, 4

1 Blocks — Alphabetical List

1-140

As shown previously, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate the product
output word and fraction lengths.

• When you select Specify word length, you can enter the word length of the
product values in bits. The block sets the fraction length to give you the best
precision.

• When you select Same as input, the characteristics match those of the input to
the block. This choice is only available for the Product 4 parameter.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator 1, 2, 3, 4

As shown previously, inputs to the accumulator are cast to the accumulator data type.
The output of the adder remains in the accumulator data type as each element of the
input is added to it. Use this parameter to specify how to designate the accumulator
word and fraction lengths.

• When you select Same as Product, these characteristics match those of the
product output.

• When you select Specify word length, you can enter the word length of the
accumulator values in bits. The block sets the fraction length to give you the best
precision. This choice is not available for the Accumulator 4 parameter because
it is dependent on the input data type.

 Autothreshold

1-141

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Accumulator 3 parameter is only visible if, on the Main pane, you select the
Output effectiveness metric check box.

Quotient
Choose how to specify the word length and fraction length of the quotient data type:

• When you select Specify word length, you can enter the word length of the
quotient values in bits. The block sets the fraction length to give you the best
precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the quotient. The bias of all signals in the Computer Vision
Toolbox software is 0.

Eff Metric
Choose how to specify the word length and fraction length of the effectiveness metric
data type. This parameter is only visible if, on the Main tab, you select the Output
effectiveness metric check box.

• When you select Specify word length, you can enter the word length of the
effectiveness metric values, in bits. The block sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the effectiveness metric in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the effectiveness metric. The bias of all signals in the
Computer Vision Toolbox software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1 Blocks — Alphabetical List

1-142

Example
Example 1.1. Thresholding Intensity Images Using the Autothreshold Block

Convert an intensity image into a binary image. Use the Autothreshold block when
lighting conditions vary and the threshold needs to change for each video frame.

You can open the example model by typing

ex_vision_autothreshold

on the MATLAB command line.

See Also
Compare To Constant Simulink
Relational Operator Simulink
graythresh Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Autothreshold

1-143

matlab:ex_vision_autothreshold

Blob Analysis
Compute statistics for labeled regions

Library
Statistics

visionstatistics

Description
Use the Blob Analysis block to calculate statistics for labeled regions in a binary image.
The block returns quantities such as the centroid, bounding box, label matrix, and blob
count. The Blob Analysis block supports input and output variable size signals. You can
also use the Selector block from Simulink, to select certain blobs based on their statistics.

For information on pixel and spatial coordinate system definitions, see “Image Coordinate
Systems” (Image Processing Toolbox) and “Coordinate Systems”.

Port Descriptions
Port Input/Output Supported Data Types
BW Vector or matrix that represents a

binary image
Boolean

Area Vector that represents the
number of pixels in labeled
regions

32-bit signed integer

1 Blocks — Alphabetical List

1-144

Port Input/Output Supported Data Types
Centroid M-by-2 matrix of centroid

coordinates, where M represents
the number of blobs

• Double-precision floating point
• Single-precision floating point
• Fixed point

BBox M-by-4 matrix of [x y width
height] bounding box coordinates,
where M represents the number
of blobs and [x y] represents the
upper left corner of the bounding
box.

32-bit signed integer

MajorAxis Vector that represents the lengths
of major axes of ellipses

• Double-precision floating point
• Single-precision floating point

MinorAxis Vector that represents the lengths
of minor axes of ellipses

Same as MajorAxis port

Orientation Vector that represents the angles
between the major axes of the
ellipses and the x-axis.

Same as MajorAxis port

Eccentricity Vector that represents the
eccentricities of the ellipses

Same as MajorAxis port

Diameter ^2 Vector that represents the
equivalent diameters squared

Same as Centroid port

Extent Vector that represents the results
of dividing the areas of the blobs
by the area of their bounding
boxes

Same as Centroid port

Perimeter Vector containing an estimate of
the perimeter length, in pixels,
for each blob

Same as Centroid port

Label Label matrix 8-, 16-, or 32-bit unsigned integer
Count Scalar value that represents the

actual number of labeled regions
in each image

Same as Label port

 Blob Analysis

1-145

Dialog Box
The Main pane of the Blob Analysis dialog box appears as shown in the following figure.
Use the check boxes to specify the statistics values you want the block to output. For a
full description of each of these statistics, see the regionprops function reference page
in the Image Processing Toolbox documentation.

1 Blocks — Alphabetical List

1-146

Area
Select this check box to output a vector that represents the number of pixels in
labeled regions

Centroid
Select this check box to output an M-by-2 matrix of [x y] centroid coordinates. The
rows represent the coordinates of the centroid of each region, where M represents
the number of blobs.
Example: Suppose there are two blobs, where the row and column coordinates of
their centroids are x1, y1 and x2, y2, respectively. The block outputs:

x1 y1
x2 y2

at the Centroid port.
Bounding box

Select this check box to output an M-by-4 matrix of [x y width height] bounding boxes.
The rows represent the coordinates of each bounding box, where M represents the
number of blobs.
Example: Suppose there are two blobs, where x and y define the location of the upper-
left corner of the bounding box, and w, h define the width and height of the bounding
box. The block outputs

x1 y1 w1 h1

x2 y2 w2 h2

at the BBox port.
Major axis length

Select this check box to output a vector with the following characteristics:

• Represents the lengths of the major axes of ellipses
• Has the same normalized second central moments as the labeled regions

Minor axis length
Select this check box to output a vector with the following characteristics:

• Represents the lengths of the minor axes of ellipses
• Has the same normalized second central moments as the labeled regions

 Blob Analysis

1-147

Orientation
Select this check box to output a vector that represents the angles between the major
axes of the ellipses and the x-axis. The angle values are in radians and range between:
−π

2 and π2
Eccentricity

Select this check box to output a vector that represents the eccentricities of ellipses
that have the same second moments as the region

Equivalent diameter squared
Select this check box to output a vector that represents the equivalent diameters
squared

Extent
Select this check box to output a vector that represents the results of dividing the
areas of the blobs by the area of their bounding boxes

Perimeter
Select this check box to output an N-by-1 vector of the perimeter lengths, in pixels, of
each blob, where N is the number of blobs.

Statistics output data type
Specify the data type of the outputs as double, single, or to Specify via Data
Types tab. The fields on the Data Types tab appear when you set the output data
type to Specify via Data Types tab.

Connectivity
Define which pixels connect to each other. If you want to connect pixels located on the
top, bottom, left, and right, select 4. If you want to connect pixels to the other pixels
on the top, bottom, left, right, and diagonally, select 8. For more information about
this parameter, see the Label block reference page.

The Connectivity parameter also affects how the block calculates the perimeter of a
blob. For example:

The following figure illustrates how the block calculates the perimeter when you set
the Connectivity parameter to 4.

1 Blocks — Alphabetical List

1-148

The block calculates the distance between the center of each pixel (marked by the
black dots) and estimates the perimeter to be 22.

The next figure illustrates how the block calculates the perimeter of a blob when you
set the Connectivity parameter to 8.

The block takes a different path around the blob and estimates the perimeter to be
18 + 2 2.

 Blob Analysis

1-149

Output label matrix
Select this check box, to output the label matrix at the Label port. The pixels equal to
0 represent the background. The pixels equal to 1 represent the first object. The
pixels equal to 2 represent the second object, and so on.

The Blob Properties pane of the Blob Analysis dialog box appears as shown in the
following figure.

1 Blocks — Alphabetical List

1-150

Maximum number of blobs
Specify the maximum number of labeled regions in each input image. The block uses
this value to preallocate vectors and matrices to ensure that they are long enough to
hold the statistical values. The maximum number of blobs the block outputs depends
on both the value of this parameter, and on the size of the input image. The number of
blobs the block outputs may be limited by the input image size.

Warn if maximum number of blobs is exceeded
Select this check box to output a warning when the number of blobs in an image is
greater than the value of Maximum number of blobs parameter.

Output number of blobs found
Select this check box to output a scalar value that represents the actual number of
connected regions in each image at the Count port.

Specify minimum blob area in pixels
Select this check box to enter the minimum blob area in the edit box that appears
beside the check box. The blob gets a label if the number of pixels meets the
minimum size specified. This parameter is tunable.

Specify maximum blob area in pixels
Select this check box to enter the maximum blob area in the edit box that appears
beside the check box. The blob gets a label if the number of pixels meets the
minimum size specified. The maximum allowable value is the maximum of uint32
data type. This parameter is tunable.

Exclude blobs touching image border
Select this check box to exclude a labeled blob that contains at least one border pixel.

Output blob statistics as a variable-size signal
Select this check box to output blob statistics as a variable-size signal. Selecting this
check box means that you do not need to specify fill values.

Fill empty spaces in outputs
Select this check box to fill empty spaces in the statistical vectors with the values you
specify in the Fill values parameter.

The Fill empty spaces in outputs check box does not appear when you select the
Output blob statistics as a variable-size signal check box.

Fill values
If you enter a scalar value, the block fills all the empty spaces in the statistical vectors
with this value. If you enter a vector, it must have the same length as the number of

 Blob Analysis

1-151

selected statistics. The block uses each vector element to fill a different statistics
vector. If the empty spaces do not affect your computation, you can deselect the Fill
empty spaces in outputs check box. As a best practice, leave this check box
selected.

The Fill values parameter is not visible when you select the Output blob statistics
as a variable-size signal check box.

The Data Types pane of the Blob Analysis dialog box appears as shown in the following
figure.

The parameters on the Data Types tab apply only when you set the Statistics output
data type parameter to Specify via Data Types tab.

1 Blocks — Alphabetical List

1-152

Rounding mode
Select the rounding mode Floor, Ceiling, Nearest or Zero for fixed-point
operations.

Overflow mode
Select the overflow mode, Wrap or Saturate for fixed-point operations.

 Blob Analysis

1-153

Product output
When you select Binary point scaling, you can enter the Word length and the
Fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the Word length in bits,
and the Slope of the product output. All signals in the Computer Vision Toolbox
software have a bias of 0.

MULTIPLIER

Accumulator data type
Product output data type

4/pi data type

The block places the output of the multiplier into the Product output data type and
scaling. The computation of the equivalent diameter squared uses the product output
data type. During this computation, the block multiplies the blob area (stored in the
accumulator) by the 4/pi factor. This factor has a word length that equals the value of
Equivalent diameter squared output data type Word length. The value of the
Fraction length equals its word length minus two. Use this parameter to specify how
to designate this product output word and fraction lengths.

Accumulator
When you select Same as product output the characteristics match the
characteristics of the product output.

When you select Binary point scaling, you can enter the Word length and the
Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the Accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

1 Blocks — Alphabetical List

1-154

Inputs to the Accumulator get cast to the accumulator data type. Each element of
the input gets added to the output of the adder, which remains in the accumulator
data type. Use this parameter to specify how to designate this accumulator word and
fraction lengths.

Centroid output
Choose how to specify the Word length and Fraction length of the output at the
Centroid port:

• When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Equiv Diam^2 output
Choose how to specify the Word length and Fraction length of the output at the
Diameter ^2 port:

• When you select Same as accumulator, these characteristics match the
characteristics of the Accumulator.

• When you select Same as product output, these characteristics match the
characteristics of the Product output.

 Blob Analysis

1-155

• When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Extent output
Choose how to specify the Word length and Fraction length of the output at the
Extent port:

• When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Perimeter output
Choose how to specify the Word length and Fraction length of the output at the
Perimeter port:

• When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Lock data type settings against changes by the fixed–point tools
Select this parameter to prevent the autoscaling tool in the Fixed-Point Tool from
overriding any fixed-point scaling you specify in this block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

1 Blocks — Alphabetical List

1-156

See Also
Label Computer Vision Toolbox
regionprops Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Blob Analysis

1-157

Block Matching
Estimate motion between images or video frames

Library
Analysis & Enhancement

visionanalysis

Description
The Block Matching block estimates motion between two images or two video frames
using “blocks” of pixels. The Block Matching block matches the block of pixels in frame k
to a block of pixels in frame k+1 by moving the block of pixels over a search region.

Suppose the input to the block is frame k. The Block Matching block performs the
following steps:

1 The block subdivides this frame using the values you enter for the Block size
[height width] and Overlap [r c] parameters. In the following example, the
Overlap [r c] parameter is [0 0].

2 For each subdivision or block in frame k+1, the Block Matching block establishes a
search region based on the value you enter for the Maximum displacement [r c]
parameter.

3 The block searches for the new block location using either the Exhaustive or
Three-step search method.

1 Blocks — Alphabetical List

1-158

Input image = frame k STEP 1: Subdivide the image in frame k.

Search region

STEP 2: Establish the search region in frame k+1.

Search region

Block

New block location

STEP 3: Search for the new block location in frame k+1.

Previous block location

Center pixel

 Block Matching

1-159

Port Output Supported Data Types
Complex
Values
Supported

I/I1 Scalar, vector, or matrix of
intensity values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

I2 Scalar, vector, or matrix of
intensity values

Same as I port No

|V|^2 Matrix of velocity
magnitudes

Same as I port No

V Matrix of velocity
components in complex
form

Same as I port Yes

Use the Estimate motion between parameter to specify whether to estimate the motion
between two images or two video frames. If you select Current frame and N-th
frame back, the N parameter appears in the dialog box. Enter a scalar value that
represents the number of frames between the reference frame and the current frame.

Use the Search method parameter to specify how the block locates the block of pixels in
frame k+1 that best matches the block of pixels in frame k.

• If you select Exhaustive, the block selects the location of the block of pixels in frame
k+1 by moving the block over the search region 1 pixel at a time. This process is
computationally expensive.

• If you select Three-step, the block searches for the block of pixels in frame k+1 that
best matches the block of pixels in frame k using a steadily decreasing step size. The
block begins with a step size approximately equal to half the maximum search range.
In each step, the block compares the central point of the search region to eight search
points located on the boundaries of the region and moves the central point to the
search point whose values is the closest to that of the central point. The block then
reduces the step size by half, and begins the process again. This option is less
computationally expensive, though it might not find the optimal solution.

Use the Block matching criteria parameter to specify how the block measures the
similarity of the block of pixels in frame k to the block of pixels in frame k+1. If you select

1 Blocks — Alphabetical List

1-160

Mean square error (MSE), the Block Matching block estimates the displacement of
the center pixel of the block as the (d1, d2) values that minimize the following MSE
equation:

MSE(d1, d2) = 1
N1 × N2

∑
(n1, n2),

∑
∈ B

[s(n1, n2, k) − s(n1 + d1, n2 + d2, k + 1)]2

In the previous equation, B is an N1 × N2 block of pixels, and s(x,y,k) denotes a pixel
location at (x,y) in frame k. If you select Mean absolute difference (MAD), the
Block Matching block estimates the displacement of the center pixel of the block as the
(d1, d2) values that minimize the following MAD equation:

MAD(d1, d2) = 1
N1 × N2

∑
(n1, n2),

∑
∈ B

s(n1, n2, k) − s(n1 + d1, n2 + d2, k + 1)

Use the Block size [height width] and Overlap [r c] parameters to specify how the
block subdivides the input image. For a graphical description of these parameters, see the
first figure in this reference page. If the Overlap [r c] parameter is not [0 0], the blocks
would overlap each other by the number of pixels you specify.

Use the Maximum displacement [r c] parameter to specify the maximum number of
pixels any center pixel in a block of pixels might move from image to image or frame to
frame. The block uses this value to determine the size of the search region.

Use the Velocity output parameter to specify the block's output. If you select
Magnitude-squared, the block outputs the optical flow matrix where each element is of
the form u2+v2. If you select Horizontal and vertical components in complex
form, the block outputs the optical flow matrix where each element is of the form u + jv.
The real part of each value is the horizontal velocity component and the imaginary part of
each value is the vertical velocity component.

Fixed-Point Data Types
The following diagram shows the data types used in the Block Matching block for fixed-
point signals.

 Block Matching

1-161

CAST
Accumulator
data type

MSE Block Matching

ADDER

The result of each addition remains
in the accumulator data type.

Input
data type

Accumulator
data type

CAST MULTIPLIER CAST

Product
data type

Product
data type

Accumulator
data type

The result of each multiplication remains
in the product data type.

MAD Block Matching

CAST
Accumulator
data type

ADDER

The result of each addition remains
in the accumulator data type.

Input
data type

Accumulator
data type

You can set the accumulator and output data types in the block mask as discussed in the
next section.

Parameters
Estimate motion between

Select Two images to estimate the motion between two images. Select Current
frame and N-th frame back to estimate the motion between two video frames
that are N frames apart.

N
Enter a scalar value that represents the number of frames between the reference
frame and the current frame. This parameter is only visible if, for the Estimate
motion between parameter, you select Current frame and N-th frame back.

1 Blocks — Alphabetical List

1-162

Search method
Specify how the block searches for the block of pixels in the next image or frame.
Your choices are Exhaustive or Three-step.

Block matching criteria
Specify how the block measures the similarity of the block of pixels in frame k to the
block of pixels in frame k+1. Your choices are Mean square error (MSE) or Mean
absolute difference (MAD).

Block size [height width]
Specify the size of the block of pixels.

Overlap [r c]
Specify the overlap (in pixels) of two subdivisions of the input image.

Maximum displacement [r c]
Specify the maximum number of pixels any center pixel in a block of pixels might
move from image to image or frame to frame. The block uses this value to determine
the size of the search region.

Velocity output
If you select Magnitude-squared, the block outputs the optical flow matrix where
each element is of the form u2 + v2. If you select Horizontal and vertical
components in complex form, the block outputs the optical flow matrix where
each element is of the form u + jv.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output

 Block Matching

1-163

As shown previously, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate the product
output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

As depicted previously, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element
of the input is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Binary point scaling, you can enter the word length of the
output, in bits. The fractional length is always 0.

1 Blocks — Alphabetical List

1-164

• When you select Slope and bias scaling, you can enter the word length, in
bits, of the output. The bias of all signals in the Computer Vision Toolbox software
is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also
Optical Flow Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Block Matching

1-165

Block Processing
Repeat user-specified operation on submatrices of input matrix

Library
Utilities

visionutilities

Description
The Block Processing block extracts submatrices of a user-specified size from each input
matrix. It sends each submatrix to a subsystem for processing, and then reassembles each
subsystem output into the output matrix.

Subsystem

Note Because you modify the Block Processing block's subsystem, the link between this
block and the block library is broken when you click-and-drag a Block Processing block
into your model. As a result, this block will not be automatically updated if you upgrade to
a newer version of the Computer Vision Toolbox software. If you right-click on the block
and select Mask>Look Under Mask, you can delete blocks from this subsystem without

1 Blocks — Alphabetical List

1-166

triggering a warning. Lastly, if you search for library blocks in a model, this block will not
be part of the results.

The blocks inside the subsystem dictate the frame status of the input and output signals,
whether single channel or multichannel signals are supported, and which data types are
supported by this block.

Use the Number of inputs and Number of outputs parameters to specify the number
of input and output ports on the Block Processing block.

Use the Block size parameter to specify the size of each submatrix in cell array format.
Each vector in the cell array corresponds to one input; the block uses the vectors in the
order you enter them. If you have one input port, enter one vector. If you have more than
one input port, you can enter one vector that is used for all inputs or you can specify a
different vector for each input. For example, if you want each submatrix to be 2-by-3,
enter {[2 3]}.

Use the Overlap parameter to specify the overlap of each submatrix in cell array format.
Each vector in the cell array corresponds to the overlap of one input; the block uses the
vectors in the order they are specified. If you enter one vector, each overlap is the same
size. For example, if you want each 3-by-3 submatrix to overlap by 1 row and 2 columns,
enter {[1 2]}.

The Traverse order parameter determines how the block extracts submatrices from the
input matrix. If you select Row-wise, the block extracts submatrices by moving across
the rows. If you select Column-wise, the block extracts submatrices by moving down the
columns.

Click the Open Subsystem button to open the block's subsystem. Click-and-drag blocks
into this subsystem to define the processing operation(s) the block performs on the
submatrices. The input to this subsystem are the submatrices whose size is determined by
the Block size parameter.

Note When you place an Assignment block inside a Block Processing block's subsystem,
the Assignment block behaves as though it is inside a For Iterator block. For a description
of this behavior, see the “Iterated Assignment” section of the Assignment block reference
page.

 Block Processing

1-167

Parameters
Number of inputs

Enter the number of input ports on the Block Processing block.
Add port to supply subsystem parameters

Add an input port to the block to supply subsystem parameters. When you check this
option, a port (P) is added to the block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each vector in the cell array
corresponds to one input.

Overlap
Specify the overlap of each submatrix in cell array format. Each vector in the cell
array corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input matrix. If you select
Row-wise, the block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block's subsystem. Click-and-drag blocks into this
subsystem to define the processing operation(s) the block performs on the
submatrices.

See Also
For Iterator Simulink
blockproc Image Processing Toolbox

Introduced before R2006a

1 Blocks — Alphabetical List

1-168

Bottom-hat
Perform bottom-hat filtering on intensity or binary images

Library
Morphological Operations

visionmorphops

Description
Use the Bottom-hat block to perform bottom-hat filtering on an intensity or binary image
using a predefined neighborhood or structuring element. Bottom-hat filtering is the
equivalent of subtracting the input image from the result of performing a morphological
closing operation on the input image. This block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of ones and
zeros that represents the
neighborhood values

Boolean No

 Bottom-hat

1-169

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix that
represents the filtered image

Same as I port No

If your input image is a binary image, for the Input image type parameter, select
Binary. If your input image is an intensity image, select Intensity.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and 0s. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters
Input image type

If your input image is a binary image, select Binary. If your input image is an
intensity image, select Intensity.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

1 Blocks — Alphabetical List

1-170

See Also
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Video and Image Processing Blockset software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imbothat Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Bottom-hat

1-171

Chroma Resampling
Downsample or upsample chrominance components of images

Library
Conversions

visionconversions

Description
The Chroma Resampling block downsamples or upsamples chrominance components of
pixels to reduce the bandwidth required for transmission or storage of a signal.

Port Input/Output Supported Data Types
Complex
Values
Supported

Cb Matrix that represents
one chrominance
component of an image

• Double-precision floating point
• Single-precision floating point
• 8-bit unsigned integer

No

Cr Matrix that represents
one chrominance
component of an image

Same as Cb port No

The data type of the output signals is the same as the data type of the input signals.

1 Blocks — Alphabetical List

1-172

Chroma Resampling Formats
The Chroma Resampling block supports the formats shown in the following diagram.

4:4:4 4:1:14:2:2

4:2:0 MPEG1 4:2:0 MPEG2

Cb and Cr pixel

Y pixel

Downsampling
If, for the Resampling parameter, you select 4:4:4 to 4:2:2,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), 4:4:4 to 4:1:1,
4:2:2 to 4:2:0 (MPEG1), or 4:2:2 to 4:2:0 (MPEG2), the block performs a
downsampling operation. When the block downsamples from one format to another, it can
bandlimit the input signal by applying a lowpass filter to prevent aliasing.

If, for the Antialiasing filter parameter, you select Default, the block uses a built-in
lowpass filter to prevent aliasing.

If, for the Resampling parameter, you select 4:4:4 to 4:2:2,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for
the Antialiasing filter parameter, you select User-defined, the Horizontal filter

 Chroma Resampling

1-173

coefficients parameter appears on the dialog box. Enter the filter coefficients to apply to
your input.

If, for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select
User-defined. Vertical filter coefficients parameters appear on the dialog box. Enter
an even number of filter coefficients to apply to your input signal.

If, for the Antialiasing filter parameter, you select None, the block does not filter the
input signal.

Upsampling
If, for the Resampling parameter, you select 4:2:2 to 4:4:4,
4:2:0 (MPEG1) to 4:2:2, 4:2:0 (MPEG1) to 4:4:4, 4:2:0 (MPEG2) to 4:2:2,
4:2:0 (MPEG2) to 4:4:4, or 4:1:1 to 4:4:4, the block performs an upsampling
operation.

When the block upsamples from one format to another, it uses interpolation to
approximate the missing chrominance values. If, for the Interpolation parameter, you
select Linear, the block uses linear interpolation to calculate the missing values. If, for
the Interpolation parameter, you select Pixel replication, the block replicates the
chrominance values of the neighboring pixels to create the upsampled image.

Row-Major Data Format
The MATLAB environment and the Computer Vision Toolbox software use column-major
data organization. However, the Chroma Resampling block gives you the option to
process data that is stored in row-major format. When you select the Input image is
transposed (data order is row major) check box, the block assumes that the input
buffer contains contiguous data elements from the first row first, then data elements from
the second row second, and so on through the last row. Use this functionality only when
you meet all the following criteria:

• You are developing algorithms to run on an embedded target that uses the row-major
format.

• You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

1 Blocks — Alphabetical List

1-174

When you use the row-major functionality, you must consider the following issues:

• When you select this check box, the signal dimensions of the Chroma Resampling
block's input are swapped.

• All the Computer Vision Toolbox blocks can be used to process data that is in the row-
major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

• Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on
an embedded target.

Video
source
block

Transpose
block

Transpose
block

Algorithm
blocks

Step 1:
Create block diagram

Step 2:
Replace source, transpose, and
sink blocks with target source
and sink blocks that produce
data in row-major format

Embedded
target source
block

Video
sink
block

Embedded
target sink
block

 Chroma Resampling

1-175

Parameters
Resampling

Specify the resampling format.
Antialiasing filter

Specify the lowpass filter that the block uses to prevent aliasing. If you select
Default, the block uses a built-in lowpass filter. If you select User-defined, the
Horizontal filter coefficients and/or Vertical filter coefficients parameters
appear on the dialog box. If you select None, the block does not filter the input signal.
This parameter is visible when you are downsampling the chrominance values.

Horizontal filter coefficients
Enter the filter coefficients to apply to your input signal. This parameter is visible if,
for the Resampling parameter, you select 4:4:4 to 4:2:2,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and,
for the Antialiasing filter parameter, you select User-defined.

Vertical filter coefficients
Enter the filter coefficients to apply to your input signal. This parameter is visible if,
for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select
User-defined.

Interpolation
Specify the interpolation method that the block uses to approximate the missing
chrominance values. If you select Linear, the block uses linear interpolation to
calculate the missing values. If you select Pixel replication, the block replicates
the chrominance values of the neighboring pixels to create the upsampled image. This
parameter is visible when you are upsampling the chrominance values. This
parameter is visible if the Resampling parameter is set to 4:2:2 to 4:4:4 ,
4:2:0 (MPEG1) to 4:4:4 , 4:2:0 (MPEG2) to 4:4:4 , 4:1:1
to 4:4:4 , 4:2:0 (MPEG1) to 4:2:2 , or 4:2:0 (MPEG2) to 4:2:2 .

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

1 Blocks — Alphabetical List

1-176

References
[1] Haskell, Barry G., Atul Puri, and Arun N. Netravali. Digital Video: An Introduction to

MPEG-2. New York: Chapman & Hall, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and Communications.
Upper Saddle River, NJ: Prentice Hall, 2002.

See Also
Autothreshold Computer Vision Toolbox software
Color Space Conversion Computer Vision Toolbox software
Image Complement Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Chroma Resampling

1-177

Closing
Perform morphological closing on binary or intensity images

Library
Morphological Operations

visionmorphops

Description
The Closing block performs a dilation operation followed by an erosion operation using a
predefined neighborhood or structuring element. This block uses flat structuring
elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of ones and zeros
that represents the neighborhood
values

Boolean No

1 Blocks — Alphabetical List

1-178

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Vector or matrix of intensity values
that represents the closed image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and 0s. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters
Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

 Closing

1-179

References
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also
Bottom-hat Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imclose Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-180

Color Space Conversion
Convert color information between color spaces

Library
Conversions

visionconversions

Description
The Color Space Conversion block converts color information between color spaces. Use
the Conversion parameter to specify the color spaces you are converting between. Your
choices are R'G'B' to Y'CbCr, Y'CbCr to R'G'B', R'G'B' to intensity,
R'G'B' to HSV, HSV to R'G'B', sR'G'B' to XYZ, XYZ to sR'G'B', sR'G'B' to
L*a*b*, and L*a*b* to sR'G'B'.

• If the input is uint8, YCBCR is uint8, where Y is in the range [16 235], and Cb and
Cr are in the range [16 240].

• If the input is a double, Y is in the range [16/255 235/255] and Cb and Cr are in
the range [16/255 240/255].

Port Input/Output Supported Data Types
Complex
Values
Supported

Input /
Output

M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating point
• Single-precision floating point
• 8-bit unsigned integer

No

 Color Space Conversion

1-181

Port Input/Output Supported Data Types
Complex
Values
Supported

R' Matrix that represents one plane of
the input RGB video stream

Same as the Input port No

G' Matrix that represents one plane of
the input RGB video stream

Same as the Input port No

B' Matrix that represents one plane of
the input RGB video stream

Same as the Input port No

Y' Matrix that represents the luma
portion of an image

Same as the Input port No

Cb Matrix that represents one
chrominance component of an
image

Same as the Input port No

Cr Matrix that represents one
chrominance component of an
image

Same as the Input port No

I' Matrix of intensity values Same as the Input port No
H Matrix that represents the hue

component of an image
• Double-precision floating point
• Single-precision floating point

No

S Matrix that represents the
saturation component of an image

Same as the H port No

V Matrix that represents the value
(brightness) component of an image

Same as the H port No

X Matrix that represents the X
component of an image

Same as the H port No

Y Matrix that represents the Y
component of an image

Same as the H port No

Z Matrix that represents the Z
component of an image

Same as the H port No

L* Matrix that represents the
luminance portion of an image

Same as the H port No

1 Blocks — Alphabetical List

1-182

Port Input/Output Supported Data Types
Complex
Values
Supported

a* Matrix that represents the a*
component of an image

Same as the H port No

b* Matrix that represents the b*
component of an image

Same as the H port No

The data type of the output signal is the same as the data type of the input signal.

Use the Image signal parameter to specify how to input and output a color video signal.
If you select One multidimensional signal, the block accepts an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port accepts one M-by-N
plane of an RGB video stream.

Note The prime notation indicates that the signals are gamma corrected.

Conversion Between R'G'B' and Y'CbCr Color Spaces
The following equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B'
conversion:

Y ′
Cb
Cr

=
16
128
128

+ Α ×
R′
G′
B′

R′
G′
B′

= Β ×
Y ′
Cb
Cr

−
16

128
128

The values in matrices A and B are based on your choices for the Use conversion
specified by and Scanning standard parameters.

 Color Space Conversion

1-183

Matrix Use conversion specified
by = Rec. 601 (SDTV)

Use conversion specified by = Rec. 709 (HDTV)
Scanning standard =
1125/60/2:1

Scanning standard =
1250/50/2:1

A 0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

 0.18258588 0.61423059 0.06200706
 ‐0.10064373 ‐0.33857195 0.43921569
 0.43921569 ‐0.39894216 ‐0.04027352

0.25678824 0.50412941 0.09790588
−0.1482229 −0.29099279 0.43921569
0.43921569 −0.36778831 −0.07142737

B 1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

1.16438356 0 1.79274107
1.16438356 ‐0.21324861 ‐0.53290933
1.16438356 2.11240179 0

1.1643836 0 1.5960268
1.1643836 −0.39176229 −0.81296765
1.1643836 2.0172321 0

Conversion from R'G'B' to Intensity
The following equation defines conversion from the R'G'B' color space to intensity:

intensity = 0.299 0.587 0.114
R′
G′
B′

Conversion Between R'G'B' and HSV Color Spaces
The R'G'B' to HSV conversion is defined by the following equations. In these equations,
MAX and MIN represent the maximum and minimum values of each R'G'B' triplet,
respectively. H, S, and V vary from 0 to 1, where 1 represents the greatest saturation and
value.

1 Blocks — Alphabetical List

1-184

H =

G′ − B′
MAX −MIN /6, if R′ = MAX

2 + B′ − R′
MAX −MIN /6, if G′ = MAX

4 + R′ − G′
MAX −MIN /6, if B′ = MAX

S = MAX −MIN
MAX

V = MAX

The HSV to R'G'B' conversion is defined by the following equations:

Hi = 6H
f = 6H − Hi
p = 1 − S
q = 1 − fS
t = 1 − (1 − f)S
if Hi = 0, Rtmp = 1, Gtmp = t, Btmp = p

if Hi = 1, Rtmp = q, Gtmp = 1, Btmp = p

if Hi = 2, Rtmp = p, Gtmp = 1, Btmp = t

if Hi = 3, Rtmp = p, Gtmp = q, Btmp = 1

if Hi = 4, Rtmp = t, Gtmp = p, Btmp = 1

if Hi = 5, Rtmp = 1, Gtmp = p, Btmp = q
u = V /max(Rtmp, Gtmp, Btmp)
R′ = uRtmp
G′ = uGtmp
B′ = uBtmp

Conversion Between sR'G'B' and XYZ Color Spaces
The sR'G'B' to XYZ conversion is a two-step process. First, the block converts the gamma-
corrected sR'G'B' values to linear sRGB values using the following equations:

 Color Space Conversion

1-185

If R′sRGB, G′sRGB, B′sRGB ≤ 0.03928
RsRGB = R′sRGB/12.92
GsRGB = G′sRGB/12.92
BsRGB = B′sRGB/12.92
otherwise, if R′sRGB, G′sRGB, B′sRGB > 0.03928

RsRGB = (R′sRGB + 0.055)
1.055

2.4

GsRGB = (G′sRGB + 0.055)
1.055

2.4

BsRGB = (B′sRGB + 0.055)
1.055

2.4

Then the block converts the sRGB values to XYZ values using the following equation:

X
Y
Z

=
0.41239079926596 0.35758433938388 0.18048078840183
0.21263900587151 0.71516867876776 0.07219231536073
0.01933081871559 0.11919477979463 0.95053215224966

×
RsRGB
GsRGB
BsRGB

The XYZ to sR'G'B' conversion is also a two-step process. First, the block converts the
XYZ values to linear sRGB values using the following equation:

RsRGB
GsRGB
BsRGB

=
0.41239079926596 0.35758433938388 0.18048078840183
0.21263900587151 0.71516867876776 0.07219231536073
0.01933081871559 0.11919477979463 0.95053215224966

−1

×
X
Y
Z

Then the block applies gamma correction to obtain the sR'G'B' values. This process is
described by the following equations:

1 Blocks — Alphabetical List

1-186

If RsRGB, GsRGB, BsRGB ≤ 0.00304
R′sRGB = 12.92RsRGB
G′sRGB = 12.92GsRGB
B′sRGB = 12.92BsRGB

otherwise, if RsRGB, GsRGB, BsRGB > 0.00304
R′sRGB = 1.055RsRGB(1.0/2.4)− 0.055
G′sRGB = 1.055GsRGB(1.0/2.4)− 0.055
B′sRGB = 1.055BsRGB(1.0/2.4)− 0.055

Note Computer Vision Toolbox software uses a D65 white point, which is specified in
Recommendation ITU-R BT.709, for this conversion. In contrast, the Image Processing
Toolbox conversion is based on ICC profiles, and it uses a D65 to D50 Bradford adaptation
transformation to the D50 white point. If you are using these two products and comparing
results, you must account for this difference.

Conversion Between sR'G'B' and L*a*b* Color Spaces
The Color Space Conversion block converts sR'G'B' values to L*a*b* values in two steps.
First it converts sR'G'B' to XYZ values using the equations described in “Conversion
Between sR'G'B' and XYZ Color Spaces” on page 1-185. Then it uses the following
equations to transform the XYZ values to L*a*b* values. Here, Xn, Yn, and Zn are the
tristimulus values of the reference white point you specify using the White point
parameter:

L * = 116(Y − 16, f or Y /Yn > 0.008856
L * = 903.3Y /Yn, otherwise

a * = 500(f (X/Xn) − f (Y /Yn))
b * = 200(f (Y /Yn) − f (Z/Zn)),

where f (t) = t1/3, f or t > 0.008856
f (t) = 7.787t + 16/166, otherwise

The block converts L*a*b* values to sR'G'B' values in two steps as well. The block
transforms the L*a*b* values to XYZ values using these equations:

 Color Space Conversion

1-187

For Y /Yn > 0.008856

X = Xn(P + a * /500)3

Y = YnP3

Z = Zn(P − b * /200)3,

where P = (L * + 16)/116

Parameters
Conversion

Specify the color spaces you are converting between. Your choices are R'G'B' to
Y'CbCr, Y'CbCr to R'G'B', R'G'B' to intensity, R'G'B' to HSV, HSV to
R'G'B', sR'G'B' to XYZ, XYZ to sR'G'B', sR'G'B' to L*a*b*, and L*a*b*
to sR'G'B'.

Use conversion specified by
Specify the standard to use to convert your values between the R'G'B' and Y'CbCr
color spaces. Your choices are Rec. 601 (SDTV) or Rec. 709 (HDTV). This
parameter is only available if, for the Conversion parameter, you select R'G'B' to
Y'CbCr or Y'CbCr to R'G'B'.

Scanning standard
Specify the scanning standard to use to convert your values between the R'G'B' and
Y'CbCr color spaces. Your choices are 1125/60/2:1 or 1250/50/2:1. This
parameter is only available if, for the Use conversion specified by parameter, you
select Rec. 709 (HDTV).

White point
Specify the reference white point. This parameter is visible if, for the Conversion
parameter, you select sR'G'B' to L*a*b* or L*a*b* to sR'G'B'.

Image signal
Specify how to input and output a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port accepts one M-by-N plane
of an RGB video stream.

1 Blocks — Alphabetical List

1-188

References
[1] Poynton, Charles A. A Technical Introduction to Digital Video. New York: John Wiley &

Sons, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Recommendation ITU-R BT.709-5. Parameter values for the HDTV standards for
production and international programme exchange.

[4] Stokes, Michael, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta, “A
Standard Default Color Space for the Internet - sRGB.” November 5, 1996.

[5] Berns, Roy S. Principles of Color Technology, 3rd ed. New York: John Wiley & Sons,
2000.

See Also
Chroma Resampling Computer Vision Toolbox software
rgb2hsv MATLAB software
hsv2rgb MATLAB software
rgb2ycbcr Image Processing Toolbox software
ycbcr2rgb Image Processing Toolbox software
rgb2gray Image Processing Toolbox software
makecform Image Processing Toolbox software
applycform Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Color Space Conversion

1-189

Introduced before R2006a

1 Blocks — Alphabetical List

1-190

Compositing
Combine pixel values of two images, overlay one image over another, or highlight selected
pixels

Library
Text & Graphics

visiontextngfix

Description
You can use the Compositing block to combine two images. Each pixel of the output image
is a linear combination of the pixels in each input image. This process is defined by the
following equation:

O(i, j) = (1 − X) * I1(i, j) + X * I2(i, j)

You can define the amount by which to scale each pixel value before combining them
using the opacity factor, X, where , 0 ≤ X ≤ 1.

You can use the Compositing block to overlay one image over another image. The masking
factor and the location determine which pixels are overwritten. Masking factors can be 0
or 1, where 0 corresponds to not overwriting pixels and 1 corresponds to overwriting
pixels.

You can also use this block to highlight selected pixels in the input image. The block uses
a binary input image at the Mask port, to specify which pixels to highlight.

Note This block supports intensity and color images.

 Compositing

1-191

Fixed-Point Data Types
The following diagram shows the data types used in the Compositing block for fixed-point
signals. These data types applies when the Operation parameter is set to Blend.

You can set the product output, accumulator, and output data types in the block mask as
discussed in the next section.

Parameters
Operation

Specify the operation you want the block to perform. If you choose Blend, the block
linearly combines the pixels of one image with another image. If you choose Binary
mask, the block overwrites the pixel values of one image with the pixel values of
another image. If you choose Highlight selected pixels, the block uses the
binary image input at the Mask port. Using this image, the block then determines
which pixels are set to the maximum value supported by their data type.

1 Blocks — Alphabetical List

1-192

Blend

If, for the Operation parameter, you choose Blend, the Opacity factor(s) source
parameter appears on the dialog box. Use this parameter to indicate where to specify
the opacity factor(s).

• If you choose Specify via dialog, the Opacity factor(s) parameter appears
on the dialog box. Use this parameter to define the amount by which the block
scales each pixel values for input image at the Image2 port before combining
them with the pixel values of the input image at Image1 port. You can enter a
scalar value used for all pixels or a matrix of values that is the same size as the
input image at the Image2 port.

• If you choose Input port, the Factor port appears on the block. The input to this
port must be a scalar or matrix of values as described for the Opacity factor(s)
parameter. If the input to the Image1 and Image2 ports is floating point, the
input to this port must be the same floating-point data type.

Binary mask

If, for the Operation parameter, you choose Binary mask, the Mask source
parameter appears on the dialog box. Use this parameter to indicate where to specify
the masking factor(s).

• If you choose Specify via dialog, the Mask parameter appears on the dialog
box. Use this parameter and the location source of the image to define which
pixels are overwritten. You can enter 0 or 1 to use for all pixels in the image, or a
matrix of 0s and 1s that defines the factor for each pixel.

• If you choose Input port, the Factor port appears on the block. The input to this
port must be a 0 or 1 whose data type is Boolean. Or, a matrix of 0s or 1s whose
data type is Boolean, as described for the Mask parameter.

Highlight selected pixels

If, for the Operation parameter, you choose Highlight selected pixels, the
block uses the binary image input at the Mask port to determine which pixels are set
to the maximum value supported by their data type. For example, for every pixel value
set to 1 in the binary image, the block sets the corresponding pixel in the input image
to the maximum value supported by its data type. For every 0 in the binary image, the
block leaves the corresponding pixel value alone.

 Compositing

1-193

Opacity factor(s) source
Indicate where to specify any opacity factors. Your choices are Specify via
dialog and Input port. This parameter is visible if, for the Operation parameter,
you choose Blend.

Opacity factor(s)
Define the amount by which the block scales each pixel value before combining them.
You can enter a scalar value used for all pixels or a matrix of values that defines the
factor for each pixel. This parameter is visible if, for the Opacity factor(s) source
parameter, you choose Specify via dialog. Tunable.

Mask source
Indicate where to specify any masking factors. Your choices are Specify via
dialog and Input port. This parameter is visible if, for the Operation parameter,
you choose Binary mask.

Mask
Define which pixels are overwritten. You can enter 0 or 1, which is used for all pixels,
or a matrix of 0s and 1s that defines the factor for each pixel. This parameter is
visible if, for the Mask source parameter, you choose Specify via dialog.
Tunable.

Location source
Use this parameter to specify where to enter the location of the upper-left corner of
the image input at input port Image2. You can choose either Specify via dialog
or Input port.

When you choose Specify via dialog, you can set the Location [x y] parameter.

When you choose Input port, the Location port appears on the block. The input to
this port must be a two-element vector as described for the Location [x y] parameter.

Location [x y]
Enter a two-element vector that specifies the row and column position of the upper-
left corner of the image input at Image2 port. The position is relative to the upper-
left corner of the image input at Image1 port. This parameter is visible if, for the
Location source parameter, you choose Specify via dialog. Tunable.

Positive values move the image down and to the right; negative values move the
image up and to the left. If the first element is greater than the number of rows in the
Image1 matrix, the value is clipped to the total number of rows. If the second
element is greater than the number of columns in the input Image1 matrix, the value
is clipped to the total number of columns.

1 Blocks — Alphabetical List

1-194

These parameters apply only when the Operation parameter is set to Blend.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Opacity factor
Choose how to specify the word length and fraction length of the opacity factor:

• When you select Same word length as input, these characteristics match
those of the input to the block.

• When you select Specify word length, enter the word length of the opacity
factor.

• When you select Binary point scaling, you can enter the word length of the
opacity factor, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, of the opacity factor. The bias of all signals in the Computer Vision Toolbox
software is 0.

Product output

As the previous figure shows, the block places the output of the multiplier into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

• When you select Same as first input, these characteristics match those of
the input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

 Compositing

1-195

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

As the previous figure shows, the block takes inputs to the accumulator and casts
them to the accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to it.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

1 Blocks — Alphabetical List

1-196

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Supported Data Types

Port Input/Output Supported Data Types
Complex
Values
Supported

Image 1 M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

Image 2 M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

Same as Image 1 port No

Factor Scalar or matrix of opacity or
masking factor

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

 Compositing

1-197

Port Input/Output Supported Data Types
Complex
Values
Supported

Mask Binary image that specifies which
pixels to highlight

Same as Factor port

When the Operation parameter is
set to Highlight selected
pixels, the input to the Mask port
must be a Boolean data type.

No

Location Two-element vector [x y], that
specifies the position of the upper-
left corner of the image input at
port I2

• Double-precision floating point.
(Only supported if the input to
the Image 1 and Image 2 ports is
a floating-point data type.)

• Single-precision floating point.
(Only supported if the input to
the Image 1 and Image 2 ports is
a floating-point data type.)

• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

Output Vector or matrix of intensity or
color values

Same as Image 1 port No

See Also
Insert Text Computer Vision Toolbox
Draw Markers Computer Vision Toolbox
Draw Shapes Computer Vision Toolbox

1 Blocks — Alphabetical List

1-198

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Compositing

1-199

Contrast Adjustment
Adjust image contrast by linearly scaling pixel values

Library
Analysis & Enhancement

visionanalysis

Description
The Contrast Adjustment block adjusts the contrast of an image by linearly scaling the
pixel values between upper and lower limits. Pixel values that are above or below this
range are saturated to the upper or lower limit value, respectively.

1 Blocks — Alphabetical List

1-200

3000

2000

1000

1500

50

25

100

50

150

75

200

100

250

125

Lower Input Limit Upper Input Limit

Lower Output Limit Upper Output Limit

These values are
scaled to lower
output limit.

Values within the upper and
lower input limits are linearly
scaled within the upper and
lower output limits.

Pixel value

Pixel value

Number of pixels

Number of pixels

Mathematically, the contrast adjustment operation is described by the following equation,
where the input limits are [low_in high_in] and the output limits are [low_out high_out]:

Output =

low_out, Input ≤ low_in

low_out + (Input − low_in)high_out − low_out
high_in− low_in , low_in < Input < high_in

high_out, Input ≥ high_in

 Contrast Adjustment

1-201

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Output Scalar, vector, or matrix of
intensity values or a scalar,
vector, or matrix that
represents one plane of the
RGB video stream

Same as I port No

Specifying upper and lower limits
Use the Adjust pixel values from and Adjust pixel values to parameters to specify the
upper and lower input and output limits. All options are described below.

Input limits

Use the Adjust pixel values from parameter to specify the upper and lower input limits.
If you select Full input data range [min max], uses the minimum input value as
the lower input limit and the maximum input value as the upper input limit.
If you select User-defined, the Range [low high] parameter associated with this
option appears. Enter a two-element vector of scalar values, where the first element
corresponds to the lower input limit and the second element corresponds to the upper
input limit.
If you select Range determined by saturating outlier pixels, the Percentage
of pixels to saturate [low high] (in %), Specify number of histogram bins (used to
calculate the range when outliers are eliminated), and Number of histogram bins
parameters appear on the block. The block uses these parameter values to calculate the
input limits in this three-step process:

1 Find the minimum and maximum input values, [min_in max_in].
2 Scale the pixel values from [min_in max_in] to [0 num_bins-1], where num_bins is

the scalar value you specify in the Number of histogram bins parameter. This
parameter always displays the value used by the block. Then the block calculates the

1 Blocks — Alphabetical List

1-202

histogram of the scaled input. For additional information about histograms, see the
2D-Histogram block reference page.

3 Find the lower input limit such that the percentage of pixels with values smaller than
the lower limit is at most the value of the first element of the Percentage of pixels
to saturate [low high] (in %) parameter. Similarly, find the upper input limit such
that the percentage of pixels with values greater than the upper limit is at least the
value of the second element of the parameter.

Output limits

Use the Adjust pixel values to parameter to specify the upper and lower output limits.
If you select Full data type range, the block uses the minimum value of the input
data type as the lower output limit and the maximum value of the input data type as the
upper out
If you select User-defined range, the Range [low high] parameter appears on the
block. Enter a two-element vector of scalar values, where the first element corresponds to
the lower output limit and the second element corresponds to the upper output limit.

For INF, -INF and NAN Input Values

If any input pixel value is either INF or -INF, the Contrast Adjustment block will change
the pixel value according to how the parameters are set. The following table shows how
the block handles these pixel values.

If Adjust pixel values from
parameter is set to...

Contrast Adjustment block will:

Full data range [min,max] Set the entire output image to the lower limit of the
Adjust pixel values to parameter setting.Range determined by saturating

outlier pixels
User defined range Lower and higher limits of the Adjust pixel values

to parameter set to -INF and INF , respectively.

If any input pixel has a NAN value, the block maps the pixels with valid numerical values
according to the user-specified method. It maps the NAN pixels to the lower limit of the
Adjust pixels values to parameter.

 Contrast Adjustment

1-203

Examples
See “Adjust the Contrast of Intensity Images” in the Computer Vision Toolbox User's
Guide.

Fixed-Point Data Types
The following diagram shows the data types used in the Contrast Adjustment block for
fixed-point signals:

Parameters
Adjust pixel values from

Specify how to enter the upper and lower input limits. Your choices are Full input
data range [min max], User-defined, and Range determined by
saturating outlier pixels.

Range [low high]
Enter a two-element vector of scalar values. The first element corresponds to the
lower input limit, and the second element corresponds to the upper input limit. This
parameter is visible if, for the Adjust pixel values from parameter, you select User-
defined.

Percentage of pixels to saturate [low high] (in %)
Enter a two-element vector. The block calculates the lower input limit such that the
percentage of pixels with values smaller than the lower limit is at most the value of

1 Blocks — Alphabetical List

1-204

the first element. It calculates the upper input limit similarly. This parameter is visible
if, for the Adjust pixel values from parameter, you select Range determined by
saturating outlier pixels.

Specify number of histogram bins (used to calculate the range when outliers are
eliminated)

Select this check box to change the number of histogram bins. This parameter is
editable if, for the Adjust pixel values from parameter, you select Range
determined by saturating outlier pixels.

Number of histogram bins
Enter the number of histogram bins to use to calculate the scaled input values. This
parameter is available if you select the Specify number of histogram bins (used to
calculate the range when outliers are eliminated) check box.

Adjust pixel values to
Specify the upper and lower output limits. If you select Full data type range, the
block uses the minimum value of the input data type as the lower output limit and the
maximum value of the input data type as the upper output limit. If you select User-
defined range, the Range [low high] parameter appears on the block.

Range [low high]
Enter a two-element vector of scalar values. The first element corresponds to the
lower output limit and the second element corresponds to the upper output limit. This
parameter is visible if, for the Adjust pixel values to parameter, you select User-
defined range

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1
The product output type when the block calculates the ratio between the input data
range and the number of histogram bins.

sfix8_En7

MULTIPLIER
Product output
data type

Accumulator
data type

 Contrast Adjustment

1-205

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate this
product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Product 2
The product output type when the block calculates the bin location of each input
value.

sfix8_En7

MULTIPLIER
Product output
data type

Accumulator
data type

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate this
product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox software is 0.

This parameter is visible if, for the Adjust pixel values from parameter, you select
Range determined by saturating outlier pixels.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1 Blocks — Alphabetical List

1-206

See Also
2D-Histogram Computer Vision Toolbox software
Histogram Equalization Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2006b

 Contrast Adjustment

1-207

Corner Detection
Calculate corner metric matrix and find corners in images

Library
Analysis & Enhancement

visionanalysis

Description
The Corner Detection block finds corners in an image using the Harris corner detection
(by Harris & Stephens), minimum eigenvalue (by Shi & Tomasi), or local intensity
comparison (Features from Accelerated Segment Test, FAST by Rosten & Drummond)
method. The block finds the corners in the image based on the pixels that have the largest
corner metric values.

For the most accurate results, use the “Minimum Eigenvalue Method” on page 1-209. For
the fastest computation, use the “Local Intensity Comparison” on page 1-210. For the
trade-off between accuracy and computation, use the “Harris Corner Detection Method”
on page 1-210.

1 Blocks — Alphabetical List

1-208

Port Description
Port Description Supported Data Types
I Matrix of intensity values • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

Loc M-by-2 matrix of [x y] coordinates,
that represents the locations of
the corners. M represents the
number of corners and is less than
or equal to the Maximum
number of corners parameter

32-bit unsigned integer

Count Scalar value that represents the
number of detected corners

32-bit unsigned integer

Metric Matrix of corner metric values
that is the same size as the input
image

Same as I port

Minimum Eigenvalue Method
This method is more computationally expensive than the Harris corner detection
algorithm because it directly calculates the eigenvalues of the sum of the squared
difference matrix, M.

The sum of the squared difference matrix, M, is defined as follows:

M =
A C
C B

The previous equation is based on the following values:

A = (Ix)2⊗w

B = (Iy)2⊗w

C = (IxIy)2⊗w

 Corner Detection

1-209

where Ix and Iy are the gradients of the input image, I, in the x and y direction,
respectively. The ⊗ symbol denotes a convolution operation.

Use the Coefficients for separable smoothing filter parameter to define a vector of
filter coefficients. The block multiplies this vector of coefficients by its transpose to create
a matrix of filter coefficients, w.

The block calculates the smaller eigenvalue of the sum of the squared difference matrix.
This minimum eigenvalue corresponds to the corner metric matrix.

Harris Corner Detection Method
The Harris corner detection method avoids the explicit computation of the eigenvalues of
the sum of squared differences matrix by solving for the following corner metric matrix,
R:

R = AB− C2− k(A + B)2

A, B, C are defined in the previous section, “Minimum Eigenvalue Method” on page 1-209.

The variable k corresponds to the sensitivity factor. You can specify its value using the
Sensitivity factor (0<k<0.25) parameter. The smaller the value of k, the more likely it
is that the algorithm can detect sharp corners.

Use the Coefficients for separable smoothing filter parameter to define a vector of
filter coefficients. The block multiplies this vector of coefficients by its transpose to create
a matrix of filter coefficients, w.

Local Intensity Comparison
This method determines that a pixel is a possible corner if it has either, N contiguous
valid bright surrounding pixels, or N contiguous dark surrounding pixels. Specifying the
value of N is discussed later in this section. The next section explains how the block finds
these surrounding pixels.

Suppose that p is the pixel under consideration and j is one of the pixels surrounding p.
The locations of the other surrounding pixels are denoted by the shaded areas in the
following figure.

1 Blocks — Alphabetical List

1-210

j
Surrounding
pixel

Pixel under
consideration

p

Angle

Ip and I j are the intensities of pixels p and j, respectively. Pixel j is a valid bright
surrounding pixel if I j− Ip ≥ T. Similarly, pixel j is a valid dark surrounding pixel if
Ip− I j ≥ T. In these equations, T is the value you specified for the Intensity comparison
threshold parameter.

The block repeats this process to determine whether the block has N contiguous valid
surrounding pixels. The value of N is related to the value you specify for the Maximum
angle to be considered a corner (in degrees), as shown in the following table.

Number of Valid Surrounding Pixels,
N

Angle (degrees)

15 22.5
14 45
13 67.5
12 90

 Corner Detection

1-211

Number of Valid Surrounding Pixels,
N

Angle (degrees)

11 112.5
10 135
9 157.5

After the block determines that a pixel is a possible corner, it computes its corner metric
using the following equation:

R = max ∑
j: I j ≥ Ip + T

Ip− I j − T, ∑
j: I j ≤ Ip− T

Ip− I j − T,

Fixed-Point Data Types
The following diagram shows the data types used in the Corner Detection block for fixed-
point signals. These diagrams apply to the Harris corner detection and minimum
eigenvalue methods only.

1 Blocks — Alphabetical List

1-212

The following table summarizes the variables used in the previous diagrams.

Variable Name Definition
IN_DT Input data type
MEM_DT Memory data type
OUT_DT Metric output data type
COEF_DT Coefficients data type

 Corner Detection

1-213

Parameters
Method

Specify the method to use to find the corner values. Your choices are Harris corner
detection (Harris & Stephens), Minimum eigenvalue (Shi & Tomasi),
and Local intensity comparison (Rosten & Drummond).

Sensitivity factor (0<k<0.25)
Specify the sensitivity factor, k. The smaller the value of k the more likely the
algorithm is to detect sharp corners. This parameter is visible if you set the Method
parameter to Harris corner detection (Harris & Stephens). This
parameter is tunable.

Coefficients for separable smoothing filter
Specify a vector of filter coefficients for the smoothing filter. This parameter is visible
if you set the Method parameter to Harris corner detection (Harris &
Stephens) or Minimum eigenvalue (Shi & Tomasi).

Intensity comparison threshold
Specify the threshold value used to find valid surrounding pixels. This parameter is
visible if you set the Method parameter to Local intensity comparison
(Rosten & Drummond). This parameter is tunable.

Maximum angle to be considered a corner (in degrees)
Specify the maximum corner angle. This parameter is visible if you set the Method
parameter to Local intensity comparison (Rosten & Drummond). This
parameter is tunable for Simulation only.

Output
Specify the block output. Your choices are Corner location, Corner location
and metric matrix, and Metric matrix. The block outputs the corner locations
in an M-by-2 matrix of [x y] coordinates, where M represents the number of corners.
The block outputs the corner metric value in a matrix, the same size as the input
image.

When you set this parameter to Corner location or Corner location and
metric matrix, the Maximum number of corners, Minimum metric value that
indicates a corner, and Neighborhood size (suppress region around detected
corners) parameters appear on the block.

To determine the final corner values, the block follows this process:

1 Blocks — Alphabetical List

1-214

1 Find the pixel with the largest corner metric value.
2 Verify that the metric value is greater than or equal to the value you specified for

the Minimum metric value that indicates a corner parameter.
3 Suppress the region around the corner value by the size defined in the

Neighborhood size (suppress region around detected corners) parameter.

The block repeats this process until it finds all the corners in the image or it finds the
number of corners you specified in the Maximum number of corners parameter.

The corner metric values computed by the Minimum eigenvalue and Local
intensity comparison methods are always non-negative. The corner metric
values computed by the Harris corner detection method can be negative.

Maximum number of corners
Enter the maximum number of corners you want the block to find. This parameter is
visible if you set the Output parameter to Corner location or Corner location
and metric matrix.

Minimum metric value that indicates a corner
Specify the minimum corner metric value. This parameter is visible if you set the
Output parameter to Corner location or Corner location and metric
matrix. This parameter is tunable.

Neighborhood size (suppress region around detected corners)
Specify the size of the neighborhood around the corner metric value over which the
block zeros out the values. Enter a two-element vector of positive odd integers, [r c].
Here, r is the number of rows in the neighborhood and c is the number of columns.
This parameter is visible if you set the Output parameter to Corner location or
Corner location and metric matrix.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Coefficients
Choose how to specify the word length and the fraction length of the coefficients:

• When you select Same word length as input, the word length of the
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that

 Corner Detection

1-215

provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you can enter the word length of the
coefficients, in bits. The block automatically sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the coefficients, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the coefficients. The bias of all signals in the Computer
Vision Toolbox software is 0.

Product output
As shown in the following figure, the output of the multiplier is placed into the
product output data type and scaling.

MULTIPLIER

Input data type
Product output data type

Coefficient data type

Use this parameter to specify how to designate the product output word and fraction
lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator
As shown in the following figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it.

1 Blocks — Alphabetical List

1-216

CAST
Input to adder -
input data type

ADDER

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

Use this parameter to specify how to designate this accumulator word and fraction
lengths:

• When you select Same as input, these characteristics match those of the input.
• When you select Binary point scaling, you can enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Memory
Choose how to specify the memory word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Metric output
Choose how to specify the metric output word length and fraction length:

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Same as input, these characteristics match those of the input
to the block.

 Corner Detection

1-217

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] C. Harris and M. Stephens. “A Combined Corner and Edge Detector.” Proceedings of

the 4th Alvey Vision Conference. August 1988, pp. 147-151.

[2] J. Shi and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. June 1994, pp. 593–600.

[3] E. Rosten and T. Drummond. “Fusing Points and Lines for High Performance
Tracking.” Proceedings of the IEEE International Conference on Computer Vision
Vol. 2 (October 2005): pp. 1508–1511.

See Also
Find Local Maxima Computer Vision Toolbox software
Estimate Geometric
Transformation

Computer Vision Toolbox software

matchFeatures Computer Vision Toolbox software
extractFeatures Computer Vision Toolbox software
detectSURFFeatures Computer Vision Toolbox software

1 Blocks — Alphabetical List

1-218

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2007b

 Corner Detection

1-219

Deinterlacing
Remove motion artifacts by deinterlacing input video signal

Library
Analysis & Enhancement

visionanalysis

Description
The Deinterlacing block takes the input signal, which is the combination of the top and
bottom fields of the interlaced video, and converts it into deinterlaced video using line
repetition, linear interpolation, or vertical temporal median filtering.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Combination of top and bottom
fields of interlaced video

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

1 Blocks — Alphabetical List

1-220

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Frames of deinterlaced video Same as Input port No

Use the Deinterlacing method parameter to specify how the block deinterlaces the
video.

The following figure illustrates the block's behavior if you select Line repetition.

 Deinterlacing

1-221

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Top Field

Line Repetition

A B C

G H I

M N O

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Bottom Field

D E F

J K L

P Q R

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

Block Output - Deinterlaced Video

A B C

G H I

M N O

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

Block Input

D E F

J K L

P Q R

Original Interlaced Video

The following figure illustrates the block's behavior if you select Linear
interpolation.

1 Blocks — Alphabetical List

1-222

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Top Field

Linear Interpolation

A B C

G H I

M N O

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Bottom Field

D E F

J K L

P Q R

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

(A+G)/2 (B+H)/2 (C+I)/2

M N O

(G+M)/2 (H+N)/2 (I+O)/2

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

Block Input

D E F

P Q R

Block Output - Deinterlaced Video

J K L

Original Interlaced Video

The following figure illustrates the block's behavior if you select Vertical temporal
median filtering.

 Deinterlacing

1-223

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Top Field

Vertical Temporal Median Filtering

A B C

G H I

M N O

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Bottom Field

D E F

J K L

P Q R

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

median([A,D,G]) median([B,E,H]) median([C,F,I])

M N O

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

A B C

G H I

M N O

Block Input

D E F

P Q R

J K L

Block Output - Deinterlaced Video

Original Interlaced Video

median([G,J,M]) median([H,K,N]) median([I,L,O])

Row-Major Data Format
The MATLAB environment and the Computer Vision Toolbox software use column-major
data organization. However, the Deinterlacing block gives you the option to process data
that is stored in row-major format. When you select the Input image is transposed
(data order is row major) check box, the block assumes that the input buffer contains
contiguous data elements from the first row first, then data elements from the second row

1 Blocks — Alphabetical List

1-224

second, and so on through the last row. Use this functionality only when you meet all the
following criteria:

• You are developing algorithms to run on an embedded target that uses the row-major
format.

• You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

• When you select this check box, the first two signal dimensions of the Deinterlacing
block's input are swapped.

• All the Computer Vision Toolbox blocks can be used to process data that is in the row-
major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

• Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on
an embedded target.

 Deinterlacing

1-225

Video
source
block

Transpose
block

Transpose
block

Algorithm
blocks

Step 1:
Create block diagram

Step 2:
Replace source, transpose, and
sink blocks with target source
and sink blocks that produce
data in row-major format

Embedded
target source
block

Video
sink
block

Embedded
target sink
block

Example
The following example shows you how to use the Deinterlacing block to remove motion
artifacts from an image.

1 Open the example model by typing

ex_deinterlace

at the MATLAB command prompt.
2 Double-click the Deinterlacing block. The model uses this block to remove the motion

artifacts from the input image. The Deinterlacing method parameter is set to
Vertical temporal median filtering.

1 Blocks — Alphabetical List

1-226

matlab:ex_deinterlace

3 Run the model.

The original image that contains the motion artifacts appears in the Input Image
window.

 Deinterlacing

1-227

The clearer output image appears in the Output Image window.

1 Blocks — Alphabetical List

1-228

Fixed-Point Data Types
The following diagram shows the data types used in the Deinterlacing block for fixed-
point signals.

 Deinterlacing

1-229

CAST
Input data type

ADDER

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

RIGHT SHIFT CAST

Output
data type

Accumulator
data type

You can set the product output, accumulator, and output data types in the block mask as
discussed in the next section.

Parameters
Deinterlacing method

Specify how the block deinterlaces the video. Your choices are Line repetition,
Linear interpolation, or Vertical temporal median filtering.

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

Note The parameters on the Data Types pane are only available if, for the
Deinterlacing method, you select Linear interpolation.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

1 Blocks — Alphabetical List

1-230

Accumulator

CAST
Input to adder -
input data type

ADDER

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths:

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the input.
• When you select Binary point scaling, you can enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

 Deinterlacing

1-231

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-232

Demosaic
Demosaic Bayer's format images

Library
Conversions

visionconversions

Description
The following figure illustrates a 4-by-4 image in Bayer's format with each pixel labeled R,
G, or B.

B G B G

G R RG

B G B G

G R RG

The Demosaic block takes in images in Bayer's format and outputs RGB images. The block
performs this operation using a gradient-corrected linear interpolation algorithm or a
bilinear interpolation algorithm.

 Demosaic

1-233

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values

• If, for the Interpolation
algorithm parameter, you
select Bilinear, the
number of rows and
columns must be greater
than or equal to 3.

• If, for the Interpolation
algorithm parameter, you
select Gradient-
corrected linear, the
number of rows and
columns must be greater
than or equal to 5.

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

R, G, B Matrix that represents one
plane of the input RGB video
stream. Outputs from the R, G,
or B ports have the same data
type.

Same as I port No

Image M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes.

Same as I port No

Use the Interpolation algorithm parameter to specify the algorithm the block uses to
calculate the missing color information. If you select Bilinear, the block spatially
averages neighboring pixels to calculate the color information. If you select Gradient-
corrected linear, the block uses a Weiner approach to minimize the mean-squared
error in the interpolation. This method performs well on the edges of objects in the image.
For more information, see [1].

Use the Sensor alignment parameter to specify the alignment of the input image. Select
the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels in the top-

1 Blocks — Alphabetical List

1-234

left corner of the image. You specify the sequence in left-to-right, top-to-bottom order. For
example, for the image at the beginning of this reference page, you would select BGGR.

Both methods use symmetric padding at the image boundaries. For more information, see
the Image Pad block reference page.

Use the Output image signal parameter to specify how to output a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Fixed-Point Data Types
The following diagram shows the data types used in the Demosaic block for fixed-point
signals.

MULTIPLIER

Input
 data type

Accumulator or
Product output
data type

CAST ADDER

Accumulator
data type

Accumulator
 data type

The result of each addition remains
in the accumulator data type.

CAST

Input
 data type

Output
 data type

You can set the product output and accumulator data types in the block mask as
discussed in the next section.

Parameters
Interpolation algorithm

Specify the algorithm the block uses to calculate the missing color information. Your
choices are Bilinear or Gradient-corrected linear.

Sensor alignment
Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels
in the top left corner of the image. You specify the sequence in left-to-right, top-to-
bottom order.

 Demosaic

1-235

Output image signal
Specify how to output a color video signal. If you select One multidimensional
signal, the block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals, additional
ports appear on the block. Each port outputs one M-by-N plane of an RGB video
stream.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output

sfix8_En7

MULTIPLIER
Product output
data type

Accumulator
data type

As depicted in the previous figure, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths:

When you select Same as input, these characteristics match those of the input to
the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

1 Blocks — Alphabetical List

1-236

Accumulator

CAST
Input to adder -
input data type

ADDER

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths:

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the input.
• When you select Binary point scaling, you can enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation for

Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May 2004.
http://research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

 Demosaic

1-237

[2] Gunturk, Bahadir K., John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and Russel
M. Mersereau, “Demosaicking: Color Filter Array Interpolation,” IEEE Signal
Processing Magazine, Vol. 22, Number 1, January 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2006b

1 Blocks — Alphabetical List

1-238

Dilation
Find local maxima in binary or intensity image

Library
Morphological Operations

visionmorphops

Description
The Dilation block rotates the neighborhood or structuring element 180 degrees. Then it
slides the neighborhood or structuring element over an image, finds the local maxima,
and creates the output matrix from these maximum values. If the neighborhood or
structuring element has a center element, the block places the maxima there, as
illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a
bias toward the lower-right corner, as a result of the rotation. The block places the
maxima there, as illustrated in the following figure.

 Dilation

1-239

This block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of ones and zeros
that represents the neighborhood
values

Boolean No

Output Vector or matrix of intensity
values that represents the dilated
image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood
or structuring element that the block applies to the image. Specify a neighborhood by
entering a matrix or vector of 1s and 0s. Specify a structuring element with the strel

1 Blocks — Alphabetical List

1-240

function from the Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the use of a more
efficient algorithm. If you enter an array of STREL objects, the block applies each object
to the entire matrix in turn.

Parameters
Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

References
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imdilate Image Processing Toolbox software
strel Image Processing Toolbox software

 Dilation

1-241

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-242

Draw Markers
Draw markers by embedding predefined shapes on output image

Library
Text & Graphics

visiontextngfix

Description
The Draw Markers block can draw multiple circles, x-marks, plus signs, stars, or squares
on images by overwriting pixel values. Overwriting the pixel values embeds the shapes.

This block uses Bresenham's circle drawing algorithm to draw circles and Bresenham's
line drawing algorithm to draw all other markers.

 Draw Markers

1-243

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values or an M-
by-N-by-P color values where P is the
number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

R, G, B Scalar, vector, or matrix that represents
one plane of the input RGB video stream.
Inputs to the R, G, and B ports must have
the same dimensions and data type.

Same as Image port No

Pts M-by-2 matrix of [x y] coordinates,

x1 y1
x2 y2

⋮ ⋮
xM yM

where M is the total number of markers
and each [x y] pair defines the center of a
marker.

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

If the input to the Image port is an
integer, fixed point, or boolean data
type, the input to the Pts port must
also be an integer data type.

No

ROI Four-element vector of integers [x y width
height] that define a rectangular area in
which to draw the markers. The first two
elements represent the one-based [x y]
coordinates of the upper-left corner of the
area. The second two elements represent
the width and height of the area.

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

Clr P-element vector or M-by-P matrix where
P is the number of color planes.

Same as Image port No

1 Blocks — Alphabetical List

1-244

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix of pixel values
that contain the marker(s)

Same as Image port No

The output signal is the same size and data type as the inputs to the Image, R, G, and B
ports.

Parameters
Marker shape

Specify the type of marker(s) to draw. Your choices are Circle, X-mark, Plus, Star,
or Square.

When you select Circle, X-mark, or Star, and you select the Use antialiasing
check box, the block performs a smoothing algorithm. The algorithm is similar to the
poly2mask function to determine which subpixels to draw.

Marker size
Enter a scalar value that represents the size of the marker, in pixels.

Enter a scalar value, M, that defines a (2M+1)-by-(2M+1) pixel square into which the
marker fits. M must be greater than or equal to 1.

Filled
Select this check box to fill the marker with an intensity value or a color. This
parameter is visible if, for the Marker shape parameter, you choose Circle or
Square.

When you select the Filled check box, the Fill color source, Fill color and Opacity
factor (between 0 and 1) parameters appear in the dialog box.

Fill color source
Specify source for fill color value. You can select Specify via dialog or Input
port. This parameter appears when you select the Filled check box. When you select
Input port, the color input port clr appears on the block.

 Draw Markers

1-245

Fill color
If you select Black, the marker is black. If you select White, the marker is white. If
you select User-specified value, the Color value(s) parameter appears in the
dialog box. This parameter is visible if you select the Filled check box.

Border color source
Specify source for the border color value to either Specify via dialog or Input
port. Border color options are visible when the fill shapes options are not selected.
This parameter is visible if you select the Filled check box. When you select Input
port, the color input port clr appears on the block.

Border color
Specify the appearance of the shape's border. If you select Black, the border is black.
If you select White, the border is white. If you select User-specified value, the
Color value(s) parameter appears in the dialog box. This parameter is visible if you
clear the Fill shapes check box.

Color value(s)
Specify an intensity or color value for the marker's border or fill. This parameter
appears when you set the Border color or Fill color parameters to User-
specified value. Tunable.

The following table describes what to enter for the color value based on the block
input and the number of shapes you are drawing.

Block Input Color Value(s) for Drawing
One Marker or Multiple
Markers with the Same Color

Color Value(s) for Drawing
Multiple Markers with Unique
Color

Intensity
image

Scalar intensity value R-element vector where R is the
number of markers

Color image P-element vector where P is the
number of color planes

P-by-R matrix where P is the
number of color planes and R is
the number of markers

For each value in the parameter, enter a number between the minimum and maximum
values that can be represented by the data type of the input image. If you enter a
value outside this range, the block produces an error message.

1 Blocks — Alphabetical List

1-246

Opacity factor (between 0 and 1)
Specify the opacity of the shading inside the marker, where 0 indicates transparent
and 1 indicates opaque. This parameter appears when you select the Filled check
box. This parameter is tunable.

The following table describes what to enter for the Opacity factor(s) (between 0
and 1) parameter based on the block input and the number of markers you are
drawing.

Opacity Factor value for Drawing
One Marker or Multiple Markers
with the Same Color

Oopacity Factor value for Drawing
Multiple Marker with Unique Color

Scalar intensity value R-element vector where R is the
number of markers

Draw markers in
Specify the area in which to draw the markers. When you select Entire image, you
can draw markers in the entire image. When you select Specify region of
interest via port, the ROI port appears on the block. Enter a four-element
vector, [x y width height], where [x y] are the coordinates of the upper-left
corner of the area.

Use antialiasing
Perform a smoothing algorithm on the marker. This parameter is visible if, for the
Marker shape parameter, you select Circle, X-mark, or Star.

Image signal
Specify how to input and output a color video signal. When you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. When you select Separate
color signals, additional ports appear on the block. Each port accepts one M-by-N
plane of an RGB video stream.

See Also
Draw Shapes Computer Vision Toolbox software
Insert Text Computer Vision Toolbox software

 Draw Markers

1-247

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-248

Draw Shapes
Draw rectangles, lines, polygons, or circles on images

Library
Text & Graphics

visiontextngfix

Description
The Draw Shapes block draws multiple rectangles, lines, polygons, or circles on images
by overwriting pixel values. As a result, the shapes are embedded on the output image.

This block uses Bresenham's line drawing algorithm to draw lines, polygons, and
rectangles. It uses Bresenham's circle drawing algorithm to draw circles.

The output signal is the same size and data type as the inputs to the Image, R, G, and B
ports.

You can set the shape fill or border color via the input port or via the input dialog. Use the
color input or color parameter to determine the appearance of the rectangle(s), line(s),
polygon(s), or circle(s).

 Draw Shapes

1-249

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color values
where P is the number of color
planes

• Double-precision floating
point

• Single-precision floating
point

• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed

integer
• 8-, 16-, and 32-bit

unsigned integer

No

R, G, B Scalar, vector, or matrix that is one
plane of the input RGB video
stream. Inputs to the R, G, and B
ports must have the same
dimensions and data type.

Same as Image port No

Pts Use integer values to define one-
based shape coordinates. If you
enter noninteger values, the block
rounds them to the nearest
integer.

• Double-precision floating
point (only supported if the
input to the I or R, G, and
B ports is floating point)

• Single-precision floating
point (only supported if the
input to the I or R, G, and
B ports is floating point)

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit
unsigned integer

No

1 Blocks — Alphabetical List

1-250

Port Input/Output Supported Data Types
Complex
Values
Supported

ROI 4-element vector of integers [x y
width height], that define a
rectangular area in which to draw
the shapes. The first two elements
represent the one-based
coordinates of the upper-left
corner of the area. The second two
elements represent the width and
height of the area.

• Double-precision floating
point

• Single-precision floating
point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit
unsigned integer

No

Clr This port can be used to
dynamically specify shape color.

P-element vector or an M-by-P
matrix, where M is the number of
shapes, and P, the number of color
planes.

You can specify a color (RGB), for
each shape, or specify one color
for all shapes.

Same as Image port No

Output Scalar, vector, or matrix of pixel
values that contain the shape(s)

Same as Image port No

Drawing Shapes and Lines
Use the Shape parameter and Pts port to draw the following shapes or lines:

• “Drawing Rectangles” on page 1-252
• “Drawing Lines and Polylines” on page 1-252
• “Drawing Polygons” on page 1-254
• “Drawing Circles” on page 1-256

 Draw Shapes

1-251

Drawing Rectangles

The Draw Shapes block lets you draw one or more rectangles. Set the Shape parameter
to Rectangles, and then follow the instructions in the table to specify the input to the
Pts port to obtain the desired number of rectangles.

Shape Input to the Pts Port Drawn Shape
Single Rectangle Four-element row vector

[x y width height] where

• x and y are the one-based coordinates of
the upper-left corner of the rectangle.

• width and height are the width, in
pixels, and height, in pixels, of the
rectangle. The values of width and
height must be greater than 0.

M Rectangles M-by-4 matrix

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

where each row of the matrix corresponds
to a different rectangle and is of the same
form as the vector for a single rectangle.

Drawing Lines and Polylines

The Draw Shapes block lets you draw either a single line, or one or more polylines. You
can draw a polyline with a series of connected line segments. Set the Shape parameter to
Lines, and then follow the instructions in the table to specify the input to the Pts port to
obtain the desired shape.

1 Blocks — Alphabetical List

1-252

Shape Input to the Pts Port Drawn Shape
Single Line Four-element row vector [x1 y1 x2 y2]

where

• x1 and y1 are the coordinates of the
beginning of the line.

• x2 and y2 are the coordinates of the end
of the line.

M Lines M-by-4 matrix

x11 y11 x12 y12
x21 y21 x22 y22

⋮ ⋮ ⋮ ⋮
xM1 yM1 xM2 yM2

where each row of the matrix corresponds
to a different line and is of the same form as
the vector for a single line.

Single Polyline with
(L-1) Segments

Vector of size 2L, where L is the number of
vertices, with format, [x1, y1, x2,
y2, ..., xL, yL].

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the end
of the first line segment and the
beginning of the second line segment.

• xL and yL are the coordinates of the end
of the (L-1)th line segment.

The polyline always contains (L-1) number
of segments because the first and last
vertex points do not connect. The block
produces an error message when the
number of rows is less than two or not a
multiple of two.

 Draw Shapes

1-253

Shape Input to the Pts Port Drawn Shape
M Polylines with
(L-1) Segments

M-by-2L matrix

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

where each row of the matrix corresponds
to a different polyline and is of the same
form as the vector for a single polyline.
When you require one polyline to contain
less than (L–1) number of segments, fill the
matrix by repeating the coordinates of the
last vertex.

The block produces an error message if the
number of rows is less than two or not a
multiple of two.

If you select the Use antialiasing check box, the block applies an edge smoothing
algorithm.

For an example of how to use the Draw Shapes block to draw a line, see “Detect Lines in
Images”.

Drawing Polygons

The Draw Shapes block lets you draw one or more polygons. Set the Shape parameter to
Polygons, and then follow the instructions in the table to specify the input to the Pts port
to obtain the desired number of polygons.

1 Blocks — Alphabetical List

1-254

Shape Input to the Pts Port Drawn Shape
Single Polygon with
L line segments

Row vector of size 2L, where L is the
number of vertices, with format, [x1 y1 x2
y2 ... xL yL] where

• x1 and y1 are the coordinates of the
beginning of the first line segment.

• x2 and y2 are the coordinates of the end
of the first line segment and the
beginning of the second line segment.

• xL and yL are the coordinates of the end
of the (L-1)th line segment and the
beginning of the Lth line segment.

The block connects [x1 y1] to [xL yL] to
complete the polygon. The block produces
an error if the number of rows is negative
or not a multiple of two.

M Polygons with the
largest number of
line segments in any
line being L

M-by-2L matrix

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

where each row of the matrix corresponds
to a different polygon and is of the same
form as the vector for a single polygon. If
some polygons are shorter than others,
repeat the ending coordinates to fill the
polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

 Draw Shapes

1-255

Drawing Circles

The Draw Shapes block lets you draw one or more circles. Set the Shape parameter to
Circles, and then follow the instructions in the table to specify the input to the Pts port
to obtain the desired number of circles.

Shape Input to the Pts Port Drawn Shape
Single Circle Three-element row vector

[x y radius] where

• x and y are coordinates for the center of
the circle.

• radius is the radius of the circle, which
must be greater than 0.

M Circles M-by-3 matrix

x1 y1 radius1

x2 y2 radius2

⋮ ⋮ ⋮
xM yM radiusM

where each row of the matrix corresponds
to a different circle and is of the same form
as the vector for a single circle.

Parameters
Shape

Specify the type of shape(s) to draw. Your choices are Rectangles, Lines,
Polygons, or Circles.

1 Blocks — Alphabetical List

1-256

The block performs a smoothing algorithm when you select the Use antialiasing
check box with either Lines, Polygons, or Circles. The block uses an algorithm
similar to the poly2mask function to determine which subpixels to draw.

Fill shapes
Fill the shape with an intensity value or a color.

When you select this check box, the Fill color source, Fill color and Opacity factor
(between 0 and 1) parameters appear in the dialog box.

Note If you are generating code and you select the Fill shapes check box, the word
length of the block input(s) cannot exceed 16 bits.

When you do not select the Fill shapes check box, the Border color source, and
Border color parameters are available.

Fill color source
Specify source for fill color value to either Specify via dialog or Input port.
This parameter appears when you select the Fill shapes check box. When you select
Input port, the color input port clr appears on the block.

Fill color
Specify the fill color for shape. You can specify either Black, White, or User-
specified value. When you select User-specified value, the Color value(s)
parameter appears in the dialog box. This parameter is visible if you select the Fill
shapes check box.

Border color source
Specify source for the border color value to either Specify via dialog or Input
port. Border color options are visible when the fill shapes options are not selected.
Border color source appears when you select the Fill shapes check box. When you
select Input port, the color input port clr appears on the block.

Border color
Specify the appearance of the shape's border. You can specify either Black, White,
or User-specified value. If you select User-specified value, the Color
value(s) parameter appears in the dialog box. This parameter appears when you
clear the Fill shapes check box.

 Draw Shapes

1-257

Color value(s)
Specify an intensity or color value for the shape's border or fill. This parameter
applies when you set the Border color or Fill color parameter to User-specified
value. This parameter is tunable.

The following table describes what to enter for the color value based on the block
input and the number of shapes you are drawing.

Block Input Color Value(s) for
Drawing One Shape or
Multiple Shapes with
the Same Color

Color Value(s) for
Drawing Multiple
Shapes with Unique
Color

Intensity image Scalar intensity value R-element vector where R
is the number of shapes

Color image P-element vector where P
is the number of color
planes

R-by-P matrix where P is
the number of color
planes and R is the
number of shapes

For each value in the Color Value(s) parameter, enter a number between the
minimum and maximum values that can be represented by the data type of the input
image. If you enter a value outside this range, the block produces an error message.

Opacity factor (between 0 and 1)
Specify the opacity of the shading inside the shape, where 0 is transparent and 1 is
opaque. This parameter is visible if you select the Fill shapes check box.

The following table describes what to enter for this parameter based on the block
input and the number of shapes you are drawing. This parameter applies when you
select the Filled check box.

Opacity Factor value for Drawing
One Shape or Multiple Shapes with
the Same Color

Opacity Factor value for Drawing
Multiple Shapes with Unique Color

Scalar intensity value R-element vector where R is the
number of shapes

Draw shapes in
Specify the type of area in which to draw shapes. You can define one of the following:

1 Blocks — Alphabetical List

1-258

• Entire image, enables you to draw shapes in the entire image.
• Specify region of interest via port. When you select this option, the

ROI port appears on the block. Enter a four-element vector of integer values, [x y
width height], where [x y] are the coordinates of the upper-left corner of the
area.

Note If you specify values that are outside the image, the block sets the values to
the image boundaries.

Use antialiasing
Perform a smoothing algorithm on the line, polygon, or circle. This parameter is
visible if, for the Shape parameter, you select Lines, Polygons, or Circles.

Image signal
Specify how to input and output a color video signal. Select one of the following:

• One multidimensional signal, the block accepts an M-by-N-by-P color video
signal, where P is the number of color planes, at one port.

• Separate color signals, additional ports appear on the block. Each port
accepts one M-by-N plane of an RGB video stream.

See Also
Draw Markers Computer Vision Toolbox software
Insert Text Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Draw Shapes

1-259

Edge Detection
Find edges of objects in images using Sobel, Prewitt, Roberts, or Canny method

Library
Analysis & Enhancement

visionanalysis

Description
If, for the Method parameter, you select Sobel, Prewitt, or Roberts, the Edge
Detection block finds the edges in an input image by approximating the gradient
magnitude of the image. The block convolves the input matrix with the Sobel, Prewitt, or
Roberts kernel. The block outputs two gradient components of the image, which are the
result of this convolution operation. Alternatively, the block can perform a thresholding
operation on the gradient magnitudes and output a binary image, which is a matrix of
Boolean values. If a pixel value is 1, it is an edge.

If, for the Method parameter, you select Canny, the Edge Detection block finds edges by
looking for the local maxima of the gradient of the input image. It calculates the gradient
using the derivative of the Gaussian filter. The Canny method uses two thresholds to
detect strong and weak edges. It includes the weak edges in the output only if they are
connected to strong edges. As a result, the method is more robust to noise, and more
likely to detect true weak edges.

1 Blocks — Alphabetical List

1-260

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point (not supported for the Canny

method)
• 8-, 16-, 32-bit signed integer (not supported

for the Canny method)
• 8-, 16-, 32-bit unsigned integer (not

supported for the Canny method)

No

Th Matrix of intensity values Same as I port No
Edge Matrix that represents a

binary image
Boolean No

Gv Matrix of gradient
responses to the vertical
edges

Same as I port No

Gh Matrix of gradient
responses to the horizontal
edges

Same as I port No

G45 Matrix of gradient
responses to edges at 45
degrees

Same as I port No

G135 Matrix of gradient
responses to edges at 135
degrees

Same as I port No

The output of the Gv, Gh, G45, and G135 ports is the same data type as the input to the I
port. The input to the Th port must be the same data type as the input to the I port.

Use the Method parameter to specify which algorithm to use to find edges. You can
select Sobel, Prewitt, Roberts, or Canny to find edges using the Sobel, Prewitt,
Roberts, or Canny method.

 Edge Detection

1-261

Sobel, Prewitt, and Roberts Methods
Use the Output type parameter to select the format of the output. If you select Binary
image, the block outputs a Boolean matrix at the Edge port. The nonzero elements of this
matrix correspond to the edge pixels and the zero elements correspond to the background
pixels. If you select Gradient components and, for the Method parameter, you select
Sobel or Prewitt, the block outputs the gradient components that correspond to the
horizontal and vertical edge responses at the Gh and Gv ports, respectively. If you select
Gradient components and, for the Method parameter, you select Roberts, the block
outputs the gradient components that correspond to the 45 and 135 degree edge
responses at the G45 and G135 ports, respectively. If you select Binary image and
gradient components, the block outputs both the binary image and the gradient
components of the image.

Select the User-defined threshold check box to define a threshold values or values. If
you clear this check box, the block computes the threshold for you.

Use the Threshold source parameter to specify how to enter your threshold value. If you
select Specify via dialog, the Threshold parameter appears in the dialog box. Enter
a threshold value that is within the range of your input data. If you choose Input port,
use input port Th to specify a threshold value. This value must have the same data type as
the input data. Gradient magnitudes above the threshold value correspond to edges.

The Edge Detection block computes the automatic threshold using the mean of the
gradient magnitude squared image. However, you can adjust this threshold using the
Threshold scale factor (used to automatically calculate threshold value)
parameter. The block multiplies the value you enter with the automatic threshold value to
determine a new threshold value.

Select the Edge thinning check box to reduce the thickness of the edges in your output
image. This option requires additional processing time and memory resources.

Note This block is most efficient in terms of memory usage and processing time when
you clear the Edge thinning check box and use the Threshold parameter to specify a
threshold value.

Canny Method
Select the User-defined threshold check box to define the low and high threshold
values. If you clear this check box, the block computes the threshold values for you.

1 Blocks — Alphabetical List

1-262

Use the Threshold source parameter to specify how to enter your threshold values. If
you select Specify via dialog, the Threshold [low high] parameter appears in the
dialog box. Enter the threshold values. If a pixel's magnitude in the gradient image, which
is formed by convolving the input image with the derivative of the Gaussian filter, exceeds
the high threshold, then the pixel corresponds to a strong edge. Any pixel connected to a
strong edge and having a magnitude greater than the low threshold corresponds to a
weak edge. If, for the Threshold source parameter, you choose Input port, use input
port Th to specify a two-element vector of threshold values. These values must have the
same data type as the input data.

The Edge Detection block computes the automatic threshold values using an
approximation of the number of weak and nonedge image pixels. Enter this approximation
for the Approximate percentage of weak edge and nonedge pixels (used to
automatically calculate threshold values) parameter.

Use the Standard deviation of Gaussian filter parameter to define the Gaussian filter
whose derivative is convolved with the input image.

Fixed-Point Data Types
The following diagram shows the data types used in the Edge Detection block for fixed-
point signals.

ADDER
Accumulator
data type

The result of each addition remains
in the accumulator data type.

CAST
Output
 data type

Accumulator
data type

CAST
Product output
data type

MULTIPLIER
Input
data type

The block squares the threshold and compares it to the sum of the squared gradients to
avoid using square roots.

 Edge Detection

1-263

Threshold:

Gradients:

Accumulator
data type

CAST
Product output
data type

MULTIPLIER
Input
data type

Accumulator
data type

CAST
Product output
data type

MULTIPLIER
Accumulator
data type

Accumulator
data type

CAST
Product output
data type

MULTIPLIER

Accumulator
data type

ADDER
Accumulator
data type

You can set the product output and accumulator data types in the block mask as
discussed in the next section.

Parameters
Method

Select the method by which to perform edge detection. Your choices are Sobel,
Prewitt, Roberts, or Canny.

Output type
Select the desired form of the output. If you select Binary image, the block outputs
a matrix that is filled with ones, which correspond to edges, and zeros, which
correspond to the background. If you select Gradient components and, for the
Method parameter, you select Sobel or Prewitt, the block outputs the gradient
components that correspond to the horizontal and vertical edge responses. If you
select Gradient components and, for the Method parameter, you select Roberts,
the block outputs the gradient components that correspond to the 45 and 135 degree

1 Blocks — Alphabetical List

1-264

edge responses. If you select Binary image and gradient components, the
block outputs both the binary image and the gradient components of the image. This
parameter is visible if, for the Method parameter, you select Sobel, Prewitt, or
Roberts.

User-defined threshold
If you select this check box, you can enter a desired threshold value. If you clear this
check box, the block computes the threshold for you. This parameter is visible if, for
the Method parameter, you select Sobel, Prewitt, or Roberts, and, for the
Output type parameter, you select Binary image or Binary image and
gradient components. This parameter is also visible if, for the Method parameter,
you select Canny.

Threshold source
If you select Specify via dialog, enter your threshold value in the dialog box. If
you choose Input port, use the Th input port to specify a threshold value that is the
same data type as the input data. This parameter is visible if you select the User-
defined threshold check box.

Threshold
Enter a threshold value that is within the range of your input data. This parameter is
visible if, for the Method parameter, you select Sobel, Prewitt, or Roberts, you
select the User-defined threshold check box, and, for Threshold source
parameter, you select Specify via dialog. .

Threshold [low high]
Enter the low and high threshold values that define the weak and strong edges. This
parameter is visible if, for the Method parameter, you select Canny. Then you select
the User-defined threshold check box, and, for Threshold source parameter, you
select Specify via dialog. Tunable.

Threshold scale factor (used to automatically calculate threshold value)
Enter a multiplier that is used to adjust the calculation of the automatic threshold.
This parameter is visible if, for the Method parameter, you select Sobel, Prewitt,
or Roberts, and you clear the User-defined threshold check box. Tunable.

Edge thinning
Select this check box if you want the block to perform edge thinning. This option
requires additional processing time and memory resources. This parameter is visible
if, for the Method parameter, you select Sobel, Prewitt, or Roberts, and for the
Output type parameter, you select Binary image or Binary image and
gradient components.

 Edge Detection

1-265

Approximate percentage of weak edge and nonedge pixels (used to automatically
calculate threshold values)

Enter the approximate percentage of weak edge and nonedge image pixels. The block
computes the automatic threshold values using this approximation. This parameter is
visible if, for the Method parameter, you select Canny. Tunable.

Standard deviation of Gaussian filter
Enter the standard deviation of the Gaussian filter whose derivative is convolved with
the input image. This parameter is visible if, for the Method parameter, you select
Canny.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output

Product output
data type

MULTIPLIER

Internal coefficients�
data type

Product output
data type

MULTIPLIER

Accumulator
data type

I data type

Here, the internal coefficients are the Sobel, Prewitt, or Roberts masks. As depicted
in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product
output word and fraction lengths.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

1 Blocks — Alphabetical List

1-266

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Gradients
Choose how to specify the word length and fraction length of the outputs of the Gv
and Gh ports. This parameter is visible if, for the Output type parameter, you choose
Gradient components or Binary image and gradient components:

• When you select Same as accumulator, these characteristics match those of
the accumulator.

 Edge Detection

1-267

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[2] Pratt, William K. Digital Image Processing, 2nd ed. New York: John Wiley & Sons,
1991.

See Also
edge Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks — Alphabetical List

1-268

Introduced before R2006a

 Edge Detection

1-269

Erosion
Find local minima in binary or intensity images

Library
Morphological Operations

visionmorphops

Description
The Erosion block slides the neighborhood or structuring element over an image, finds
the local minima, and creates the output matrix from these minimum values. If the
neighborhood or structuring element has a center element, the block places the minima
there, as illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a
bias toward the upper-left corner and places the minima there, as illustrated in the
following figure.

1 Blocks — Alphabetical List

1-270

This block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of 1s and 0s that
represents the neighborhood
values

Boolean No

Output Vector or matrix of intensity values
that represents the eroded image

Same as I port No

The output signal is the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood
or structuring element that the block applies to the image. Specify a neighborhood by
entering a matrix or vector of 1s and 0s. Specify a structuring element with the strel
function from the Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the use of a more
efficient algorithm. If you enter an array of STREL objects, the block applies each object
to the entire matrix in turn.

 Erosion

1-271

Parameters
Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

References
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imerode Image Processing Toolbox software
strel Image Processing Toolbox software

1 Blocks — Alphabetical List

1-272

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Erosion

1-273

Estimate Geometric Transformation
Estimate geometric transformation from matching point pairs

Library
Geometric Transformations

visiongeotforms

Description
Use the Estimate Geometric Transformation block to find the transformation matrix which
maps the greatest number of point pairs between two images. A point pair refers to a
point in the input image and its related point on the image created using the
transformation matrix. You can select to use the RANdom SAmple Consensus (RANSAC)
or the Least Median Squares algorithm to exclude outliers and to calculate the
transformation matrix. You can also use all input points to calculate the transformation
matrix.

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts1/Pts2 M-by-2 Matrix of one-
based [x y] point
coordinates, where M
represents the number
of points.

• Double
• Single
• 8, 16, 32-bit signed integer
• 8, 16, 32-bit unsigned integer

No

1 Blocks — Alphabetical List

1-274

Port Input/Output Supported Data Types
Complex
Values
Supported

Num Scalar value that
represents the number
of valid points in Pts1
and Pts 2.

• 8, 16, 32-bit signed integer
• 8, 16, 32-bit unsigned integer

No

TForm 3-by-2 or 3-by-3
transformation matrix.

• Double
• Single

No

Inlier M-by-1 vector
indicating which
points have been used
to calculate TForm.

Boolean No

Ports Pts1 and Pts2 are the points on two images that have the same data type. The
block outputs the same data type for the transformation matrix

When Pts1 and Pts2 are single or double, the output transformation matrix will also
have single or double data type. When Pts1 and Pts2 images are built-in integers, the
option is available to set the transformation matrix data type to either Single or Double.
The TForm output provides the transformation matrix. The Inlier output port provides
the Inlier points on which the transformation matrix is based. This output appears when
you select the Output Boolean signal indicating which point pairs are inliers
checkbox.

RANSAC and Least Median Squares Algorithms
The RANSAC algorithm relies on a distance threshold. A pair of points, pi

a(image a, Pts1)
and pi

b(image b, Pts 2) is an inlier only when the distance between pi
b and the projection

of pi
abased on the transformation matrix falls within the specified threshold. The distance

metric used in the RANSAC algorithm is as follows:

d = ∑
i = 1

Num
min(D(pi

b, ψ(pi
a:H)), t)

The Least Median Squares algorithm assumes at least 50% of the point pairs can be
mapped by a transformation matrix. The algorithm does not need to explicitly specify the

 Estimate Geometric Transformation

1-275

distance threshold. Instead, it uses the median distance between all input point pairs. The
distance metric used in the Least Median of Squares algorithm is as follows:

d = median(D(p1
b, ψ(p1

a:H)), D(p2
b, ψ(p2

a:H)), ..., D(pNum
b , ψ(pN

a :H)))

For both equations:

pi
a is a point in image a (Pts1)

pi
b is a point in image b (Pts2)

ψ(pi
a:H) is the projection of a point on image a based on transformation matrix H

D(pi
b, p j

b) is the distance between two point pairs on image b

t is the threshold

Numis the number of points

The smaller the distance metric, the better the transformation matrix and therefore the
more accurate the projection image.

Transformations
The Estimate Geometric Transformation block supports Nonreflective similarity,
Affine, and Projective transformation types, which are described in this section.

Nonreflective similarity transformation supports translation, rotation, and isotropic
scaling. It has four degrees of freedom and requires two pairs of points.

The transformation matrix is: H =
h1 −h2
h2 h1
h3 h4

1 Blocks — Alphabetical List

1-276

The projection of a point x y by His: x y = x y 1 H

affine transformation supports nonisotropic scaling in addition to all transformations that
the nonreflective similarity transformation supports. It has six degrees of freedom that
can be determined from three pairs of noncollinear points.

The transformation matrix is: H =
h1 h4
h2 h5
h3 h6

The projection of a point x y by His: x y = x y 1 H

Projective transformation supports tilting in addition to all transformations that the
affine transformation supports.

The transformation matrix is : h =
h1 h4 h7
h2 h5 h8
h3 h6 h9

The projection of a point x y by His represented by homogeneous coordinates as:
u v w = x y 1 H

Distance Measurement
For computational simplicity and efficiency, this block uses algebraic distance. The
algebraic distance for a pair of points, xa ya T on image a, and xb yb on image b ,
according to transformation H,is defined as follows;

For projective transformation:

D(pi
b, ψ(pi

a:H)) = ((u a−waxb)
2

+ (v a−wayb)
2
)
1
2 , where u a v a wa = xa ya 1 H

 Estimate Geometric Transformation

1-277

For Nonreflective similarity or affine transformation:

D(pi
b, ψ(pi

a:H)) = ((x a− xb)
2

+ (y a− y b)
2
)
1
2 ,

where x a y a = xa ya 1 H

Algorithm

The block performs a comparison and repeats it K number of times between successive
transformation matrices. If you select the Find and exclude outliers option, the
RANSAC and Least Median Squares (LMS) algorithms become available. These
algorithms calculate and compare a distance metric. The transformation matrix that
produces the smaller distance metric becomes the new transformation matrix that the
next comparison uses. A final transformation matrix is resolved when either:

• K number of random samplings is performed
• The RANSAC algorithm, when enough number of inlier point pairs can be mapped,

(dynamically updating K)

The Estimate Geometric Transformation algorithm follows these steps:

1 A transformation matrix H is initialized to zeros
2 Set count = 0 (Randomly sampling).
3 While count < K , where K is total number of random samplings to perform,

perform the following;

a Increment the count; count = count + 1.
b Randomly select pair of points from images a and b, (2 pairs for Nonreflective

similarity, 3 pairs for affine, or 4 pairs for projective).
c Calculate a transformation matrix H, from the selected points.
d If Hhas a distance metric less than that of H, then replace H with H.

(Optional for RANSAC algorithm only)

i Update K dynamically.
ii Exit out of sampling loop if enough number of point pairs can be mapped by

H.
4 Use all point pairs in images a and b that can be mapped by H to calculate a refined

transformation matrix H
5 Iterative Refinement, (Optional for RANSAC and LMS algorithms)

1 Blocks — Alphabetical List

1-278

a Denote all point pairs that can be mapped by H as inliers.
b Use inlier point pairs to calculate a transformation matrix H.
c If Hhas a distance metric less than that of H, then replace H with H, otherwise

exit the loop.

Number of Random Samplings
The number of random samplings can be specified by the user for the RANSAC and Least
Median Squares algorithms. You can use an additional option with the RANSAC
algorithm, which calculates this number based on an accuracy requirement. The Desired
Confidence level drives the accuracy.

The calculated number of random samplings, K used with the RANSAC algorithm, is as
follows:

K = log(1 − p)
log(1 − qs)

where

• p is the probability of independent point pairs belonging to the largest group that can
be mapped by the same transformation. The probability is dynamically calculated
based on the number of inliers found versus the total number of points. As the
probability increases, the number of samplings, K , decreases.

• q is the probability of finding the largest group that can be mapped by the same
transformation.

• s is equal to the value 2, 3, or 4 for Nonreflective similarity, affine, and projective
transformation, respectively.

Iterative Refinement of Transformation Matrix
The transformation matrix calculated from all inliers can be used to calculate a refined
transformation matrix. The refined transformation matrix is then used to find a new set of
inliers. This procedure can be repeated until the transformation matrix cannot be further
improved. This iterative refinement is optional.

 Estimate Geometric Transformation

1-279

Parameters
Transformation Type

Specify transformation type, either Nonreflective similarity, Affine, or
Projective transformation. If you select Projective transformation, you can also
specify a scalar algebraic distance threshold for determining inliers. If you select
either Affine or Projective transformation, you can specify the distance threshold
for determining inliers in pixels. See “Transformations” on page 1-276 for a more
detailed discussion. The default value is Projective.

Find and exclude outliers
When selected, the block finds and excludes outliers from the input points and uses
only the inlier points to calculate the transformation matrix. When this option is not
selected, all input points are used to calculate the transformation matrix.

Method
Select either the RANdom SAmple Consensus (RANSAC) or the Least Median of
Squares algorithm to find outliers. See “RANSAC and Least Median Squares
Algorithms” on page 1-275 for a more detailed discussion. This parameter appears
when you select the Find and exclude outliers check box.

Algebraic distance threshold for determining inliers
Specify a scalar threshold value for determining inliers. The threshold controls the
upper limit used to find the algebraic distance in the RANSAC algorithm. This
parameter appears when you set the Method parameter to Random Sample
Consensus (RANSAC) and the Transformation type parameter to Projective.
The default value is 1.5.

Distance threshold for determining inliers (in pixels)
Specify the upper limit distance a point can differ from the projection location of its
associating point. This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC) and you set the value of the
Transformation type parameter to Nonreflective similarity or Affine. The
default value is 1.5.

Determine number of random samplings using
Select Specified value to enter a positive integer value for number of random
samplings, or select Desired confidence to set the number of random samplings
as a percentage and a maximum number. This parameter appears when you select the
Find and exclude outliers check box, and you set the value of the Method
parameter to Random Sample Consensus (RANSAC).

1 Blocks — Alphabetical List

1-280

Number of random samplings
Specify the number of random samplings for the algorithm to perform. This
parameter appears when you set the value of the Determine number of random
samplings using parameter to Specified value.

Desired confidence (in %)
Specify a percent by entering a number between 0 and 100. The Desired confidence
(in %) value represents the probability of the algorithm to find the largest group of
points that can be mapped by a transformation matrix. This parameter appears when
you set the Determine number of random samplings using parameter to
Desired confidence.

Maximum number of random samplings
Specify an integer number for the maximum number of random samplings. This
parameter appears when you set the Method parameter to Random Sample
Consensus (RANSAC) and you set the value of the Determine number of random
samplings using parameter to Desired confidence.

Stop sampling earlier when a specified percentage of point pairs are determined
to be inlier

Specify to stop random sampling when a percentage of input points have been found
as inliers. This parameter appears when you set the Method parameter to Random
Sample Consensus (RANSAC).

Perform additional iterative refinement of the transformation matrix
Specify whether to perform refinement on the transformation matrix. This parameter
appears when you select Find and exclude outliers check box.

Output Boolean signal indicating which point pairs are inliers
Select this option to output the inlier point pairs that were used to calculate the
transformation matrix. This parameter appears when you select the Find and
exclude outliers check box. The block will not use this parameter with signed or
double, data type points.

When Pts1 and Pts2 are built-in integers, set transformation matrix date type to
Specify transformation matrix data type as Single or Double when the input points
are built-in integers. The block will not use this parameter with signed or double, data
type points.

 Estimate Geometric Transformation

1-281

Examples

Calculate transformation matrix from largest group of point
pairs
Examples of input data and application of the Estimate Geometric Transformation block
appear in the following figures. Figures (a) and (b) show the point pairs. The points are
denoted by stars or circles, and the numbers following them show how they are paired.
Some point pairs can be mapped by the same transformation matrix. Other point pairs
require a different transformation matrix. One matrix exists that maps the largest number
of point pairs, the block calculates and returns this matrix. The block finds the point pairs
in the largest group and uses them to calculate the transformation matrix. The point pairs
connected by the magenta lines are the largest group.

The transformation matrix can then be used to stitch the images as shown in Figure (e).

1 Blocks — Alphabetical List

1-282

 Estimate Geometric Transformation

1-283

Video Mosaicking
To see an example of the Estimate Geometric Transformation block used in a model with
other blocks, see the “Video Mosaicking” example.

Troubleshooting
The success of estimating the correct geometric transformation depends heavily on the
quality of the input point pairs. If you chose the RANSAC or LMS algorithm, the block will
randomly select point pairs to compute the transformation matrix and will use the
transformation that best fits the input points. There is a chance that all of the randomly
selected point pairs may contain outliers despite repeated samplings. In this case, the
output transformation matrix, TForm, is invalid, indicated by a matrix of zeros.

To improve your results, try the following:
Increase the percentage of inliers in the input points.
Increase the number for random samplings.
For the RANSAC method, increase the desired confidence.
For the LMS method, make sure the input points have 50% or more inliers.
Use features appropriate for the image contents
Be aware that repeated patterns, for example, windows in office building, will cause false
matches when you match the features. This increases the number of outliers.
Do not use this function if the images have significant parallax. You can use the
estimateFundamentalMatrix function instead.
Choose the minimum transformation for your problem.
If a projective transformation produces the error message, “A portion of the input image
was transformed to the location at infinity. Only transformation matrices that do not
transform any part of the image to infinity are supported.”, it is usually caused by a
transformation matrix and an image that would result in an output distortion that does
not fit physical reality. If the matrix was an output of the Estimate Geometric
Transformation block, then most likely it could not find enough inliers.

References
R. Hartley and A. Ziserman, “Multiple View Geometry in Computer Vision,” Second
edition, Cambridge University Press, 2003

1 Blocks — Alphabetical List

1-284

See Also
cp2tform Image Processing Toolbox
vipmosaicking Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2008a

 Estimate Geometric Transformation

1-285

matlab:vipmosaicking

Find Local Maxima
Find local maxima in matrices

Library
Statistics

visionstatistics

Description
The Find Local Maxima block finds the local maxima within an input matrix. It does so by
comparing the maximum value in the matrix to a user-specified threshold. The block
considers a value to be a valid local maximum when the maximum value is greater than or
equal to the specified threshold. The determination of the local maxima is based on the
neighborhood, an area around and including the maximum value. After finding the local
maxima, the block sets all the matrix values in the neighborhood, including the maximum
value, to 0. This step ensures that subsequent searches do not include this maximum. The
size of the neighborhood must be appropriate for the data set. That is, the threshold must
eliminate enough of the values around the maximum so that false peaks are not
discovered. The process repeats until the block either finds all valid maximas or the
number of local maximas equal the Maximum number of local maxima value. The
block outputs one-based [x y] coordinates of the maxima. The data to all input ports must
be the same data type.

If the input to this block is a Hough matrix output from the Hough Transform block, select
the Input is Hough matrix spanning full theta range check box. If you select this
check box, the block assumes that the Hough port input is antisymmetric about the rho
axis and theta ranges from -pi/2 to pi/2 radians. If the block finds a local maxima near the
boundary, and the neighborhood lies outside the Hough matrix, then the block detects
only one local maximum. It ignores the corresponding antisymmetric maximum.

1 Blocks — Alphabetical List

1-286

Parameters
Maximum number of local maxima

Specify the maximum number of maxima you want the block to find.
Neighborhood size

Specify the size of the neighborhood around the maxima over which the block zeros
out the values. Enter a two-element vector of positive odd integers, [rc]. Here, r
represents the number of rows in the neighborhood, and c represents the number of
columns.

Source of threshold value
Specify how to enter the threshold value. If you select Input port, the Th port
appears on the block. If you select Specify via dialog, the Threshold parameter
appears in the dialog box. Enter a scalar value that represents the value all maxima
should meet or exceed.

Threshold
Enter a scalar value that represents the value all maxima should meet or exceed. This
parameter is visible if, for the Source of threshold value parameter, you choose
Specify via dialog.

Input is Hough matrix spanning full theta range
If you select this check box, the block assumes that the Hough port input is
antisymmetric about the rho axis and theta ranges from -pi/2 to pi/2 radians.

Index output data type
Specify the data type of the Idx port output. Your choices are double, single,
uint8, uint16, or uint32.

Output variable size signal
Specify output data type. When you uncheck the Output variable size signal, the
Count output data type parameter appears in the dialog box.

Count output data type
Specify the data type of the Count port output. Your choices are double, single,
uint8, uint16, or uint32. This parameter applies when you clear the Output
variable size signal check box.

 Find Local Maxima

1-287

Examples
See “Detect Lines in Images” in the Computer Vision Toolbox User's Guide.

Supported Data Types
The block outputs the one-based [x y] coordinates of the maxima at the Idx port and the
number of valid local maxima found at the Count port.

Port Input/Output Supported Data Types
Complex
Values
Supported

I/Hough Matrix in which you want to
find the maxima.

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Th Scalar value that represents
the value the maxima
should meet or exceed.

Same as I/Hough port No

Idx An M-by-2 matrix of one-
based [x y] coordinates,
where M represents the
number of local maximas
found.

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit unsigned integer

No

Count Scalar value that represents
the number of maxima that
meet or exceed the
threshold value.

Same as Idx port No

See Also
Hough Lines Computer Vision Toolbox

1 Blocks — Alphabetical List

1-288

Corner Detection Computer Vision Toolbox
houghpeaks Image Processing Toolbox
hough Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Find Local Maxima

1-289

Frame Rate Display
Calculate average update rate of input signal

Library
Sinks

visionsinks

Description
The Frame Rate Display block calculates and displays the average update rate of the
input signal. This rate is in relation to the wall clock time. For example, if the block
displays 30, the model is updating the input signal 30 times every second. You can use
this block to check the video frame rate of your simulation. During code generation,
Simulink Coder does not generate code for this block.

Note This block supports intensity and color images on its port.

1 Blocks — Alphabetical List

1-290

Port Input Supported Data Types
Complex
Values
Supported

Input M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Use the Calculate and display rate every parameter to control how often the block
updates the display. When this parameter is greater than 1, the block displays the
average update rate for the specified number of video frames. For example, if you enter
10, the block calculates the amount of time it takes for the model to pass 10 video frames
to the block. It divides this time by 10 and displays this average video frame rate on the
block.

Note If you do not connect the Frame Rate Display block to a signal line, the block
displays the base (fastest) rate of the Simulink model.

Parameters
Calculate and display rate every

Use this parameter to control how often the block updates the display.

See Also
To Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video To Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software

 Frame Rate Display

1-291

Introduced before R2006a

1 Blocks — Alphabetical List

1-292

From Multimedia File
Read video frames and audio samples from compressed multimedia file

Library
Sources

visionsources

Description
The From Multimedia File block reads audio samples, video frames, or both from a
multimedia file. The block imports data from the file into a Simulink model.

Note This block supports code generation for the host computer that has file I/O
available. You cannot use this block with Simulink Desktop Real-Time™ software because
that product does not support file I/O.

The generated code for this block relies on prebuilt library files. You can run this code
outside the MATLAB environment, or redeploy it, but be sure to account for these extra
library files when doing so. The packNGo function creates a single zip file containing all of
the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may
need to add precompiled shared library files to your system path. See “Simulink Coder”,
“Simulink Shared Library Dependencies”, and “Accelerating Simulink Models” for details.

This block allows you to read WMA/WMV streams to disk or across a network connection.
Similarly, the To Multimedia File block allows you to write WMA/WMV streams to disk or

 From Multimedia File

1-293

across a network connection. If you want to play an MP3/MP4 file in Simulink, but you do
not have the codecs, you can re-encode the file as WMA/WMV, which are supported by the
Computer Vision Toolbox.

Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows® Image:

.jpg,.bmp
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1.mpg
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Motion JPEG 2000 (.mj2)
Windows Media Video (.wmv,.asf, .asx, .asx)
and any format supported by Microsoft DirectShow® 9.0 or higher.
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

Macintosh Video:
.avi
Motion JPEG 2000 (.mj2)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.
Audio:
Uncompressed .avi

Linux® Motion JPEG 2000 (.mj2)
Any format supported by your installed plug-ins for GStreamer 0.1
or higher, as listed on http://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg Theora (.ogg).

1 Blocks — Alphabetical List

1-294

Ports
The output ports of the From Multimedia File block change according to the content of
the multimedia file. If the file contains only video frames, the Image, intensity I, or R,G,B
ports appear on the block. If the file contains only audio samples, the Audio port appears
on the block. If the file contains both audio and video, you can select the data to emit. The
following table describes available ports.

Port Description
Image M-by-N-by-P color video signal where P is the number of color planes.
I M-by-N matrix of intensity values.
R, G, B Matrix that represents one plane of the RGB video stream. Outputs from the

R, G, or B ports must have same dimensions.
Audio Vector of audio data.
Y, Cb, Cr Matrix that represents one frame of the YCbCr video stream. The Y, Cb, Cr

ports produce the following outputs:
Y: M x N
Cb: M xN

2
Cr: M xN

2

Sample Rates
The sample rate that the block uses depends on the audio and video sample rate. While
the FMMF block operates at a single rate in Simulink, the underlying audio and video
streams can produce different rates. In some cases, when the block outputs both audio
and video, makes a small adjustment to the video rate.

Sample Time Calculations Used for Video and
Audio Files
Sample time = ceil(AudioSampleRate FPS)

AudioSampleRate .

 From Multimedia File

1-295

When audio sample time, AudioSampleRate
FPS is noninteger, the equation cannot reduce to

1
FPS .
In this case, to prevent synchronization problems, the block drops the corresponding
video frame when the audio stream leads the video stream by more than 1

FPS .
In summary, the block outputs one video frame at each Simulink time step. To calculate
the number of audio samples to output at each time step, the block divides the audio
sample rate by the video frame rate (fps). If the audio sample rate does not divide evenly
by the number of video frames per second, the block rounds the number of audio samples
up to the nearest whole number. If necessary, the block periodically drops a video frame
to maintain synchronization for large files.

Parameters
File name

Specify the name of the multimedia file from which to read. The block determines the
type of file (audio and video, audio only, or video only) and provides the associated
parameters.

If the location of the file does not appear on your MATLAB path, use the Browse
button to specify the full path. Otherwise, if the location of this file appears on your
MATLAB path, enter only the file name. On Windows platforms, this parameter
supports URLs that point to MMS (Microsoft Media Server) streams.

Inherit sample time from file
Select the Inherit sample time from file check box if you want the block sample
time to be the same as the multimedia file. If you clear this check box, enter the block
sample time in the Desired sample time parameter field. The file that the From
Multimedia File block references, determines the block default sample time. You can
also set the sample time for this block manually. If you do not know the intended
sample rate of the video, let the block inherit the sample rate from the multimedia
file.

Desired sample time
Specify the block sample time. This parameter becomes available if you clear the
Inherit sample time from file check box.

1 Blocks — Alphabetical List

1-296

Number of times to play file
Enter a positive integer or inf to represent the number of times to play the file.

Output end-of-file indicator
Use this check box to determine whether the output is the last video frame or audio
sample in the multimedia file. When you select this check box, a Boolean output port
labeled EOF appears on the block. The output from the EOF port defaults to 1 when
the last video frame or audio sample is output from the block. Otherwise, the output
from the EOF port defaults to 0.

Multimedia outputs
Specify Video and audio, Video only, or Audio only output file type. This
parameter becomes available only when a video signal has both audio and video.

Samples per audio channel
Specify number of samples per audio channel. This parameter becomes available for
files containing audio.

Output color format
Specify whether you want the block to output RGB, Intensity, or YCbCr 4:2:2
video frames. This parameter becomes available only for a signal that contains video.
If you select RGB, use the Image signal parameter to specify how to output a color
signal.

Image signal
Specify how to output a color video signal. If you select One multidimensional
signal, the block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals, additional
ports appear on the block. Each port outputs one M-by-N plane of an RGB video
stream. This parameter becomes available only if you set the Image color space
parameter to RGB and the signal contains video.

Audio output sampling mode
Select Sample based or Frame based output. This parameter appears when you
specify a file containing audio for the File name parameter.

Audio output data type
Set the data type of the audio samples output at the Audio port. This parameter
becomes available only if the multimedia file contains audio. You can choose double,
single, int16, or uint8 types.

 From Multimedia File

1-297

Video output data type
Set the data type of the video frames output at the R, G, B, or Image ports. This
parameter becomes available only if the multimedia file contains video. You can
choose double, single, int8, uint8, int16, uint16, int32, uint32, or Inherit
from file types.

Supported Data Types
For source blocks to display video data properly, double- and single-precision floating-
point pixel values must be between 0 and 1. For other data types, the pixel values must be
between the minimum and maximum values supported by their data type.

Port Supported Data Types Supports Complex
Values?

Image • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

No

R, G, B Same as the Image port No
Audio • Double-precision floating point

• Single-precision floating point
• 16-bit signed integers
• 8-bit unsigned integers

No

Y, Cb,Cr Same as the Image port No

See Also
To Multimedia File Computer Vision Toolbox
“Specify Sample Time”
(Simulink)

Simulink

1 Blocks — Alphabetical List

1-298

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated
from this block and all the relevant files in a compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project in another development environment
where MATLAB is not installed. For more details, see .

Introduced before R2006a

 From Multimedia File

1-299

Gamma Correction
Apply or remove gamma correction from images or video streams

Library
Conversions

visionconversions

Description
Use the Gamma Correction block to apply or remove gamma correction from an image or
video stream. For input signals normalized between 0 and 1, the block performs gamma
correction as defined by the following equations. For integers and fixed-point data types,
these equations are generalized by applying scaling and offset values specific to the data
type:

S

B

B B

LS

P

P P

=

- +
-

1

1 1

g
g

g
()

F
S

B

S
LS

P

=
-

g

g
()1 1

1 Blocks — Alphabetical List

1-300

C F B S BO S P LS P= -

1
g

¢ =

£

- >

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô

I

S I I B

F I C I B

LS p

S O p

,

,

1

g

SLS is the slope of the straight line segment. BP is the break point of the straight line
segment, which corresponds to the Break point parameter. FS is the slope matching
factor, which matches the slope of the linear segment to the slope of the power function
segment. CO is the segment offset, which ensures that the linear segment and the power
function segments connect. Some of these parameters are illustrated by the following
diagram.

For normalized input signals, the block removes gamma correction, which linearizes the
input video stream, as defined by the following equation:

 Gamma Correction

1-301

I

I

S
I S B

I C

F
I S B

LS
LS p

O

S
LS p

=

¢
¢ £

¢ +Ê

Ë
Á

ˆ

¯
˜ ¢ >

Ï

Ì

Ô
Ô

Ó

Ô
Ô

¸

˝

Ô
Ô

˛

Ô
Ô

,

,

g

Typical gamma values range from 1 to 3. Most monitor gamma values range from 1.8 to
2.2. Check with the manufacturer of your hardware to obtain the exact gamma value.
Gamma function parameters for some common standards are shown in the following
table:

Standard Slope Break Point Gamma
CIE L* 9.033 0.008856 3
Recommendation ITU-R BT.709-3, Parameter
Values for the HDTV Standards for
Production and International Programme
Exchange

4.5 0.018 20
9

sRGB 12.92 0.00304 2.4

Note This block supports intensity and color images on its ports.

The properties of the input and output ports are summarized in the following table:

Port Input/Output Supported Data Types
Complex
Values
Supported

I M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating point
• Single-precision floating point
• Fixed point (up to 16-bit word

length)
• 8- and 16-bit signed integer
• 8- and 16-bit unsigned integer

No

1 Blocks — Alphabetical List

1-302

Port Input/Output Supported Data Types
Complex
Values
Supported

I' M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

Same as I port No

Use the Operation parameter to specify the block's operation. If you want to perform
gamma correction, select Gamma. If you want to linearize the input signal, select De-
gamma.

If, for the Operation parameter, you select Gamma, use the Gamma parameter to enter
the desired gamma value of the output video stream. This value must be greater than or
equal to 1. If, for the Operation parameter, you select De-gamma, use the Gamma
parameter to enter the gamma value of the input video stream.

Select the Linear segment check box if you want the gamma curve to have a linear
portion near black. If you select this check box, the Break point parameter appears on
the dialog box. Enter a scalar value that indicates the I-axis value of the end of the linear
segment. The break point is shown in the first diagram of this block reference page.

Parameters
Operation

Specify the block's operation. Your choices are Gamma or De-gamma.
Gamma

If, for the Operation parameter, you select Gamma, enter the desired gamma value of
the output video stream. This value must be greater than or equal to 1. If, for the
Operation parameter, you select De-gamma, enter the gamma value of the input
video stream.

Linear segment
Select this check box if you want the gamma curve to have a linear portion near the
origin.

Break point
Enter a scalar value that indicates the I-axis value of the end of the linear segment.
This parameter is visible if you select the Linear segment check box.

 Gamma Correction

1-303

References
[1] Poynton, Charles. Digital Video and HDTV Algorithms and Interfaces. San Francisco,

CA: Morgan Kaufman Publishers, 2003.

See Also
Color Space Conversion Computer Vision Toolbox software
imadjust Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-304

Gaussian Pyramid
Perform Gaussian pyramid decomposition

Library
Transforms

visiontransforms

Description
The Gaussian Pyramid block computes Gaussian pyramid reduction or expansion to resize
an image. The image reduction process involves lowpass filtering and downsampling the
image pixels. The image expansion process involves upsampling the image pixels and
lowpass filtering. You can also use this block to build a Laplacian pyramid. For more
information, see “Examples” on page 1-307.

Note This block supports intensity and color images on its ports.

 Gaussian Pyramid

1-305

Port Output Supported Data Types
Complex
Values
Supported

Input In Reduce mode, the input
can be an M-by-N matrix of
intensity values or an M-by-N-
by-P color video signal where
P is the number of color
planes.

In Expand mode, the input
can be a scalar, vector, or M-
by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes.

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output In Reduce mode, the output
can be a scalar, vector, or
matrix that represents one
level of a Gaussian pyramid.

In Expand mode, the output
can be a matrix that
represents one level of a
Gaussian pyramid.

Same as Input port No

Use the Operation parameter to specify whether to reduce or expand the input image. If
you select Reduce, the block applies a lowpass filter and then downsamples the input
image. If you select Expand, the block upsamples and then applies a lowpass filter to the
input image.

Use the Pyramid level parameter to specify the number of times the block upsamples or
downsamples each dimension of the image by a factor of 2. For example, suppose you
have a 4-by-4 input image. You set the Operation parameter to Reduce and the Pyramid
level to 1. The block filters and downsamples the image and outputs a 2-by-2 pixel output
image. If you have an M-by-N input image and you set the Operation parameter to
Reduce, you can calculate the dimensions of the output image using the following
equation:

1 Blocks — Alphabetical List

1-306

ceil M
2 − by − ceil N

2

You must repeat this calculation for each successive pyramid level. If you have an M-by-N
input image and you set the Operation parameter to Expand, you can calculate the
dimensions of the output image using the following equation:

M − 1 2l + 1 − by − N − 1 2l + 1

In the previous equation, l is the scalar value from 1 to inf that you enter for the
Pyramid level parameter.

Use the Coefficient source parameter to specify the coefficients of the lowpass filter. If
you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2], use the a
parameter to define the coefficients in the vector of separable filter coefficients. If you
select Specify via dialog, use the Coefficient for separable filter parameter to
enter a vector of separable filter coefficients.

Examples
The following example model shows how to construct a Laplacian pyramid:

1 Open this model by typing

ex_laplacian

at the MATLAB command prompt.

 Gaussian Pyramid

1-307

matlab:ex_laplacian

2 Run the model to see the following results.

1 Blocks — Alphabetical List

1-308

 Gaussian Pyramid

1-309

You can construct a Laplacian pyramid if the dimensions of the input image, R-by-C,
satisfy R = MR2N + 1 and C = Mc2N + 1, where MR, MC, and N are integers. In this
example, you have an input matrix that is 256-by-256. If you set MR and MC equal to 63
and N equal to 2, you find that the input image needs to be 253-by-253. So you use a
Submatrix block to crop the dimensions of the input image to 253-by-253.

Fixed-Point Data Types
The following diagram shows the data types used in the Gaussian Pyramid block for fixed-
point signals:

You can set the coefficients table, product output, accumulator, and output data types in
the block mask.

Parameters
Operation

Specify whether you want to reduce or expand the input image.
Pyramid level

Specify the number of times the block upsamples or downsamples each dimension of
the image by a factor of 2.

Coefficient source
Determine how to specify the coefficients of the lowpass filter. Your choices are
Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2] or Specify via
dialog.

1 Blocks — Alphabetical List

1-310

a
Enter a scalar value that defines the coefficients in the default separable filter [1/4-
a/2 1/4 a 1/4 1/4-a/2]. This parameter is visible if, for the Coefficient source
parameter, you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4-
a/2].

Coefficients for separable filter
Enter a vector of separable filter coefficients. This parameter is visible if, for the
Coefficient source parameter, you select Specify via dialog.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Coefficients
Choose how to specify the word length and the fraction length of the coefficients:

• When you select Same word length as input, the word length of the
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you can enter the word length of the
coefficients, in bits. The block automatically sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the coefficients, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the coefficients. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Product output

MULTIPLIER

Input data type
Product output data type

Coefficient data type

 Gaussian Pyramid

1-311

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate the
product output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

As shown in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate the accumulator word and fraction lengths.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

1 Blocks — Alphabetical List

1-312

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also
Resize Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Gaussian Pyramid

1-313

Histogram Equalization
Enhance contrast of images using histogram equalization

Library
Analysis & Enhancement

visionanalysis

Description
The Histogram Equalization block enhances the contrast of images by transforming the
values in an intensity image so that the histogram of the output image approximately
matches a specified histogram.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

1 Blocks — Alphabetical List

1-314

Port Input/Output Supported Data Types
Complex
Values
Supported

Hist Vector of integer values that
represents the desired
intensity values in each bin

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output Matrix of intensity values Same as I port No

If the data type of input to the I port is floating point, the input to Hist port must be the
same data type. The output signal has the same data type as the input signal.

Use the Target histogram parameter to designate the histogram you want the output
image to have.

If you select Uniform, the block transforms the input image so that the histogram of the
output image is approximately flat. Use the Number of bins parameter to enter the
number of equally spaced bins you want the uniform histogram to have.

If you select User-defined, the Histogram source and Histogram parameters appear
on the dialog box. Use the Histogram source parameter to select how to specify your
histogram. If, for the Histogram source parameter, you select Specify via dialog,
you can use the Histogram parameter to enter the desired histogram of the output
image. The histogram should be a vector of integer values that represents the desired
intensity values in each bin. The block transforms the input image so that the histogram
of the output image is approximately the specified histogram.

If, for the Histogram source parameter, you select Input port, the Hist port appears
on the block. Use this port to specify your desired histogram.

Note The vector input to the Hist port must be normalized such that the sum of the
values in all the bins is equal to the number of pixels in the input image. The block does
not error if the histogram is not normalized.

 Histogram Equalization

1-315

Examples
See “Adjust the Contrast of Intensity Images” and“Adjust the Contrast of Color Images” in
the Computer Vision Toolbox User's Guide.

Parameters
Target histogram

Designate the histogram you want the output image to have. If you select Uniform,
the block transforms the input image so that the histogram of the output image is
approximately flat. If you select User-defined, you can specify the histogram of
your output image.

Number of bins
Enter the number of equally spaced bins you want the uniform histogram to have.
This parameter is visible if, for the Target histogram parameter, you select
Uniform.

Histogram source
Select how to specify your histogram. Your choices are Specify via dialog and
Input port. This parameter is visible if, for the Target histogram parameter, you
select User-defined.

Histogram
Enter the desired histogram of the output image. This parameter is visible if, for the
Target histogram parameter, you select User-defined.

See Also
imadjust Image Processing Toolbox
histeq Image Processing Toolbox

1 Blocks — Alphabetical List

1-316

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Histogram Equalization

1-317

Hough Lines
Find Cartesian coordinates of lines described by rho and theta pairs

Library
Transforms

s

Description
The Hough Lines block finds the points of intersection between the reference image
boundary lines and the line specified by a (rho, theta) pair. The block outputs one-based [x
y] coordinates for the points of intersection. The boundary lines indicate the left and right
vertical boundaries and the top and bottom horizontal boundaries of the reference image.

If the line specified by the (rho, theta) pair does not intersect two border lines in the
reference image, the block outputs the values, [(0,0), (0,0)]. This output intersection
value allows the next block in your model to ignore the points. Generally, the Hough Lines
block precedes a block that draws a point or shape at the intersection.

The following figure shows the input and output coordinates for the Hough Lines block.

1 Blocks — Alphabetical List

1-318

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Theta Vector of theta values that represent
input lines

• Double-precision floating point
• Single-precision floating point
• Fixed point (signed, word length less than

or equal to 32)
• 8-, 16-, and 32-bit signed integer

No

Rho Vector of rho values that represent
input lines

Same as Theta port No

Ref I Matrix that represents a binary or
intensity image or matrix that
represents one plane of an RGB
image

• Double-precision floating point
• Single-precision floating point
• Fixed-point (signed and unsigned)
• Custom data types
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

 Hough Lines

1-319

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts M-by-4 matrix of intersection values,
where M is the number of input
lines

• 32-bit signed integer No

Parameters
Sine value computation method

If you select Trigonometric function, the block computes sine and cosine values
to calculate the intersections of the lines during the simulation. If you select Table
lookup, the block computes and stores the trigonometric values to calculate the
intersections of the lines before the simulation starts. In this case, the block requires
extra memory.

For floating-point inputs, set the Sine value computation method parameter to
Trigonometric function. For fixed-point inputs, set the parameter to Table
lookup.

Theta resolution (radians)
Use this parameter to specify the spacing of the theta-axis. This parameter appears in
the dialog box only if, for the Sine value computation method parameter, you
select Table lookup. parameter appears in the dialog box.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Sine table
Choose how to specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one:

When you select Specify word length, you can enter the word length of the sine
table.

The sine table values do not obey the Rounding mode and Overflow mode
parameters; they saturate and round to Nearest.

1 Blocks — Alphabetical List

1-320

Product output
Use this parameter to specify how to designate this product output word and fraction
lengths:

When you select Same as first input, the characteristics match the
characteristics of the first input to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. All signals in the Computer Vision Toolbox blocks
have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the product
output.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths.

When you select Same as product output the characteristics match the
characteristics of the product output.

When you select Binary point scaling, you can enter the Word length and the
Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the Accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the accumulator
data type in this block.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

 Hough Lines

1-321

Examples
The following figure shows Line 1 intersecting the boundaries of the reference image at
[(x11, y11) (x12, y12)] and Line 2 intersecting the boundaries at [(x21, y21) (x22,
y22)]

See “Detect Lines in Images” in the Computer Vision Toolbox User Guide.

See Also
Find Local Maxima Computer Vision Toolbox
Hough Transform Computer Vision Toolbox

1 Blocks — Alphabetical List

1-322

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Hough Lines

1-323

Hough Transform
Find lines in images

Library
Transforms

visiontransforms

Description
Use the Hough Transform block to find straight lines in an image. The block outputs the
Hough space matrix and, optionally, the rho-axis and theta-axis vectors. Peak values in the
matrix represent potential straight lines in the input image. Generally, the Hough
Transform block precedes the Hough Lines block which uses the output of this block to
find straight lines in an image. You can instead use a custom algorithm to locate peaks in
the Hough space matrix in order to identify potential straight lines.

Port Input/Output Supported Data Types Supported
Complex Values

BW Matrix that represents a binary
image

Boolean No

Hough Parameter space matrix • Double-precision floating point
• Single-precision floating point
• Fixed point (unsigned, fraction length

equal to 0)
• 8-, 16-, 32-bit unsigned integer

No

1 Blocks — Alphabetical List

1-324

Port Input/Output Supported Data Types Supported
Complex Values

Theta Vector of theta values • Double-precision floating point
• Single-precision floating point
• Fixed point (signed)
• 8-, 16-, 32-bit signed integer

No

Rho Vector of rho values Same as Theta port No

Parameters
Theta resolution (radians)

Specify the spacing of the Hough transform bins along the theta-axis.
Rho resolution (pixels)

Specify the spacing of the Hough transform bins along the rho-axis.
Output theta and rho values

If you select this check box, the Theta and Rho ports appear on the block. The block
outputs theta and rho-axis vector values at these ports.

Output data type
Specify the data type of your output signal.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Sine table
Choose how to specify the word length of the values of the sine table:

• When you select Binary point scaling, you can enter the word length of the
sine table values, in bits.

• When you select Slope and bias scaling, you can enter the word length of
the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode
parameters; they always saturate and round to Nearest.

 Hough Transform

1-325

Rho
Choose how to specify the word length and the fraction length of the rho values:

• When you select Binary point scaling, you can enter the word length and the
fraction length of the rho values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the rho values. All signals in Computer Vision Toolbox blocks
have a bias of 0.

Product output
. Use this parameter to specify how to designate the product output word and fraction
lengths:

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. All signals in Computer Vision Toolbox
blocks have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the product
output.

Accumulator
Use this parameter to specify how to designate this accumulator word and fraction
lengths:

• When you select Same as product output, these characteristics match the
characteristics of the product output.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. All signals in Computer Vision Toolbox
blocks have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the
accumulator data type in this block.

1 Blocks — Alphabetical List

1-326

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Hough output
Choose how to specify the word length and fraction length of the Hough output of the
block:

• When you select Binary point scaling, you can enter the word length of the
Hough output, in bits. The fraction length always has a value of 0.

• When you select Slope and bias scaling, you can enter the word length, in
bits, of the Hough output. The slope always has a value of 0. All signals in
Computer Vision Toolbox blocks have a bias of 0.

Theta output
Choose how to specify the word length and fraction length of the theta output of the
block:

• When you select Binary point scaling, you can enter the word length and the
fraction length of the theta output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the theta output. All signals in Computer Vision Toolbox
blocks have a bias of 0.

Algorithm
The Hough Transform block implements the Standard Hough Transform (SHT). The SHT
uses the parametric representation of a line:

rho x theta y theta= +* cos() * sin()

 Hough Transform

1-327

The upper-left corner pixel is assumed to be at x=0,y=0.

The variable rho indicates the perpendicular distance from the origin to the line.

The variable theta indicates the angle of inclination of the normal line from the x-axis. The
range of theta is −π

2 ≤ θ < + π
2 with a step-size determined by the Theta resolution

(radians) parameter. The SHT measures the angle of the line clockwise with respect to
the positive x-axis.

The Hough Transform block creates an accumulator matrix. The (rho, theta) pair
represent the location of a cell in the accumulator matrix. Every valid (logical true) pixel
of the input binary image represented by (R,C) produces a rho value for all theta values.
The block quantizes the rho values to the nearest number in the rho vector. The rho
vector depends on the size of the input image and the user-specified rho resolution. The
block increments a counter (initially set to zero) in those accumulator array cells
represented by (rho, theta) pairs found for each pixel. This process validates the point
(R,C) to be on the line defined by (rho, theta). The block repeats this process for each
logical true pixel in the image. The Hough block outputs the resulting accumulator
matrix.

Examples
See “Detect Lines in Images” in the Computer Vision Toolbox User Guide.

1 Blocks — Alphabetical List

1-328

See Also
Find Local Maxima Computer Vision Toolbox
Hough Lines Computer Vision Toolbox
hough Image Processing Toolbox
houghlines Image Processing Toolbox
houghpeaks Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Hough Transform

1-329

Image Complement
Compute complement of pixel values in binary or intensity images

Library
Conversions

visionconversions

Description
The Image Complement block computes the complement of a binary or intensity image.
For binary images, the block replaces pixel values equal to 0 with 1 and pixel values equal
to 1 with 0. For an intensity image, the block subtracts each pixel value from the
maximum value that can be represented by the input data type and outputs the
difference.

For example, suppose the input pixel values are given by x(i) and the output pixel values
are given by y(i). If the data type of the input is double or single precision floating-point,
the block outputs y(i) = 1.0-x(i). If the input is an 8-bit unsigned integer, the block outputs
y(i) = 255-x(i).

1 Blocks — Alphabetical List

1-330

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of intensity values • Double-precision floating
point

• Single-precision floating point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned

integer

No

Output Complement of a binary or intensity Same as Input port No

The dimensions, data type, complexity, and frame status of the input and output signals
are the same.

See Also
Autothreshold Computer Vision Toolbox software
Chroma Resampling Computer Vision Toolbox software
Color Space Conversion Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Image Complement

1-331

Image Data Type Conversion
Convert and scale input image to specified output data type

Library
Conversions

visionconversions

Description
The Image Data Type Conversion block changes the data type of the input to the user-
specified data type and scales the values to the new data type's dynamic range. To
convert between data types without scaling, use the Simulink Data Type Conversion
block.

When converting between floating-point data types, the block casts the input into the
output data type and clips values outside the range to 0 or 1. When converting to the
Boolean data type, the block maps 0 values to 0 and all other values to one. When
converting to or between all other data types, the block casts the input into the output
data type and scales the data type values into the dynamic range of the output data type.
For double- and single-precision floating-point data types, the dynamic range is between 0
and 1. For fixed-point data types, the dynamic range is between the minimum and
maximum values that can be represented by the data type.

Note This block supports intensity and color images on its ports.

1 Blocks — Alphabetical List

1-332

Port Input/Output Supported Data Types
Complex
Values
Supported

Input M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating point
• Single-precision floating point
• Fixed point (word length less than or

equal to 16)
• Boolean
• 8-, 16-bit signed integer
• 8-, 16-bit unsigned integer

No

Output M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

Same as Input port No

The dimensions, complexity, and frame status of the input and output signals are the
same.

Use the Output data type parameter to specify the data type of your output signal
values.

Parameters
Output data type

Use this parameter to specify the data type of your output signal.
Signed

Select this check box if you want the output fixed-point data to be signed. This
parameter is visible if, for the Output data type parameter, you choose Fixed-
point.

Word length
Use this parameter to specify the word length of your fixed-point output. This
parameter is visible if, for the Output data type parameter, you choose Fixed-
point.

 Image Data Type Conversion

1-333

Fraction length
Use this parameter to specify the fraction length of your fixed-point output. This
parameter is visible if, for the Output data type parameter, you choose Fixed-
point.

See Also
Autothreshold Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-334

Image From File
Import image from image file

Library
Sources

visionsources

Description
Use the Image From File block to import an image from a supported image file. For a list
of supported file formats, see the imread function reference page in the MATLAB
documentation. If the image is a M-by-N array, the block outputs a binary or intensity
image, where M and N are the number of rows and columns in the image. If the image is
a M-by-N-by-P array, the block outputs a color image, where M and N are the number of
rows and columns in each color plane, P.

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Yes

 Image From File

1-335

Port Output Supported Data Types
Complex
Values
Supported

R, G, B Scalar, vector, or matrix that
represents one plane of the input
RGB video stream. Outputs from
the R, G, or B ports have the
same dimensions.

Same as I port Yes

For the Computer Vision Toolbox blocks to display video data properly, double- and single-
precision floating-point pixel values must be between 0 and 1. If the input pixel values
have a different data type than the one you select using the Output data type parameter,
the block scales the pixel values, adds an offset to the pixel values so that they are within
the dynamic range of their new data type, or both.

Use the File name parameter to specify the name of the graphics file that contains the
image to import into the Simulink modeling and simulation software. If the file is not on
the MATLAB path, use the Browse button to locate the file. This parameter supports URL
paths.

Use the Sample time parameter to set the sample period of the output signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer
character, |, as the delimiter. This parameter is visible if you set the Image signal
parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of
your output signal.

1 Blocks — Alphabetical List

1-336

Parameters
File name

Specify the name of the graphics file that contains the image to import into the
Simulink environment.

Sample time
Enter the sample period of the output signal.

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port outputs one M-by-N plane
of an RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character, |, as the delimiter.
This parameter is visible if you set the Image signal parameter to Separate color
signals.

Output data type
Specify the data type of your output signal.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned.
This parameter is only visible if, from the Output data type list, you select Fixed-
point.

Word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible if, from the Output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Fraction length
parameter.

 Image From File

1-337

This parameter is only visible if, from the Output data type list, you select Fixed-
point or when you select User-defined.

Fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set fraction length in output to parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify fixed-point data types
using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point
Designer™ library. This parameter is only visible when you select User-defined for
the Output data type parameter.

See Also
From Multimedia File Computer Vision Toolbox software
Image From Workspace Computer Vision Toolbox software
To Video Display Video and Image Processing Blockset software
Video From Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software
im2double MATLAB software
im2uint8 Image Processing Toolbox software
imread MATLAB

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-338

Image From Workspace
Import image from MATLAB workspace

Library
Sources

visionsources

Description
Use the Image From Workspace block to import an image from the MATLAB workspace. If
the image is a M-by-N workspace array, the block outputs a binary or intensity image,
where M and N are the number of rows and columns in the image. If the image is a M-by-
N-by-P workspace array, the block outputs a color image, where M and N are the number
of rows and columns in each color plane, P.

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

 Image From Workspace

1-339

Port Output Supported Data Types
Complex
Values
Supported

R, G, B Scalar, vector, or matrix that
represents one plane of the
RGB video stream. Outputs
from the R, G, or B ports have
the same dimensions.

Same as I port No

For the Computer Vision Toolbox blocks to display video data properly, double- and single-
precision floating-point pixel values must be between 0 and 1. If the input pixel values
have a different data type than the one you select using the Output data type parameter,
the block scales the pixel values, adds an offset to the pixel values so that they are within
the dynamic range of their new data type, or both.

Use the Value parameter to specify the MATLAB workspace variable that contains the
image you want to import into Simulink environment.

Use the Sample time parameter to set the sample period of the output signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer
character, |, as the delimiter. This parameter is visible if you set the Image signal
parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of
your output signal.

Parameters
Value

Specify the MATLAB workspace variable that you want to import into Simulink
environment.

1 Blocks — Alphabetical List

1-340

Sample time
Enter the sample period of the output signal.

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port outputs one M-by-N plane
of an RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character, |, as the delimiter.
This parameter is visible if you set the Image signal parameter to Separate color
signals.

Output data type
Specify the data type of your output signal.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This
parameter is only visible if, from the Output data type list, you select Fixed-point.

Word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible if, from the Output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Fraction length
parameter.

This parameter is only visible if, from the Output data type list, you select Fixed-
point or when you select User-defined.

Fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set fraction length in output to parameter.

 Image From Workspace

1-341

User-defined data type
Specify any built-in or fixed-point data type. You can specify fixed-point data types
using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point
Designer library. This parameter is only visible when you select User-defined for
the Output data type parameter.

See Also
From Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video From Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software
im2double Image Processing Toolbox software
im2uint8 Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-342

Image Pad
Pad signal along its rows, columns, or both

Library
Utilities

visionutilities

Description
The Image Pad block expands the dimensions of a signal by padding its rows, columns, or
both. To crop an image, you can use the Simulink Selector block, DSP System Toolbox™
Submatrix block, or the Image Processing Toolbox imcrop function.

Port Input/Output Supported Data Types Complex Values
Supported

Image / I M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal, where P
is the number of color
planes.

• Double-precision floating point.
• Single-precision floating point.
• Fixed point.
• Boolean.
• 8-, 16-, 32-bit signed integer.
• 8-, 16-, 32-bit unsigned integer.

Yes

PVal Scalar value that represents
the constant pad value.

Same as I port. Yes

Output Padded scalar, vector, or
matrix.

Same as I port. Yes

 Image Pad

1-343

Examples

Pad with a Constant Value
Suppose you want to pad the rows of your input signal with three initial values equal to 0
and your input signal is defined as follows:

Set the Image Pad block parameters as follows:

• Method = Constant
• Pad value source = Specify via dialog
• Pad value = 0
• Specify = Output size
• Add columns to = Left
• Output row mode = User-specified
• Number of output columns = 6
• Add rows to = No padding

The Image Pad block outputs the following signal:

1 Blocks — Alphabetical List

1-344

Pad by Repeating Border Values
Suppose you want to pad your input signal with its border values, and your input signal is
defined as follows:

Set the Image Pad block parameters as follows:

• Method = Replicate
• Specify = Pad size
• Add columns to = Both left and right
• Number of added columns = 2
• Add rows to = Both top and bottom
• Number of added rows = [1 3]

The Image Pad block outputs the following signal:

The border values of the input signal are replicated on the top, bottom, left, and right of
the input signal so that the output is a 7-by-7 matrix. The values in the corners of this

 Image Pad

1-345

output matrix are determined by replicating the border values of the matrices on the top,
bottom, left and right side of the original input signal.

Pad with Mirror Image
Suppose you want to pad your input signal using its mirror image, and your input signal is
defined as follows:

Set the Image Pad block parameters as follows:

• Method = Symmetric
• Specify = Pad size
• Add columns to = Both left and right
• Number of added columns = [5 6]
• Add rows to = Both top and bottom
• Number of added rows = 2

The Image Pad block outputs the following signal:

1 Blocks — Alphabetical List

1-346

The block flips the original input matrix and each matrix it creates about their top,
bottom, left, and right sides to populate the 7-by-13 output signal. For example, in the
preceding figure, you can see how the block flips the input matrix about its right side to
create the matrix directly to its right.

Pad Using a Circular Repetition of Elements
Suppose you want to pad your input signal using a circular repetition of its values. Your
input signal is defined as follows:

Set the Image Pad block parameters as follows:

• Method = Circular
• Specify = Output size
• Add columns to = Both left and right
• Number of output columns = 9
• Add rows to = Both top and bottom
• Number of output rows = 9

The Image Pad block outputs the following signal:

 Image Pad

1-347

The block repeats the values of the input signal in a circular pattern to populate the 9-
by-9 output matrix.

Parameters
Method

Specify how you want the block to pad your signal. The data type of the input signal is
the data type of the output signal.

Use the Method parameter to specify how you pad the input signal.

• Constant — Pad with a constant value
• Replicate — Pad by repeating its border values
• Symmetric — Pad with its mirror image
• Circular — Pad using a circular repetition of its elements

If you set the Method parameter to Constant, the Pad value source parameter
appears on the dialog box.

• Input port — The PVal port appears on the block. Use this port to specify the
constant value with which to pad your signal

• Specify via dialog — The Pad value parameter appears in the dialog box.
Enter the constant value with which to pad your signal.

1 Blocks — Alphabetical List

1-348

Pad value source
If you select Input port, the PVal port appears on the block. Use this port to specify
the constant value with which to pad your signal. If you select Specify via
dialog, the Pad value parameter becomes available. This parameter is visible if, for
the Method parameter, you select Constant.

Pad value
Enter the constant value with which to pad your signal. This parameter is visible if,
for the Pad value source parameter, you select Specify via dialog. This
parameter is tunable.

Specify
If you select Pad size, you can enter the size of the padding in the horizontal and
vertical directions.

If you select Output size, you can enter the total number of output columns and
rows. This setting enables you to pad the input signal. See the previous section for
descriptions of the Add columns to and Add rows to parameters.

Add columns to
The Add columns to parameter controls the padding at the left, right or both sides of
the input signal.

• Left — The block adds additional columns on the left side.
• Right — The block adds additional columns on the right side.
• Both left and right — The block adds additional columns to the left and right

side.
• No padding — The block does not change the number of columns.

Use the Add columns to and Number of added columns parameters to specify the
size of the padding in the horizontal direction. Enter a scalar value, and the block
adds this number of columns to the left, right, or both sides of your input signal. If
you set the Add columns to parameter to Both left and right, you can enter a
two element vector. The left element controls the number of columns the block adds
to the left side of the signal; the right element controls the number of columns the
block adds to the right side of the signal.

Output row mode
Use the Output row mode parameter to describe how to pad the input signal.

• User-specified — Use the Number of output rows parameter to specify the
total number of rows.

 Image Pad

1-349

• Next power of two — The block pads the input signal along the rows until the
length of the rows is equal to a power of two. When the length of the input signal's
rows is equal to a power of two, the block does not pad the input signal's rows.

Number of added columns
This parameter controls how many columns are added to the right and/or left side of
your input signal. Enter a scalar value, and the block adds this number of columns to
the left, right, or both sides of your signal. If, for the Add columns to parameter you
select Both left and right, enter a two-element vector. The left element controls
the number of columns the block adds to the left side of the signal and the right
element controls how many columns the block adds to the right side of the signal.
This parameter is visible if, for the Specify parameter, you select Pad size.

Add rows to
The Add rows to parameter controls the padding at the top and bottom of the input
signal.

• Top — The block adds additional rows to the top.
• Bottom — The block adds additional rows to the bottom.
• Both top and bottom — The block adds additional rows to the top and bottom.
• No padding — The block does not change the number of rows.

Use the Add rows to and Number of added rows parameters to specify the size of
the padding in the vertical direction. Enter a scalar value, and the block adds this
number of rows to the top, bottom, or both of your input signal. If you set the Add
rows to parameter to Both top and bottom, you can enter a two element vector.
The left element controls the number of rows the block adds to the top of the signal;
the right element controls the number of rows the block adds to the bottom of the
signal.

Output column mode
Describe how to pad the input signal. If you select User-specified, the Row size
parameter appears on the block dialog box. If you select Next power of two, the block
pads the input signal along the rows until the length of the rows is equal to a power of
two. This parameter is visible if, for the Specify parameter, you select Output size.

Use the Output column mode parameter to describe how to pad the input signal.

• User-specified — Use the Number of column rows parameter to specify the
total number of columns.

1 Blocks — Alphabetical List

1-350

• Next power of two — The block pads the input signal along the columns until
the length of the columns is equal to a power of two. When the length of the input
signal's columns is equal to a power of two, the block does not pad the input
signal's columns.

Number of added rows
This parameter controls how many rows are added to the top, bottom, or both of your
input signal. Enter a scalar value and the block adds this number of columns to the
top, bottom, or both of your signal. If, for the Add rows to parameter you select Both
top and bottom, enter a two-element vector. The left element controls the number
of rows the block adds to the top of the signal and the right element controls how
many rows the block adds to the bottom of the signal. This parameter is visible if you
set the Specify parameter to Pad size.

Action when truncation occurs
The following options are available for the Action when truncation occurs
parameter:

• None — Select this option when you do not want to be notified that the input
signal is truncated.

• Warning — Select this option when you want to receive a warning in the MATLAB
Command Window when the input signal is truncated.

• Error — Select this option when you want an error dialog box displayed and the
simulation terminated when the input signal is truncated.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Selector | Submatrix | imcrop

Introduced in R2007a

 Image Pad

1-351

Insert Text
Draw text on image or video stream.

Library
Text & Graphics

visiontextngfix

Description
The Insert Text block draws formatted text or numbers on an image or video stream. The
block uses the FreeType 2.3.5 library, an open-source font engine, to produce stylized text
bitmaps. To learn more about the FreeType Project, visit https://
www.freetype.org/. The Insert Text block does not support character sets other than
ASCII.

The Insert Text block lets you draw one or more instances of text including:

• A single instance of text
• Multiple instances of the same text
• Multiple instances of text, with different text at each location

1 Blocks — Alphabetical List

1-352

https://www.freetype.org/
https://www.freetype.org/

Port Description
Port Description Supported Data Types
Image M-by-N matrix of intensity values

or an M-by-N-by-P color video
signal where P represents the
number of color planes.

• Double-precision floating point
• Single-precision floating point
• Fixed point(signed, word length less than

or equal to 32.)
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

R, G, B Matrix that represents one plane
of the RGB video stream. Outputs
from the R, G, or B ports have the
same dimensions and data type.

Same as Input port

Select One-based index value that
indicates which text to display.

• Double-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

• Single-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

 Insert Text

1-353

Port Description Supported Data Types
Variabl
es

Vector or matrix whose values are
used to replace ANSI C printf-
style format specifications.

The data types supported by this port depend
on the conversion specification you are using
in the Text parameter.

%d, %i, and %u:

• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

%c and %s:

• 8-bit unsigned integer

%f:

• Double-precision floating point
• Single-precision floating point

%o, %x, %X, %e, %E, %g, and %G:

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Color Intensity input — Scalar value
used for all character vectors or a
vector of intensity values whose
length is equal to the number of
character vectors.

Color input — Three-element
vector that specifies one color for
all of the character vectors or
anM-by-3 matrix of color values,
where M represents the number
of character vectors.

Same as Input port (The input to this port
must be the same data type as the input to
the Input port.)

1 Blocks — Alphabetical List

1-354

Port Description Supported Data Types
Locati
on

M-by-2 matrix of one-based [x y]
coordinates, where M represents
the number of text character
vectors to insert. Location
specifies the top-left corner of the
text character vector bounding
box.

• Double-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

• Single-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Opacit
y

Scalar value that is used for all
character vectors or vector of
opacity values whose length is
equal to the number of character
vectors.

• Double-precision floating point. (This data
type is only supported if the input to the
Input or R, G, and B ports is a double-
precision floating-point data type.)

• Single-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a single-precision
floating-point data type.)

• ufix8_En7 (This data type is only
supported if the input to the I or R, G, and
B ports is a fixed-point data type.)

Row-Major Data Format
MATLAB and the Computer Vision Toolbox blocks use column-major data organization.
However, the Insert Text block gives you the option to process data that is stored in row-
major format. When you select the Input image is transposed (data order is row
major) check box, the block assumes that the input buffer contains contiguous data
elements from the first row first, then data elements from the second row second, and so
on through the last row. Use this functionality only when you meet all the following
criteria:

• You are developing algorithms to run on an embedded target that uses the row-major
format.

 Insert Text

1-355

• You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

• When you select this check box, the first two signal dimensions of the Insert Text
block's input are swapped.

• All Computer Vision Toolbox software blocks can be used to process data that is in the
row-major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

• Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on
an embedded target.

Video
source
block

Transpose
block

Transpose
block

Algorithm
blocks

Step 1:
Create block diagram

Step 2:
Replace source, transpose, and
sink blocks with target source
and sink blocks that produce
data in row-major format

Embedded
target source
block

Video
sink
block

Embedded
target sink
block

1 Blocks — Alphabetical List

1-356

Parameters
Text

Specify the text character vector to be drawn on the image or video stream. This
parameter can be a single text character vector, such as 'Figure1', a cell array of
character vectors, such as {'Figure1','Figure2'}, or an ANSI C printf-style
format specifications, such as %s.. To create a Select port enter a cell array of
character vectors. To create a Variables port, enter ANSI C printf-style format
specifications, such as %d, %f, or %s.

When you enter a cell array of character vectors, the Insert Text block does not
display all of the character vectors simultaneously. Instead, the Select port appears
on the block to let you indicate which text character vectors to display. The input to
this port must be a scalar value, where 1 indicates the first character vector. If the
input is less than 1 or greater than one less than the number of character vectors in
the cell array, no text will be drawn on the image or video frame.

When you enter ANSI C printf-style format specifications, such as %d, %f, or %s, the
Variables port appears on the block. The block replaces the format specifications in
the Text parameter with each element of the input vector . Use the %s option to
specify a set of text character vectors for the block to display simultaneously at
different locations. For example, using a Constant block, enter [uint8('Text1') 0
uint8('Text2')] for the Constant value parameter. The following table
summarizes the supported conversion specifications.

Text Parameter Supported Conversion Specifications

Supported
specifications

Support for multiple
instances of the same
specification

Support for mixed
specifications

%d, %i, %u, %c, %f, %o,
%x, %X, %e, %E, %g, and
%G

Yes No

%s No No

Color value source
Select where to specify the text color. Your choices are:

• Specify via dialog — the Color value parameter appears on the dialog box.

 Insert Text

1-357

• Input port — the Color port appears on the block.

Color value
Specify the intensity or color of the text. This parameter is visible if, for the Color
source parameter, you select Specify via dialog. Tunable.

The following table describes how to format the color of the text character vectors,
which depend on the block input and the number of character vectors you want to
insert. Color values for a floating-point data type input image must be between 0 and
1. Color values for an 8-bit unsigned integer data type input image must between 0
and 255.

Text Character Vector Color Values

Block Input One Text Character
Vector

Multiple Text Character
Vectors

Intensity image Color value parameter or
the input to the Color
port specified as a scalar
intensity value

Color value parameter or
the input to the Color
port specified as a vector
of intensity values whose
length is equal to the
number of character
vectors.

Color image Color value parameter or
the input to the Color
port specified as an RGB
triplet that defines the
color of the text

Color value parameter or
the input to the Color
port specified as an M-
by-3 matrix of color
values, where M
represents the number of
character vectors.

Location source
Indicate where you want to specify the text location. Your choices are:

• Specify via dialog — the Location [x y] parameter appears on the dialog
box.

• Input port — the Location port appears on the block.

1 Blocks — Alphabetical List

1-358

Location [x y]
Specify the text location. This parameter is visible if, for the Location source
parameter, you select Specify via dialog. Tunable.

The following table describes how to format the location of the text character vectors
depending on the number of character vectors you specify to insert. You can specify
more than one location regardless of how many text character vectors you specify, but
the only way to get a different text character vector at each location is to use the %s
option for the Text parameter to specify a set of text character vectors. You can enter
negative values or values that exceed the dimensions of the input image or video
frame, but the text might not be visible.

Location Parameter Text Character Vector Insertion

Parameter One Instance of
One Text Character
Vector

Multiple Instances of
the Same Text
Character Vector

Multiple Instances of
Unique Text Character
Vector

Location [x y]
parameter setting
or the input to the
Location port

Two-element vector of
the form [x y] that
indicates the top-left
corner of the text
bounding box.

M-by-2 matrix, where M
represents the number of
locations at which to
display the text . Each
row contains the
coordinates of the top-left
corner of the text
bounding box for the
character vector, e.g., [x1
y1; x2 y2]

M-by-2 matrix, where M
represents the number
of text character vectors.
Each row contains the
coordinates of the top-
left corner of the text
bounding box for the
character vector, e.g.,
[x1 y1; x2 y2].

Opacity source
Indicate where you want to specify the text's opaqueness. Your choices are:

• Specify via dialog — the Opacity parameter appears on the dialog box.
• Input port — the Opacity port appears on the block.

Opacity
Specify the opacity of the text. This parameter is visible if, for the Opacity source
parameter, you select Specify via dialog. Tunable.

The following table describes how to format the opacity of the text character vectors
depending on the number of character vectors you want to insert.

 Insert Text

1-359

Text String Opacity Values

Parameter One Text String Multiple Text Strings
Opacity parameter
setting or the input to the
Opacity port

Scalar value between 0
and 1, where 0 is
translucent and 1 is
opaque

Vector whose length is
equal to the number of
character vectors

Use the Image signal parameter to specify how to input and output a color video
signal:

• One multidimensional signal — the block accepts an M-by-N-by-P color
video signal, where P is the number of color planes, at one port.

• Separate color signals — additional ports appear on the block. Each port
accepts one M-by-N plane of an RGB video stream.

Image signal
Specify how to input and output a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port accepts one M-by-N plane
of an RGB video stream.

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

Font face
Specify the font of your text. The block populates this list with the fonts installed on
your system. On Windows, the block searches the system registry for font files. On
UNIX, the block searches the X Server's font path for font files.

Font size (points)
Specify the font size.

Anti-aliased
Select this check box if you want the block to smooth the edges of the text. This can
be computationally expensive. If you want your model to run faster, clear this check
box.

1 Blocks — Alphabetical List

1-360

Examples
• “Annotate Video Files with Frame Numbers”

See Also
Draw Shapes Computer Vision Toolbox
Draw Markers Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2013a

 Insert Text

1-361

Label
Label connected components in binary images

Library
Morphological Operations

visionmorphops

Description
The Label block labels the objects in a binary image, BW. The background is represented
by pixels equal to 0 (black) and objects are represented by pixels equal to 1 (white). At
the Label port, the block outputs a label matrix that is the same size as the input matrix.
In the label matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on. At the
Count port, the block outputs a scalar value that represents the number of labeled
objects.

Port Input/Output Supported Data Types
Complex
Values
Supported

BW Vector or matrix that represents a
binary image

Boolean No

Label Label matrix • 8-, 16-, and 32-bit unsigned
integer

No

Count Scalar that represents the number
of labeled objects

Same as Label port No

Use the Connectivity parameter to define which pixels are connected to each other. If
you want a pixel to be connected to the other pixels located on the top, bottom, left, and

1 Blocks — Alphabetical List

1-362

right, select 4. If you want a pixel to be connected to the other pixels on the top, bottom,
left, right, and diagonally, select 8.

Consider the following 3-by-3 image. If, for the Connectivity parameter, you select 4, the
block considers the white pixels marked by black circles to be connected.

If, for the Connectivity parameter, you select 8, the block considers the white pixels
marked by black circles to be connected.

Use the Output parameter to determine the block's output. If you select Label matrix
and number of labels, ports Label and Count appear on the block. The block outputs
the label matrix at the Label port and the number of labeled objects at the Count port. If
you select Label matrix, the Label port appears on the block. If you select Number of
labels, the Count port appears on the block.

Use the Output data type parameter to set the data type of the outputs at the Label and
Count ports. If you select Automatic, the block calculates the maximum number of
objects that can fit inside the image based on the image size and the connectivity you
specified. Based on this calculation, it determines the minimum output data type size that
guarantees unique region labels and sets the output data type appropriately. If you select
uint32, uint16, or uint8, the data type of the output is 32-, 16-, or 8-bit unsigned
integers, respectively. If you select uint16, or uint8, the If label exceeds data type
size, mark remaining regions using parameter appears in the dialog box. If the
number of found objects exceeds the maximum number that can be represented by the

 Label

1-363

output data type, use this parameter to specify the block's behavior. If you select
maximum value of the output data type, the remaining regions are labeled with
the maximum value of the output data type. If you select zero, the remaining regions are
labeled with zeroes.

Parameters
Connectivity

Specify which pixels are connected to each other. If you want a pixel to be connected
to the pixels on the top, bottom, left, and right, select 4. If you want a pixel to be
connected to the pixels on the top, bottom, left, right, and diagonally, select 8.

Output
Determine the block's output. If you select Label matrix and number of
labels, the Label and Count ports appear on the block. The block outputs the label
matrix at the Label port and the number of labeled objects at the Count port. If you
select Label matrix, the Label port appears on the block. If you select Number of
labels, the Count port appears on the block.

Output data type
Set the data type of the outputs at the Label and Count ports. If you select
Automatic, the block determines the appropriate data type for the output. If you
select uint32, uint16, or uint8, the data type of the output is 32-, 16-, or 8-bit
unsigned integers, respectively.

If label exceeds data type size, mark remaining regions using
Use this parameter to specify the block's behavior if the number of found objects
exceeds the maximum number that can be represented by the output data type. If you
select maximum value of the output data type, the remaining regions are
labeled with the maximum value of the output data type. If you select zero, the
remaining regions are labeled with zeroes. This parameter is visible if, for the Output
data type parameter, you choose uint16 or uint8.

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software

1 Blocks — Alphabetical List

1-364

Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
bwlabel Image Processing Toolbox software
bwlabeln Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Label

1-365

Median Filter
Perform 2-D median filtering

Library
Filtering and Analysis & Enhancement

visionanalysis

visionfilter

Description
The Median Filter block replaces the central value of an M-by-N neighborhood with its
median value. If the neighborhood has a center element, the block places the median
value there, as illustrated in the following figure.

The block has a bias toward the upper-left corner when the neighborhood does not have
an exact center. See the median value placement in the following figure.

1 Blocks — Alphabetical List

1-366

The block pads the edge of the input image, which sometimes causes the pixels within
[M/2 N/2] of the edges to appear distorted. The median value is less sensitive than the
mean to extreme values. As a result, the Median Filter block can remove salt-and-pepper
noise from an image without significantly reducing the sharpness of the image.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Val Scalar value that represents the
constant pad value

Same as I port No

Output Matrix of intensity values Same as I port No

If the data type of the input signal is floating point, the output has the same data type.
The data types of the signals input to the I and Val ports must be the same.

Fixed-Point Data Types
The information in this section is applicable only when the dimensions of the
neighborhood are even.

For fixed-point inputs, you can specify accumulator and output data types as discussed in
“Parameters” on page 1-368. Not all these fixed-point parameters apply to all types of
fixed-point inputs. The following table shows the output and accumulator data type used
for each fixed-point input.

 Median Filter

1-367

Fixed-Point Input Output Data Type Accumulator Data Type
Even M X X
Odd M X
Odd M and complex X X
Even M and complex X X

When M is even, fixed-point signals use the accumulator and output data types. The
accumulator data type store the result of the sum performed while calculating the
average of the two central rows of the input matrix. The output data type stores the total
result of the average.

Complex fixed-point inputs use the accumulator parameters. The calculation for the sum
of the squares of the real and imaginary parts of the input occur, before sorting input
elements. The accumulator data type stores the result of the sum of the squares.

Parameters
Neighborhood size

Specify the size of the neighborhood over which the block computes the median.

• Enter a scalar value that represents the number of rows and columns in a square
matrix.

• Enter a vector that represents the number of rows and columns in a rectangular
matrix.

Output size
This parameter controls the size of the output matrix.

• If you choose Same as input port I, the output has the same dimensions as
the input to port I. The Padding options parameter appears in the dialog box.
Use the Padding options parameter to specify how to pad the boundary of your
input matrix.

• If you select Valid, the block only computes the median where the neighborhood
fits entirely within the input image, with no need for padding. The dimensions of
the output image are, output rows = input rows - neighborhood rows +
1,
and

1 Blocks — Alphabetical List

1-368

output columns = input columns - neighborhood columns + 1.

Padding options
Specify how to pad the boundary of your input matrix.

• Select Constant to pad your matrix with a constant value. The Pad value source
parameter appears in the dialog box

• Select Replicate to pad your input matrix by repeating its border values.
• Select Symmetric to pad your input matrix with its mirror image.
• Select Circular to pad your input matrix using a circular repetition of its

elements. This parameter appears if, for the Output size parameter, you select
Same as input port I.

For more information on padding, see the Image Pad block reference page.
Pad value source

Use this parameter to specify how to define your constant boundary value.

• Select Specify via dialog to enter your value in the block parameters dialog
box. The Pad value parameter appears in the dialog box.

• Select Input port to specify your constant value using the Val port. This
parameter appears if, for the Padding options parameter, you select Constant.

Pad value
Enter the constant value with which to pad your matrix. This parameter appears if, for
the Pad value source parameter, you select Specify via dialog. Tunable.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Note Only certain cases require the use of the accumulator and output parameters.
Refer to “Fixed-Point Data Types” on page 1-367 for more information.

Accumulator
Use this parameter to specify the accumulator word and fraction lengths resulting
from a complex-complex multiplication in the block:

 Median Filter

1-369

• When you select Same as input, these characteristics match the related input to
the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. This block requires power-of-two slope and
a bias of 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match the related input to
the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 2002.

See Also
2-D Convolution Computer Vision Toolbox
2-D FIR Filter Computer Vision Toolbox
medfilt2 Image Processing Toolbox

1 Blocks — Alphabetical List

1-370

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Median Filter

1-371

Opening
Perform morphological opening on binary or intensity images

Library
Morphological Operations

visionmorphops

Description
The Opening block performs an erosion operation followed by a dilation operation using a
predefined neighborhood or structuring element. This block uses flat structuring
elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of ones and zeros
that represents the neighborhood
values

Boolean No

1 Blocks — Alphabetical List

1-372

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix of intensity
values that represents the opened
image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and 0s. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters
Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

 Opening

1-373

References
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imopen Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-374

Optical Flow
Estimate object velocities

Library
Analysis & Enhancement

visionanalysis

Description
The Optical Flow block estimates the direction and speed of object motion from one
image to another or from one video frame to another using either the Horn-Schunck or
the Lucas-Kanade method.

Port Output Supported Data Types
Complex
Values
Supported

I/I1 Scalar, vector, or matrix of
intensity values

• Double-precision floating point
• Single-precision floating point
• Fixed point (supported when the

Method parameter is set to Lucas-
Kanade)

No

I2 Scalar, vector, or matrix of
intensity values

Same as I port No

|V|^2 Matrix of velocity magnitudes Same as I port No

 Optical Flow

1-375

Port Output Supported Data Types
Complex
Values
Supported

V Matrix of velocity components
in complex form

Same as I port Yes

To compute the optical flow between two images, you must solve the following optical
flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

Horn-Schunck Method
By assuming that the optical flow is smooth over the entire image, the Horn-Schunck
method computes an estimate of the velocity field, [u v]T, that minimizes this equation:

E =∬(Ixu + Iyv + It)2dxdy + α∬ ∂u
∂x

2
+ ∂u
∂y

2
+ ∂v
∂x

2
+ ∂v
∂y

2
dxdy

.

In this equation, ∂u∂x and ∂u∂y are the spatial derivatives of the optical velocity component,
u, and α scales the global smoothness term. The Horn-Schunck method minimizes the
previous equation to obtain the velocity field, [u v], for each pixel in the image. This
method is given by the following equations:

ux, y
k + 1 = ux, y

k −
Ix[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

vx, y
k + 1 = vx, y

k −
Iy[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

1 Blocks — Alphabetical List

1-376

.

In these equations, ux, y
k vx, y

k is the velocity estimate for the pixel at (x,y), and ux, y
k vx, y

k

is the neighborhood average of ux, y
k vx, y

k . For k = 0, the initial velocity is 0.

To solve u and v using the Horn-Schunck method:

1 Compute Ix and Iy using the Sobel convolution kernel, −1 −2 −1; 0 0 0; 1 2 1 , and
its transposed form, for each pixel in the first image.

2 Compute It between images 1 and 2 using the −1 1 kernel.
3 Assume the previous velocity to be 0, and compute the average velocity for each pixel

using 0 1 0; 1 0 1; 0 1 0 as a convolution kernel.
4 Iteratively solve for u and v.

Lucas-Kanade Method
To solve the optical flow constraint equation for u and v, the Lucas-Kanade method
divides the original image into smaller sections and assumes a constant velocity in each
section. Then, it performs a weighted least-square fit of the optical flow constraint
equation to a constant model for u v T in each section Ω. The method achieves this fit by
minimizing the following equation:

∑
x ∈ Ω

W2[Ixu + Iyv + It]2

W is a window function that emphasizes the constraints at the center of each section. The
solution to the minimization problem is

∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

u
v

= −
∑W2IxIt

∑W2IyIt

.

Lucas-Kanade Difference Filter

When you set the Temporal gradient filter to Difference filter [-1 1], u and v
are solved as follows:

 Optical Flow

1-377

1 Compute Ix and Iy using the kernel −1 8 0 −8 1 /12 and its transposed form.

If you are working with fixed-point data types, the kernel values are signed fixed-
point values with word length equal to 16 and fraction length equal to 15.

2 Compute It between images 1 and 2 using the −1 1 kernel.
3 Smooth the gradient components, Ix, Iy, and It, using a separable and isotropic 5-by-5

element kernel whose effective 1-D coefficients are 1 4 6 4 1 /16. If you are working
with fixed-point data types, the kernel values are unsigned fixed-point values with
word length equal to 8 and fraction length equal to 7.

4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

In the fixed-point diagrams, P = a + c
2 , Q = 4b2 + (a− c)2

2
• The eigenvalues are compared to the threshold, τ, that corresponds to the value

you enter for the threshold for noise reduction. The results fall into one of the
following cases:

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, the system of equations are solved using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), the gradient flow is normalized to calculate u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

1 Blocks — Alphabetical List

1-378

Derivative of Gaussian

If you set the temporal gradient filter to Derivative of Gaussian, u and v are solved
using the following steps. You can see the flow chart for this process at the end of this
section:

1 Compute Ix and Iy using the following steps:

a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter
characteristics such as the standard deviation and number of filter coefficients
using the Number of frames to buffer for temporal smoothing parameter.

b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image
using spatial filtering. Specify the standard deviation and length of the image
smoothing filter using the Standard deviation for image smoothing filter
parameter.

2 Compute It between images 1 and 2 using the following steps:

a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the
temporal filter characteristics such as the standard deviation and number of
filter coefficients using the Number of frames to buffer for temporal
smoothing parameter.

b Use the filter described in step 1b to perform spatial filtering on the output of the
temporal filter.

3 Smooth the gradient components, Ix, Iy, and It, using a gradient smoothing filter. Use
the Standard deviation for gradient smoothing filter parameter to specify the
standard deviation and the number of filter coefficients for the gradient smoothing
filter.

4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• When the block finds the eigenvalues, it compares them to the threshold, τ, that
corresponds to the value you enter for the Threshold for noise reduction
parameter. The results fall into one of the following cases:

 Optical Flow

1-379

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, so the block solves the system of equations using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), so the block normalizes the gradient flow to calculate
u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

tFilt = Coefficients of Gaussian Filter

tGradFilt = Coefficients of the Derivative of a Gaussian Filter

sFilt = Coefficients of Gaussian Filter

sGradFilt = Coefficients of the Derivative of a Gaussian Filter

Fixed-Point Data Type Diagram
The following diagrams shows the data types used in the Optical Flow block for fixed-
point signals. The block supports fixed-point data types only when the Method parameter
is set to Lucas-Kanade.

1 Blocks — Alphabetical List

1-380

 Optical Flow

1-381

1 Blocks — Alphabetical List

1-382

Data type diagram for eigenvalues

The result of each addition remains
in the accumulator data type.

Accumulator
data type

Accumulator
data type

Accumulator
data type

Threshold
data type

Accumulator
data type

Product
output
data type

Accumulator
data type

Accumulator
data type

Solving linear equations to compute eigenvalues
(see Step 4 in the Lucas-Kanade Method section for the eigenvalue equations)

Data type diagram for P

The result of each addition remains
in the accumulator data type.

Accumulator
data type

Data type diagram for 4b^2

Int32

Product output
data type Accumulator

data type

Accumulator
data type

Data type diagram for (a-c)^2

Accumulator
data type

Accumulator
data type

Accumulator
data type Accumulator

data type

The result of each addition remains
in the accumulator data type. Product

output
data type

Data type diagram for Q

Accumulator
data type

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

Accumulator
data type

CAST

MULTIPLIER CAST

ADDER /
SUBTRACTOR

MULTIPLIER

ADDER RIGHT SHIFT

CAST

MULTIPLIER CASTADDER

ADDER SQUARE ROOT RIGHT SHIFT

 Optical Flow

1-383

Data type diagram for finding the motion vectors algorithm

Product
output
data type

The result of each addition remains
in the accumulator data type.

Accumulator
data type

Accumulator
data type

Accumulator
data type

Accumulator
data type

Accumulator
data type

Product
output
data type

Accumulator
data type

Accumulator
data type

Output
data type

Accumulator
data type

CASTCAST

MULTIPLIER CAST ADDER DIVIDER
MULTIPLIER

ADDER

You can set the product output, accumulator, gradients, threshold, and output data types
in the block mask.

Parameters
Method

Select the method the block uses to calculate the optical flow. Your choices are Horn-
Schunck or Lucas-Kanade.

Compute optical flow between
Select Two images to compute the optical flow between two images. Select Current
frame and N-th frame back to compute the optical flow between two video
frames that are N frames apart.

This parameter is visible if you set the Method parameter to Horn-Schunck or you
set the Method parameter to Lucas-Kanade and the Temporal gradient filter to
Difference filter [-1 1].

N
Enter a scalar value that represents the number of frames between the reference
frame and the current frame. This parameter becomes available if you set the

1 Blocks — Alphabetical List

1-384

Compute optical flow between parameter, you select Current frame and N-th
frame back.

Smoothness factor
If the relative motion between the two images or video frames is large, enter a large
positive scalar value. If the relative motion is small, enter a small positive scalar
value. This parameter becomes available if you set the Method parameter to Horn-
Schunck.

Stop iterative solution
Use this parameter to control when the block's iterative solution process stops. If you
want it to stop when the velocity difference is below a certain threshold value, select
When velocity difference falls below threshold. If you want it to stop
after a certain number of iterations, choose When maximum number of
iterations is reached. You can also select Whichever comes first. This
parameter becomes available if you set the Method parameter to Horn-Schunck.

Maximum number of iterations
Enter a scalar value that represents the maximum number of iterations you want the
block to perform. This parameter is only visible if, for the Stop iterative solution
parameter, you select When maximum number of iterations is reached or
Whichever comes first. This parameter becomes available if you set the Method
parameter to Horn-Schunck.

Velocity difference threshold
Enter a scalar threshold value. This parameter is only visible if, for the Stop iterative
solution parameter, you select When velocity difference falls below
threshold or Whichever comes first. This parameter becomes available if you
set the Method parameter to Horn-Schunck.

Velocity output
If you select Magnitude-squared, the block outputs the optical flow matrix where
each element is of the form u2 + v2. If you select Horizontal and vertical
components in complex form, the block outputs the optical flow matrix where
each element is of the form u + jv.

Temporal gradient filter
Specify whether the block solves for u and v using a difference filter or a derivative of
a Gaussian filter. This parameter becomes available if you set the Method parameter
to Lucas-Kanade.

 Optical Flow

1-385

Number of frames to buffer for temporal smoothing
Use this parameter to specify the temporal filter characteristics such as the standard
deviation and number of filter coefficients. This parameter becomes available if you
set the Temporal gradient filter parameter to Derivative of Gaussian.

Standard deviation for image smoothing filter
Specify the standard deviation for the image smoothing filter. This parameter
becomes available if you set the Temporal gradient filter parameter to Derivative
of Gaussian.

Standard deviation for gradient smoothing filter
Specify the standard deviation for the gradient smoothing filter. This parameter
becomes available if you set the Temporal gradient filter parameter to Derivative
of Gaussian.

Discard normal flow estimates when constraint equation is ill-conditioned
Select this check box if you want the block to set the motion vector to zero when the
optical flow constraint equation is ill-conditioned. This parameter becomes available if
you set the Temporal gradient filter parameter to Derivative of Gaussian.

Output image corresponding to motion vectors (accounts for block delay)
Select this check box if you want the block to output the image that corresponds to
the motion vector being output by the block. This parameter becomes available if you
set the Temporal gradient filter parameter to Derivative of Gaussian.

Threshold for noise reduction
Enter a scalar value that determines the motion threshold between each image or
video frame. The higher the number, the less small movements impact the optical flow
calculation. This parameter becomes available if you set the Method parameter to
Lucas-Kanade.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output word and fraction
lengths.

1 Blocks — Alphabetical List

1-386

MULTIPLIER

Accumulator
data type Product

data type

Accumulator
or kernel
data type

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator
Use this parameter to specify how to designate this accumulator word and fraction
lengths.

Accumulator
data type

Accumulator
data type

The result of each addition remains
in the accumulator data type.

Input to adder -
Image, gradient,
or product output
data type

ADDERCAST

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Gradients
Choose how to specify the word length and fraction length of the gradients data type:

 Optical Flow

1-387

• When you select Same as accumulator, these characteristics match those of
the accumulator.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the quotient. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Threshold
Choose how to specify the word length and fraction length of the threshold data type:

• When you select Same word length as first input, the threshold word
length matches that of the first input.

• When you select Specify word length, enter the word length of the threshold
data type.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the threshold, in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the threshold. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output data type:

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1 Blocks — Alphabetical List

1-388

References
[1] Barron, J.L., D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. Performance of optical flow

techniques. CVPR, 1992.

See Also
Block Matching Computer Vision Toolbox software
Gaussian Pyramid Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Optical Flow

1-389

PSNR
Compute peak signal-to-noise ratio (PSNR) between images

Library
Statistics

visionstatistics

Description
The PSNR block computes the peak signal-to-noise ratio, in decibels, between two
images. This ratio is often used as a quality measurement between the original and a
compressed image. The higher the PSNR, the better the quality of the compressed, or
reconstructed image.

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are the two
error metrics used to compare image compression quality. The MSE represents the
cumulative squared error between the compressed and the original image, whereas PSNR
represents a measure of the peak error. The lower the value of MSE, the lower the error.

To compute the PSNR, the block first calculates the mean-squared error using the
following equation:

MSE =
∑

M, N
[I1(m, n) − I2(m, n)]2

M * N

In the previous equation, M and N are the number of rows and columns in the input
images, respectively. Then the block computes the PSNR using the following equation:

PSNR = 10log10
R2

MSE

1 Blocks — Alphabetical List

1-390

In the previous equation, R is the maximum fluctuation in the input image data type. For
example, if the input image has a double-precision floating-point data type, then R is 1. If
it has an 8-bit unsigned integer data type, R is 255, etc.

Recommendation for Computing PSNR for Color Images
Different approaches exist for computing the PSNR of a color image. Because the human
eye is most sensitive to luma information, compute the PSNR for color images by
converting the image to a color space that separates the intensity (luma) channel, such as
YCbCr. The Y (luma), in YCbCr represents a weighted average of R, G, and B. G is given
the most weight, again because the human eye perceives it most easily. With this
consideration, compute the PSNR only on the luma channel.

Ports

Port Output Supported Data Types
Complex
Values
Supported

I1 Scalar, vector, or matrix of
intensity values

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

No

I2 Scalar, vector, or matrix of
intensity values

Same as I1 port No

Output Scalar value that represents
the PSNR

• Double-precision floating point

For fixed-point or integer input, the block
output is double-precision floating point.
Otherwise, the block input and output are
the same data type.

No

 PSNR

1-391

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generates code only for double or single data types.

Introduced before R2006a

1 Blocks — Alphabetical List

1-392

Read Binary File
Read binary video data from files

Library
Sources

visionsources

Description
The Read Binary File block reads video data from a binary file and imports it into a
Simulink model.

This block takes user specified parameters that describe the format of the video data.
These parameters together with the raw binary file, which stores only raw pixel values,
creates the video data signal for a Simulink model. The video data read by this block must
be stored in row major format.

Note This block supports code generation only for platforms that have file I/O available.
You cannot use this block to do code generation with Simulink Desktop Real-Time or
Simulink Real-Time™.

Port Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix of
integer values

• 8-, 16- 32-bit signed integer
• 8-, 16- 32-bit unsigned integer

No

 Read Binary File

1-393

Port Output Supported Data Types
Complex
Values
Supported

EOF Scalar value Boolean No

Four Character Code Video Formats
Four Character Codes (FOURCC) identify video formats. For more information about
these codes, see https://www.fourcc.org.

Use the Four character code parameter to identify the binary file format. Then, use the
Rows and Cols parameters to define the size of the output matrix. These dimensions
should match the matrix dimensions of the data inside the file.

Custom Video Formats
If your binary file contains data that is not in FOURCC format, you can configure the Read
Binary File block to understand a custom format:

• Use the Bit stream format parameter to specify whether your data is planar or
packed. If your data is packed, use the Rows and Cols parameters to define the size of
the output matrix.

• Use the Number of output components parameter to specify the number of
components in the binary file. This number corresponds to the number of block output
ports.

• Use the Component, Bits, Rows, and Cols parameters to specify the component
name, bit size, and size of the output matrices, respectively. The block uses the
Component parameter to label the output ports.

• Use the Component order in binary file parameter to specify how the components
are arranged within the file.

• Select the Interlaced video check box if the binary file contains interlaced video data.
• Select the Input file has signed data check box if the binary file contains signed

integers.
• Use the Byte order in binary file to indicate whether your binary file has little

endian or big endian byte ordering.

1 Blocks — Alphabetical List

1-394

https://www.fourcc.org

Parameters
File name

Specify the name of the binary file to read. If the location of this file is on your
MATLAB path, enter the filename. If the location of this file is not on your MATLAB
path, use the Browse button to specify the full path to the file as well as the filename.

Video format
Specify the format of the binary video data. Your choices are Four character
codes or Custom. See “Four Character Code Video Formats” on page 1-394 or
“Custom Video Formats” on page 1-394 for more details.

Four character code
From the drop-down list, select the binary file format.

Frame size: Rows, Cols
Define the size of the output matrix. These dimensions should match the matrix
dimensions of the data inside the file.

Line ordering
Specify how the block fills the output matrix.If you select Top line first, the
block first fills the first row of the output matrix with the contents of the binary file. It
then fills the other rows in increasing order. If you select Bottom line first, the
block first fills the last row of the output matrix. It then fills the other rows in
decreasing order.

Number of times to play file
Specify the number of times to play the file. The number you enter must be a positive
integer or inf, to play the file until you stop the simulation.

Output end-of-file indicator
Specifies the output is the last video frame in the binary file. When you select this
check box, a Boolean output port labeled EOF appears on the block. The output from
the EOF port is 1 when the last video frame in the binary file is output from the block.
Otherwise, the output from the EOF port is 0.

Sample time
Specify the sample period of the output signal.

Bit stream format
Specify whether your data is planar or packed.

 Read Binary File

1-395

Frame size: Rows, Cols
Define the size of the output matrix. This parameter appears when you select a Bit
stream format parameter of Packed.

Number of output components
Specify the number of components in the binary file.

Component, Bits, Rows, Cols
Specify the component name, bit size, and size of the output matrices, respectively.

Component order in binary file
Specify the order in which the components appear in the binary file.

Interlaced video
Select this check box if the binary file contains interlaced video data.

Input file has signed data
Select this check box if the binary file contains signed integers.

Byte order in binary file
Use this parameter to indicate whether your binary file has little endian or big endian
byte ordering.

See Also
From Multimedia File Computer Vision Toolbox
Write Binary File Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-396

Resize
Enlarge or shrink image sizes

Library
Geometric Transformations

visiongeotforms

Description
The Resize block enlarges or shrinks an image by resizing the image along one dimension
(row or column). Then, it resizes the image along the other dimension (column or row).

This block supports intensity and color images on its ports. When you input a floating
point data type signal, the block outputs the same data type.

Shrinking an image can introduce high frequency components into the image and aliasing
might occur. If you select the Perform antialiasing when resize factor is between 0
and 100 check box, the block performs low pass filtering on the input image before
shrinking it.

 Resize

1-397

Port Description

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

ROI Four-element vector [x y width
height] that defines the ROI

• Double-precision floating point
(only supported if the input to the
Input port is floating point)

• Single-precision floating point (only
supported if the input to the Input
port is floating point)

• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

Output Resized image Same as Input port No
Flag Boolean value that indicates

whether the ROI is within the
image bounds

Boolean No

ROI Processing
To resize a particular region of each image, select the Enable ROI processing check
box. To enable this option, select the following parameter values.

• Specify = Number of output rows and columns
• Interpolation method = Nearest neighbor, Bilinear, or Bicubic
• Clear the Perform antialiasing when resize factor is between 0 and 100 check

box.

If you select the Enable ROI processing check box, the ROI port appears on the block.
Use this port to define a region of interest (ROI) in the input matrix, that you want to

1 Blocks — Alphabetical List

1-398

resize. The input to this port must be a four-element vector, [x y width height]. The first
two elements define the upper-left corner of the ROI, and the second two elements define
the width and height of the ROI.

If you select the Enable ROI processing check box, the Output flag indicating if any
part of ROI is outside image bounds check box appears in the dialog box. If you select
this check box, the Flag port appears on the block. The following tables describe the Flag
port output.

Flag Port Output Description
0 ROI is completely inside the input image.
1 ROI is completely or partially outside the

input image.

Fixed-Point Data Types
The following diagram shows the data types used in the Resize block for fixed-point
signals.

You can set the interpolation weights table, product output, accumulator, and output data
types in the block mask.

Parameters
Specify

Specify which aspects of the image to resize. Your choices are Output size as a
percentage of input size, Number of output columns and preserve

 Resize

1-399

aspect ratio, Number of output rows and preserve aspect ratio, or
Number of output rows and columns.

When you select Output size as a percentage of input size, the Resize
factor in percentage parameter appears in the dialog box. Enter a scalar
percentage value that is applied to both rows and columns.

When you select Number of output columns and preserve aspect ratio,
the Number of output columns parameter appears in the dialog box. Enter a scalar
value that represents the number of columns you want the output image to have. The
block calculates the number of output rows so that the output image has the same
aspect ratio as the input image.

When you select Number of output rows and preserve aspect ratio, the
Number of output rows parameter appears in the dialog box. Enter a scalar value
that represents the number of rows you want the output image to have. The block
calculates the number of output columns so that the output image has the same
aspect ratio as the input image.

When you select Number of output rows and columns, the Number of output
rows and columns parameter appears in the dialog box. Enter a two-element vector,
where the first element is the number of rows in the output image and the second
element is the number of columns. In this case, the aspect ratio of the image can
change.

Resize factor in percentage
Enter a scalar percentage value that is applied to both rows and columns or a two-
element vector, where the first element is the percentage by which to resize the rows
and the second element is the percentage by which to resize the columns. This
parameter is visible if, for the Specify parameter, you select Output size as a
percentage of input size.

You must enter a scalar value that is greater than zero. The table below describes the
affect of the resize factor value:

Resize factor in
percentage

Resizing of image

0 < resize factor <
100

The block shrinks the image.

resize factor = 100 Image unchanged.

1 Blocks — Alphabetical List

1-400

Resize factor in
percentage

Resizing of image

resize factor > 100 The block enlarges the image.

The dimensions of the output matrix depend on the Resize factor in percentage
parameter and are given by the following equations:

number_output_rows = round(number_input_rows*resize_factor/100); (1-1)

number_output_cols = round(number_input_cols*resize_factor/100); (1-2)

Number of output columns
Enter a scalar value that represents the number of columns you want the output
image to have. This parameter is visible if, for the Specify parameter, you select
Number of output columns and preserve aspect ratio.

Number of output rows
Enter a scalar value that represents the number of rows you want the output image to
have. This parameter is visible if, for the Specify parameter, you select Number of
output rows and preserve aspect ratio.

Number of output rows and columns
Enter a two-element vector, where the first element is the number of rows in the
output image and the second element is the number of columns. This parameter is
visible if, for the Specify parameter, you select Number of output rows and
columns.

Interpolation method
Specify which interpolation method to resize the image.

When you select Nearest neighbor, the block uses one nearby pixel to interpolate
the pixel value. This option though the most efficient, is the least accurate. When you
select Bilinear, the block uses four nearby pixels to interpolate the pixel value.
When you select Bicubic or Lanczos2, the block uses 16 nearby pixels to
interpolate the pixel value. When you select Lanczos3, the block uses 36 surrounding
pixels to interpolate the pixel value.

The Resize block performs optimally when you set this parameter to Nearest
neighbor with one of the following conditions:

• You set the Resize factor in percentage parameter to a multiple of 100.

 Resize

1-401

• Dividing 100 by the Resize factor in percentage parameter value results in an
integer value.

Perform antialiasing when resize factor is between 0 and 100
If you select this check box, the block performs low-pass filtering on the input image
before shrinking it to prevent aliasing.

Enable ROI processing
Select this check box to resize a particular region of each image. This parameter is
available when the Specify parameter is set to Number of output rows and
columns, the Interpolation method parameter is set to Nearest neighbor,
Bilinear, or Bicubic, and the Perform antialiasing when resize factor is
between 0 and 100 check box is not selected.

Output flag indicating if any part of ROI is outside image bounds
If you select this check box, the Flag port appears on the block. The block outputs 1 at
this port if the ROI is completely or partially outside the input image. Otherwise, it
outputs 0.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Interpolation weights table
Choose how to specify the word length of the values of the interpolation weights
table. The fraction length of the interpolation weights table values is always equal to
the word length minus one:

• When you select Same as input, the word length of the interpolation weights
table values match that of the input to the block.

• When you select Binary point scaling, you can enter the word length of the
interpolation weights table values, in bits.

• When you select Slope and bias scaling, you can enter the word length of
the interpolation weights table values, in bits.

1 Blocks — Alphabetical List

1-402

Product output

As depicted in the preceding diagram, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

As depicted in the preceding diagram, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

 Resize

1-403

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Ward, Joseph and David R. Cok. "Resampling Algorithms for Image Resizing and
Rotation", Proc. SPIE Digital Image Processing Applications, vol. 1075, pp.
260-269, 1989.

[2] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press,
1990.

1 Blocks — Alphabetical List

1-404

See Also
Rotate Computer Vision Toolbox software
Shear Computer Vision Toolbox software
Translate Computer Vision Toolbox software
imresize Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Resize

1-405

Rotate
Rotate image by specified angle

Library
Geometric Transformations

visiongeotforms

Description
Use the Rotate block to rotate an image by an angle specified in radians.

Note This block supports intensity and color images on its ports.

Port Description
Image M-by-N matrix of intensity values or an M-by-N-by-P color video signal where

P is the number of color planes
Angle Rotation angle
Output Rotated matrix

The Rotate block uses the 3-pass shear rotation algorithm to compute its values, which is
different than the algorithm used by the imrotate function in the Image Processing
Toolbox.

1 Blocks — Alphabetical List

1-406

Fixed-Point Data Types
The following diagram shows the data types used in the Rotate block for bilinear
interpolation of fixed-point signals.

You can set the angle values, product output, accumulator, and output data types in the
block mask.

The Rotate block requires additional data types. The Sine table value has the same word
length as the angle data type and a fraction length that is equal to its word length minus
one. The following diagram shows how these data types are used inside the block.

 Rotate

1-407

Note If overflow occurs, the rotated image might appear distorted.

Parameters
Output size

Specify the size of the rotated matrix. If you select Expanded to fit rotated
input image, the block outputs a matrix that contains all the rotated image values.
If you select Same as input image, the block outputs a matrix that contains the
middle part of the rotated image. As a result, the edges of the rotated image might be
cropped. Use the Background fill value parameter to specify the pixel values
outside the image.

1 Blocks — Alphabetical List

1-408

Rotation angle source
Specify how to enter your rotation angle. If you select Specify via dialog, the
Angle (radians) parameter appears in the dialog box.

If you select Input port, the Angle port appears on the block. The block uses the
input to this port at each time step as your rotation angle. The input to the Angle port
must be the same data type as the input to the I port.

Angle (radians)
Enter a real, scalar value for your rotation angle. This parameter is visible if, for the
Rotation angle source parameter, you select Specify via dialog.

When the rotation angle is a multiple of pi/2, the block uses a more efficient
algorithm. If the angle value you enter for the Angle (radians) parameter is within
0.00001 radians of a multiple of pi/2, the block rounds the angle value to the multiple
of pi/2 before performing the rotation.

Maximum angle (enter pi radians to accommodate all positive and negative
angles)

Enter the maximum angle by which to rotate the input image. Enter a scalar value,
between 0 and π radians. The block determines which angle, 0 ≤ angle ≤ maxangle,
requires the largest output matrix and sets the dimensions of the output port
accordingly.

This parameter is visible if you set the Output size parameter, to Expanded to fit
rotated input image, and the Rotation angle source parameter toInput port.

Display rotated image in
Specify how the image is rotated. If you select Center, the image is rotated about its
center point. If you select Top-left corner, the block rotates the image so that two
corners of the rotated input image are always in contact with the top and left sides of
the output image.

This parameter is visible if, for the Output size parameter, you select Expanded to
fit rotated input image, and, for the Rotation angle source parameter, you
select Input port.

Sine value computation method
Specify the value computation method. If you select Trigonometric function, the
block computes sine and cosine values it needs to calculate the rotation of your image
during the simulation. If you select Table lookup, the block computes and stores

 Rotate

1-409

the trigonometric values it needs to calculate the rotation of your image before the
simulation starts. In this case, the block requires extra memory.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to rotate the image. If you select
Nearest neighbor, the block uses the value of one nearby pixel for the new pixel
value. If you select Bilinear, the new pixel value is the weighted average of the four
nearest pixel values. If you select Bicubic, the new pixel value is the weighted
average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation.
Therefore, the Nearest-neighbor interpolation is the most computationally
efficient. However, because the accuracy of the method is proportional to the number
of pixels considered, the Bicubic method is the most accurate. For more
information, see “Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods” in
the Computer Vision Toolbox User's Guide.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Angle values
Choose how to specify the word length and the fraction length of the angle values.

• When you select Same word length as input, the word length of the angle
values match that of the input to the block. In this mode, the fraction length of the
angle values is automatically set to the binary-point only scaling that provides you
with the best precision possible given the value and word length of the angle
values.

• When you select Specify word length, you can enter the word length of the
angle values, in bits. The block automatically sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the angle values, in bits.

1 Blocks — Alphabetical List

1-410

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the angle values. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

This parameter is only visible if, for the Rotation angle source parameter, you select
Specify via dialog.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

• When you select Same as first input, these characteristics match those of
the input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

 Rotate

1-411

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

1 Blocks — Alphabetical List

1-412

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Supported Data Types
Port Supported Data Types
Image • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

Angle Same as Image port
Output Same as Image port

If the data type of the input signal is floating point, the output signal is the same data
type as the input signal.

References

[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press,
1990.

See Also
Resize Computer Vision Toolbox software
Translate Computer Vision Toolbox software
Shear Computer Vision Toolbox software
imrotate Image Processing Toolbox software

 Rotate

1-413

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-414

Shear
Shift rows or columns of image by linearly varying offset

Library
Geometric Transformations

visiongeotforms

Description
The Shear block shifts the rows or columns of an image by a gradually increasing
distance left or right or up or down.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

 Shear

1-415

Port Input/Output Supported Data Types
Complex
Values
Supported

S Two-element vector that
represents the number of pixels by
which you want to shift your first
and last rows or columns

Same as I port No

Output Shifted image Same as I port No

If the data type of the input to the I port is floating point, the input to the S port of this
block must be the same data type. Also, the block output is the same data type.

Use the Shear direction parameter to specify whether you want to shift the rows or
columns. If you select Horizontal, the first row has an offset equal to the first element
of the Row/column shear values [first last] vector. The following rows have an offset
that linearly increases up to the value you enter for the last element of the Row/column
shear values [first last] vector. If you select Vertical, the first column has an offset
equal to the first element of the Row/column shear values [first last] vector. The
following columns have an offset that linearly increases up to the value you enter for the
last element of the Row/column shear values [first last] vector.

Use the Output size after shear parameter to specify the size of the sheared image. If
you select Full, the block outputs a matrix that contains the entire sheared image. If you
select Same as input image, the block outputs a matrix that is the same size as the
input image and contains the top-left portion of the sheared image. Use the Background
fill value parameter to specify the pixel values outside the image.

Use the Shear values source parameter to specify how to enter your shear parameters.
If you select Specify via dialog, the Row/column shear values [first last]
parameter appears in the dialog box. Use this parameter to enter a two-element vector
that represents the number of pixels by which you want to shift your first and last rows or
columns. For example, if for the Shear direction parameter you select Horizontal and,
for the Row/column shear values [first last] parameter, you enter [50 150], the block
moves the top-left corner 50 pixels to the right and the bottom left corner of the input
image 150 pixels to the right. If you want to move either corner to the left, enter negative
values. If for the Shear direction parameter you select Vertical and, for the Row/
column shear values [first last] parameter, you enter [-10 50], the block moves the
top-left corner 10 pixels up and the top right corner 50 pixels down. If you want to move
either corner down, enter positive values.

1 Blocks — Alphabetical List

1-416

Use the Interpolation method parameter to specify which interpolation method the
block uses to shear the image. If you select Nearest neighbor, the block uses the value
of the nearest pixel for the new pixel value. If you select Bilinear, the new pixel value is
the weighted average of the two nearest pixel values. If you select Bicubic, the new
pixel value is the weighted average of the four nearest pixel values.

The number of pixels the block considers affects the complexity of the computation.
Therefore, the nearest-neighbor interpolation is the most computationally efficient.
However, because the accuracy of the method is proportional to the number of pixels
considered, the bicubic method is the most accurate. For more information, see “Nearest
Neighbor, Bilinear, and Bicubic Interpolation Methods” in the Computer Vision Toolbox
User's Guide.

If, for the Shear values source parameter, you select Input port, the S port appears
on the block. At each time step, the input to the S port must be a two-element vector that
represents the number of pixels by which to shift your first and last rows or columns.

If, for the Output size after shear parameter, you select Full, and for the Shear values
source parameter, you select Input port, the Maximum shear value parameter
appears in the dialog box. Use this parameter to enter a real, scalar value that represents
the maximum number of pixels by which to shear your image. The block uses this
parameter to determine the size of the output matrix. If any input to the S port is greater
than the absolute value of the Maximum shear value parameter, the block saturates to
the maximum value.

Fixed-Point Data Types
The following diagram shows the data types used in the Shear block for bilinear
interpolation of fixed-point signals.

 Shear

1-417

You can set the product output, accumulator, and output data types in the block mask.

Parameters
Shear direction

Specify whether you want to shift the rows or columns of the input image. Select
Horizontal to linearly increase the offset of the rows. Select Vertical to steadily
increase the offset of the columns.

Output size after shear
Specify the size of the sheared image. If you select Full, the block outputs a matrix
that contains the sheared image values. If you select Same as input image, the
block outputs a matrix that is the same size as the input image and contains a portion
of the sheared image.

Shear values source
Specify how to enter your shear parameters. If you select Specify via dialog, the
Row/column shear values [first last] parameter appears in the dialog box. If you

1 Blocks — Alphabetical List

1-418

select Input port, port S appears on the block. The block uses the input to this port
at each time step as your shear value.

Row/column shear values [first last]
Enter a two-element vector that represents the number of pixels by which to shift
your first and last rows or columns. This parameter is visible if, for the Shear values
source parameter, you select Specify via dialog.

Maximum shear value
Enter a real, scalar value that represents the maximum number of pixels by which to
shear your image. This parameter is visible if, for the Shear values source
parameter, you select Input port.

Background fill value
Specify a value for the pixels that are outside the image. This parameter is tunable.

Interpolation method
Specify which interpolation method the block uses to shear the image. If you select
Nearest neighbor, the block uses the value of one nearby pixel for the new pixel
value. If you select Bilinear, the new pixel value is the weighted average of the two
nearest pixel values. If you select Bicubic, the new pixel value is the weighted
average of the four nearest pixel values.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Shear values
Choose how to specify the word length and the fraction length of the shear values.

• When you select Same word length as input, the word length of the shear
values match that of the input to the block. In this mode, the fraction length of the
shear values is automatically set to the binary-point only scaling that provides you
with the best precision possible given the value and word length of the shear
values.

• When you select Specify word length, you can enter the word length of the
shear values, in bits. The block automatically sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the shear values, in bits.

 Shear

1-419

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the shear values. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

This parameter is visible if, for the Shear values source parameter, you select
Specify via dialog.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

• When you select Same as first input, these characteristics match those of
the first input to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

1 Blocks — Alphabetical List

1-420

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the first input to the block at the I port.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

 Shear

1-421

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press,

1990.

See Also
Resize Computer Vision Toolbox software
Rotate Computer Vision Toolbox software
Translate Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-422

Template Matching
Locate a template in an image

Library
Analysis & Enhancement

visionanalysis

Description
The Template Matching block finds the best match of a template within an input image.
The block computes match metric values by shifting a template over a region of interest
or the entire image, and then finds the best match location.

Port Description
Port Supported Data Types
I (Input Image) • Double-precision floating point

• Single-precision floating point
• Fixed point (signed, unsigned or both)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Template Matching

1-423

Port Supported Data Types
T (Template) • Double-precision floating point

• Single-precision floating point
• Fixed point (signed, unsigned or both)
• Boolean
• 8-bit unsigned integers

ROI (Region of
Interest, [x y
width height])

• Double-precision floating point
• Single-precision floating point
• Fixed point (signed, unsigned or both)
• Boolean
• 8-bit unsigned integers

Metric (Match
Metric Values)

• Double-precision floating point
• Single-precision floating point
• Fixed point (signed, unsigned or both)
• Boolean
• 32-bit unsigned integers

Loc (Best match
location [x y])

• 32-bit unsigned integers

NMetric (Metric
values in
Neighborhood of
best match)

• Double-precision floating point
• Single-precision floating point
• Fixed point (signed, unsigned or both)
• Boolean
• 8-bit unsigned integers

NValid
(Neighborhood
valid)

• Boolean

ROIValid (ROI
valid)

• Boolean

1 Blocks — Alphabetical List

1-424

Using the Template Matching Block
Choosing an Output Option

The block outputs either a matrix of match metric values or the zero-based location of the
best template match. The block outputs the matrix to the Metric port or the location to
the Loc port. Optionally, the block can output an NxN matrix of neighborhood match
metric values to the NMetric port.

Input and Output Signal Sizes

The Template Matching block does not pad the input data. Therefore, it can only compute
values for the match metrics between the input image and the template, where the
template is positioned such that it falls entirely on the input image. A set of all such
positions of the template is termed as the valid region of the input image. The size of the
valid region is the difference between the sizes of the input and template images plus one.

sizevalid=sizeinput – sizetemplate+1

The output at the Metric port for the Metric matrix output is of the valid image size.
The output at the Loc port for the Best match location output is a two-element
vector of indices relative to the top-left corner of the input image.

The neighborhood metric output at the NMetric port is of the size NxN, where N must be
an odd number specified in the block mask.

Defining the Region of Interest (ROI)

To perform template matching on a subregion of the input image, select the Enable ROI
processing check box. This check box adds the ROI input port to the Template Matching
block. The ROI processing option is available only for the Best match location
output.

The ROI port requires a four-element vector that defines a rectangular area. The first two
elements represent [x y] coordinates for the upper-left corner of the region. The second
two elements represent the width and height of the ROI. The block outputs the best
match location index relative to the top left corner of the input image.

Choosing a Match Metric

The block computes the match metric at each step of the iteration. Choose the match
metric that best suits your application. The block calculates the global optimum for the

 Template Matching

1-425

best metric value. It uses the valid subregion of the input image intersected by the ROI, if
provided.

Returning the Matrix of Match Metric Values

The matrix of the match metrics always implements single-step exhaustive window
iteration. Therefore, the block computes the metric values at every pixel.

Returning the Best Match Location

When in the ROI processing mode, the block treats the image around the ROI as an
extension of the ROI subregion. Therefore, it computes the best match locations true to
the actual boundaries of the ROI. The block outputs the best match coordinates, relative
to the top-left corner of the image. The one-based [x y] coordinates of the location
correspond to the center of the template. The following table shows how the block
outputs the center coordinates for odd and even templates:

Odd number of pixels in template Even number of pixels in template

Returning the Neighborhood Match Metric around the Best Match

When you select Best match location to return the matrix of metrics in a neighborhood
around the best match, an exhaustive loop computes all the metric values for the N-by-N
neighborhood. This output is particularly useful for performing template matching with
subpixel accuracy.

1 Blocks — Alphabetical List

1-426

Choosing a Search Method

When you select Best match location as the output option, you can choose to use either
Exhaustive or Three-step search methods.

The Exhaustive search method is computationally intensive because it searches at every
pixel location of the image. However, this method provides a more precise result.

The Three-step search method is a fast search that uses a neighborhood approach,
which does not inspect every pixel. The search starts with a step size equal to or slightly
greater than half of the maximum search range and then employs the following steps:

1 The block compares nine search points in each step. There is a central point and
eight search points located on the search area boundary.

2 The block decrements the step size by one, after each step, ending the search with a
step size of one pixel.

3 At each new step, the block moves the search center to the best matching point
resulting from the previous step. The number one blue circles in the figure below
represent a search with a starting step size of three. The number two green circles
represent the next search, with step size of two, centered around the best match
found from the previous search. Finally, the number three orange circles represent
the final search, with step size of one, centered around the previous best match.

 Template Matching

1-427

Three-Step Search

Using the ROIValid and NValid flags for Diagnostics

The ROIValid and NValid ports represent boolean flags, which track the valid Region of
Interest (ROI) and neighborhood. You can use these flags to communicate with the
downstream blocks and operations.

Valid Region of Interest

If you select the Output flag indicating if ROI is valid check box, the block adds the
ROIValid port. If the ROI lies partially outside the valid image, the block only processes
the intersection of the ROI and the valid image. The block sets the ROI flag output to this
port as follows:

• True, set to 1 indicating the ROI lies completely inside the valid part of the input
image.

• False, set to 0 indicating the ROI lies completely or partially outside of the valid part
of the input image.

1 Blocks — Alphabetical List

1-428

Valid Neighborhood

The neighborhood matrix of metric values is valid inside of the Region of Interest (ROI).
You can use the Boolean flag at the NValid port to track the valid neighborhood region.
The block sets the neighborhood NValid boolean flag output as follows:

• True, set to 1 indicating that the neighborhood containing the best match is
completely inside the region of interest.

• False, set to 0 indicating that the neighborhood containing the best match is
completely or partially outside of the region of interest.

Algorithm
The match metrics use a difference equation with general form:

dp(x, y) = (∑
i = 1

n
xi− yi

p)1 p

lnp denotes the metric space (Rn, dp) for Rn n > 1.

• Sum of Absolute Differences (SAD)
This metric is also known as the Taxicab or Manhattan Distance metric. It sums the
absolute values of the differences between pixels in the original image and the
corresponding pixels in the template image. This metric is the l1 norm of the
difference image. The lowest SAD score estimates the best position of template within
the search image. The general SAD distance metric becomes:

d1(I j, T) = ∑
i = 1

n
Ii, j− Ti

• Sum of Squared Differences (SSD)
This metric is also known as the Euclidean Distance metric. It sums the square of the
absolute differences between pixels in the original image and the corresponding pixels
in the template image. This metric is the square of the l2 norm of the difference image.
The general SSD distance metric becomes:

d2(I j, T) = ∑
i = 1

n
Ii, j− Ti

2

 Template Matching

1-429

• Maximum Absolute Difference (MaxAD)
This metric is also known as the Uniform Distance metric. It sums the maximum of
absolute values of the differences between pixels in the original image and the
corresponding pixels in the template image. This distance metric provides the l∞ norm
of the difference image. The general MaxAD distance metric becomes:

d∞(I j, T) = lim
x ∞

∑
i = 1

n
Ii, j− Ti

p

which simplifies to:

d∞(I j, T) = max
i

n
Ii, j− Ti

p

Parameters

Match metric
Select one of three types of match metrics:

• Sum of absolute differences (SAD)
• Sum of squared differences (SSD)
• Maximum absolute difference (MaxAD)

Output
Select one of two output types:

• Match metric
Select this option to output the match metric matrix. This option adds the Metric
output port to the block.

• Best match location
Select this option to output the [x y] coordinates for the location of the best match.
This option adds the Loc output port to the block. When you select Best match
location, the Search method, Output NxN matrix of metric values around best
match, and Enable ROI processing parameter options appear.

1 Blocks — Alphabetical List

1-430

Search method

This option appears when you select Best match location for the Output parameter.
Select one of two search methods.

• Exhaustive
• Three-step

Output NxN matrix of metric values around best match

This option appears when you select Best match location for the Output parameter.
Select the check box to output a matrix of metric values centered around the best match.
When you do so, the block adds the NMetric and NValid output ports.

N

This option appears when you select the Output NxN matrix of metric values around
best match check box. Enter an integer number that determines the size of the N-by-N
output matrix centered around the best match location index. N must be an odd number.

Enable ROI processing

This option appears when you select Best match location for the Output parameter.
Select the check box for the Template Matching block to perform region of interest
processing. When you do so, the block adds the ROI input port, and the Output flag
indicating if ROI is valid check box appears. The ROI input must have the format [x y
width height], where [x y] are the coordinates of the upper-left corner of the ROI.

Output flag indicating if ROI is valid

This option appears when you select the Enable ROI processing check box. Select the
check box for the Template Matching block to indicate whether the ROI is within the valid
region of the image boundary. When you do so, the block adds the ROIValid output port.

Data Type Parameters

Rounding mode
Select the “Rounding Modes” for fixed-point operations.

 Template Matching

1-431

Saturate on integer overflow
Select this mode to saturate on integer overflow. See Overflow mode for fixed-point
operations.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word and
fraction lengths.

• When you select Binary point scaling, you can enter the Word length and the
Fraction length of the accumulator, in bits.

When you select Same as first input the characteristics match the characteristics of
the first input. See “Multiplication Data Types” for illustrations depicting the use of
the accumulator data type in this block:

When you select Slope and bias scaling, you can enter the Word length, in bits, and
the Slope of the Accumulator. All signals in the Computer Vision Toolbox software
have a bias of 0.

The block casts inputs to the Accumulator to the accumulator data type. It adds each
element of the input to the output of the adder, which remains in the accumulator data
type. Use this parameter to specify how to designate this accumulator word and
fraction lengths.

Output
Choose how to specify the Word length, Fraction length and Slope of the Template
Matching output:

• When you select Same as first input, these characteristics match the characteristics
of the accumulator.

• When you select Binary point scaling, you can enter the Word length and Fraction
length of the output, in bits.

• When you select Slope and bias scaling, you can enter the Word length, in bits, and
the Slope of the output. All signals in the Computer Vision Toolbox software have a
bias of 0.

1 Blocks — Alphabetical List

1-432

The Output parameter on the Data Types pane appears when you select Metric matrix
or if you select Best match location and the Output NxN matrix of metric values
around best match check box is selected.

Lock data type settings against change by the fixed-point
tools
Select this parameter to prevent the fixed-point tools from overriding the data types you
specify on the block mask. For more information, see fxptdlg, a reference page on the
Fixed-Point Tool in the Simulink documentation.

Reference

[1] Koga T., et. Al. Motion-compensated interframe coding for video conferencing. In
National Telecommunications Conference. Nov. 1981, G5.3.1–5, New Orleans, LA.

[2] Zakai M., “General distance criteria” IEEE Transaction on Information Theory, pp. 94–
95, January 1964.

[3] Yu, J., J. Amores, N. Sebe, Q. Tian, "A New Study on Distance Metrics as Similarity
Measurement" IEEE International Conference on Multimedia and Expo, 2006 .

See Also
Block Matching Image Processing Toolbox
Video Stabilization Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Template Matching

1-433

matlab:showdemo vipstabilize

Introduced in R2009b

1 Blocks — Alphabetical List

1-434

To Multimedia File
Write video frames and audio samples to multimedia file

Library
Sinks

visionsinks

Description
The To Multimedia File block writes video frames, audio samples, or both to a multimedia
(.avi, .wav, .mj2, .mp4, or .m4v) file.

You can compress the video frames or audio samples by selecting a compression
algorithm. You can connect as many of the input ports as you want. Therefore, you can
control the type of video and/or audio the multimedia file receives.

Note This block supports code generation for platforms that have file I/O available. You
cannot use this block with Simulink Desktop Real-Time software, because that product
does not support file I/O.

This block performs best on platforms with Version 11 or later of Windows Media® Player
software. This block supports only uncompressed RGB24 AVI files on Linux and Mac
platforms.

The generated code for this block relies on prebuilt library files. You can run this code
outside the MATLAB environment, or redeploy it, but be sure to account for these extra

 To Multimedia File

1-435

library files when doing so. The packNGo function creates a single zip file containing all of
the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may
need to add precompiled shared library files to your system path. See “Simulink Coder”,
“Simulink Shared Library Dependencies”, and “Accelerating Simulink Models” for details.

Ports
Port Description
Image M-by-N-by-3 matrix RGB, Intensity, or YCbCr 4:2:2 signal.
R, G, B Matrix that represents one plane of the RGB video stream. Inputs to

the R, G, or B port must have the same dimensions and data type.
Audio Vector of audio data
Y, Cb, Cr Matrix that represents one frame of the YCbCr video stream. The Y, Cb,

and Cr ports use the following dimensions:
Y: M x N
Cb: M xN

2
Cr: M xN

2

Parameters
File name

Specify the name of the multimedia file. The block saves the file in your current
folder. To specify a different file or location, click the Save As... button.

File type
Specify the file type of the multimedia file. You can select avi or wav.

Write
Specify whether the block writes video frames, audio samples, or both to the
multimedia file. You can select Video and audio, Video only, or Audio only.

1 Blocks — Alphabetical List

1-436

Video Quality
Quality of the video, specified as an integer scalar in the range [0 100]. This
parameter applies only when you set File name to MPEG4 and Write to Video only.
By default, this parameter is set to 75.

Compression Factor (>1)
Specify the compression factor as an integer scalar greater than 1. This parameter is
applicable only when the File type is set to MJ2000 and Video compressor is set to
Lossy. By default, this parameter is set to 10.

Audio compressor
Select the type of compression algorithm to use to compress the audio data. This
compression reduces the size of the multimedia file. Choose None (uncompressed)
to save uncompressed audio data to the multimedia file.

Note The other items available in this parameter list are the audio compression
algorithms installed on your system. For information about a specific audio
compressor, see the documentation for that compressor.

Audio data type
Select the audio data type. You can use the Audio data type parameter only for
uncompressed wave files.

Video compressor
Select the type of compression algorithm to use to compress the video data. This
compression reduces the size of the multimedia file. Choose None (uncompressed)
to save uncompressed video data to the multimedia file.

Note The other items available in this parameter list are the video compression
algorithms installed on your system. For information about a specific video
compressor, see the documentation for that compressor.

File color format
Select the color format of the data stored in the file. You can select either RGB or
YCbCr 4:2:2.

 To Multimedia File

1-437

Image signal
Specify how the block accepts a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port accepts one M-by-N plane
of an RGB video stream.

Supported Data Types
For the block to display video data properly, double- and single-precision floating-point
pixel values must be between 0 and 1. Any other data type requires the pixel values
between the minimum and maximum values supported by their data type.

Check the specific codecs you are using for supported audio rates.

Port Supported Data Types Supports Complex Values?
Image • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16- 32-bit signed integers
• 8-, 16- 32-bit unsigned integers

No

R, G, B Same as Image port No
Audio • Double-precision floating point

• Single-precision floating point
• 16-bit signed integers
• 32-bit signed integers
• 8-bit unsigned integers

No

Y, Cb, Cr Same as Image port No

See Also
From Multimedia File Computer Vision Toolbox

1 Blocks — Alphabetical List

1-438

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Host computer only. Excludes Simulink Desktop Real-Time code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code
generated from this block and all the relevant files in a compressed zip file. Using this
zip file, you can relocate, unpack, and rebuild your project in another development
environment where MATLAB is not installed. For more details, see .

Introduced before R2006a

 To Multimedia File

1-439

To Video Display
Display video data

Library
Sinks

visionsinks

Description
The To Video Display block displays video frames. This block is capable of displaying high
definition video at high frame rates. It provides a lightweight, high performance, simple
display, which accepts RGB and YCbCr formatted images. This block also generates code.

The generated code for this block relies on prebuilt .dll files. You can run this code
outside the MATLAB environment, or redeploy it, but be sure to account for these
extra .dll files when doing so. The packNGo function creates a single zip file containing all
of the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may
need to add precompiled shared library files to your system path. See “Simulink Coder”,
“Simulink Shared Library Dependencies”, and “Accelerating Simulink Models” for details.

For the block to display video data properly, double- and single-precision floating-point
pixel values must be from 0 to 1. For any other data type, the pixel values must be
between the minimum and maximum values supported by their data type.

You can set the display for full screen, normal or, to maintain one-to-one size. When you
save the model, the size and position of the display window is saved. Any changes while

1 Blocks — Alphabetical List

1-440

working with the model should be saved again in order that these preferences are
maintained when you run the model. The minimum display width of the window varies
depending on your system's font size settings.

Rapid Accelerator

When you set your model to run in “Accelerator Mode” (Simulink), and do not select the
Open at Start of Simulation option, the block will not be included during the run, and
therefore the video display will not be visible.

Parameters

View Options
Window Size

Select Full-screen mode to display your video stream in a full screen window. To
exit or return to other applications from full-screen, select the display and use the
Esc key.
Select Normal mode to modify display size at simulation start time.
Select True Size (1:1) mode to display a one-to-one pixel ratio of input image at
simulation start time. The block displays the same information per pixel and does
not change size from the input size. You can change the display size after the
model starts.

Open at Start of Simulation
Select Open at Start of Simulation from the View menu for the display window to
appear while running the model. If not selected, you can double click the block to
display the window.

Settings Options
Input Color Format

Select the color format of the data stored in the input image.
Select RGB for the block to accept a matrix that represents one plane of the RGB
video stream. Inputs to the R, G, or B ports must have the same dimension and
data type.

 To Video Display

1-441

Select YCbCr 4:2:2 for the block to accept a matrix that represents one frame of
the YCbCr video stream. The Y port accepts an M-by-N matrix. The Cb and Cr
ports accepts an M-by-N 2 matrix.

Image Signal
Specify how the block accepts a color video signal.

Select One multidimensional signal, for the block to accept an M-by-N-by-3
color video signal at one port.
Select Separate color signals, for additional ports to appear on the block. Each
port accepts one M-by-N plane of an RGB video stream.

Supported Data Types
Port Supported Data Types
Image • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16, and 32-bit signed integer
• 8-, 16, and 32-bit unsigned integer

R, G, B Same as Image port
YCbCr 4:2:2 Same as Image ports

See Also
Frame Rate Display Computer Vision Toolbox software
From Multimedia File Computer Vision Toolbox software
To Multimedia File Computer Vision Toolbox software
Video To Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software

1 Blocks — Alphabetical List

1-442

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generates code only on host platforms.
• Generated code for this function uses a precompiled platform-specific shared library.

Introduced before R2006a

 To Video Display

1-443

Top-hat
Perform top-hat filtering on intensity or binary images

Library
Morphological Operations

visionmorphops

Description
The Top-hat block performs top-hat filtering on an intensity or binary image using a
predefined neighborhood or structuring element. Top-hat filtering is the equivalent of
subtracting the result of performing a morphological opening operation on the input
image from the input image itself. This block uses flat structuring elements only.

Port Input/Output Supported Data Types Complex Values
Supported

I Vector or matrix of intensity values • Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned

integer

No

Nhood Matrix or vector of 1s and 0s that
represents the neighborhood values

Boolean No

1 Blocks — Alphabetical List

1-444

Port Input/Output Supported Data Types Complex Values
Supported

Output Scalar, vector, or matrix that represents
the filtered image

Same as I port No

If your input image is a binary image, for the Input image type parameter, select
Binary. If your input image is an intensity image, select Intensity.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. Choose your
structuring element so that it matches the shapes you want to remove from your image.
You can only specify a it using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and 0s. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters
Input image type

If your input image is a binary image, select Binary. If your input image is an
intensity image, select Intensity.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and 0s. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

 Top-hat

1-445

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
imtophat Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1 Blocks — Alphabetical List

1-446

Trace Boundary
Trace object boundaries in binary images

Library
Analysis & Enhancement

visionanalysis

Description
The Trace Boundary block traces object boundaries in binary images, where nonzero
pixels represent objects and 0 pixels represent the background.

Port Descriptions
Port Input/Output Supported Data Types
BW Vector or matrix that

represents a binary image
Boolean

Start Pt One-based [x y] coordinates of
the boundary starting point.

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

 Trace Boundary

1-447

Port Input/Output Supported Data Types
Pts M-by-2 matrix of [x y]

coordinates of the boundary
points, where M represents
the number of traced
boundary pixels. M must be
less than or equal to the value
specified by the Maximum
number of boundary pixels
parameter.

x1 y1
x2 y2
x3 y3
. .
. .
. .

xm ym

Same as Start Pts port

Parameters
Connectivity

Specify which pixels are connected to each other. If you want a pixel to be connected
to the pixels on the top, bottom, left, and right, select 4. If you want a pixel to be
connected to the pixels on the top, bottom, left, right, and diagonally, select 8. For
more information about this parameter, see the Label block reference page.

Initial search direction
Specify the first direction in which to look to find the next boundary pixel that is
connected to the starting pixel.

If, for the Connectivity parameter, you select 4, the following figure illustrates the
four possible initial search directions:

1 Blocks — Alphabetical List

1-448

East

North

South

West

If, for the Connectivity parameter, you select 8, the following figure illustrates the
eight possible initial search directions:

Northeast

East

North

South

West

SoutheastSouthwest

Northwest

Trace direction
Specify the direction in which to trace the boundary. Your choices are Clockwise or
Counterclockwise.

Maximum number of boundary pixels
Specify the maximum number of boundary pixels for each starting point. The block
uses this value to preallocate the number of rows of the Pts port output matrix so that
it can hold all the boundary pixel location values.

Use the Maximum number of boundary pixels parameter to specify the maximum
number of boundary pixels for the starting point.

See Also
Edge Detection Computer Vision Toolbox software

 Trace Boundary

1-449

Label Computer Vision Toolbox software
bwboundaries Image Processing Toolbox software
bwtraceboundary Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2011b

1 Blocks — Alphabetical List

1-450

Translate
Translate image in 2-D plane using displacement vector

Library
Geometric Transformations

visiongeotforms

Description
Use the Translate block to move an image in a two-dimensional plane using a
displacement vector, a two-element vector that represents the number of pixels by which
you want to translate your image. The block outputs the image produced as the result of
the translation.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

 Translate

1-451

Port Input/Output Supported Data Types
Complex
Values
Supported

Offset Vector of values that represent the
number of pixels by which to
translate the image

Same as I port No

Output Translated image Same as I port No

The input to the Offset port must be the same data type as the input to the Image port.
The output is the same data type as the input to the Image port.

Use the Output size after translation parameter to specify the size of the translated
image. If you select Full, the block outputs a matrix that contains the entire translated
image. If you select Same as input image, the block outputs a matrix that is the same
size as the input image and contains a portion of the translated image. Use the
Background fill value parameter to specify the pixel values outside the image.

Use the Offset source parameter to specify how to enter your displacement vector. If you
select Specify via dialog, the Offset parameter appears in the dialog box. Use it to
enter your displacement vector, a two-element vector, [r c], of real, integer values that
represent the number of pixels by which you want to translate your image. The r value
represents how many pixels up or down to shift your image. The c value represents how
many pixels left or right to shift your image. The axis origin is the top-left corner of your
image. For example, if you enter [2.5 3.2], the block moves the image 2.5 pixels
downward and 3.2 pixels to the right of its original location. When the displacement
vector contains fractional values, the block uses interpolation to compute the output.

Use the Interpolation method parameter to specify which interpolation method the
block uses to translate the image. If you translate your image in either the horizontal or
vertical direction and you select Nearest neighbor, the block uses the value of the
nearest pixel for the new pixel value. If you translate your image in either the horizontal
or vertical direction and you select Bilinear, the new pixel value is the weighted
average of the four nearest pixel values. If you translate your image in either the
horizontal or vertical direction and you select Bicubic, the new pixel value is the
weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation.
Therefore, the nearest-neighbor interpolation is the most computationally efficient.
However, because the accuracy of the method is roughly proportional to the number of
pixels considered, the bicubic method is the most accurate. For more information, see

1 Blocks — Alphabetical List

1-452

“Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods” in the Computer Vision
Toolbox User's Guide.

If, for the Output size after translation parameter, you select Full, and for the Offset
source parameter, you select Input port, the Maximum offset parameter appears in
the dialog box. Use the Maximum offset parameter to enter a two-element vector of
real, scalar values that represent the maximum number of pixels by which you want to
translate your image. The block uses this parameter to determine the size of the output
matrix. If the input to the Offset port is greater than the Maximum offset parameter
values, the block saturates to the maximum values.

If, for the Offset source parameter, you select Input port, the Offset port appears on
the block. At each time step, the input to the Offset port must be a vector of real, scalar
values that represent the number of pixels by which to translate your image.

Fixed-Point Data Types
The following diagram shows the data types used in the Translate block for bilinear
interpolation of fixed-point signals.

 Translate

1-453

You can set the product output, accumulator, and output data types in the block mask as
discussed in the next section.

Parameters
Output size after translation

If you select Full, the block outputs a matrix that contains the translated image
values. If you select Same as input image, the block outputs a matrix that is the
same size as the input image and contains a portion of the translated image.

Offset source
Specify how to enter your translation parameters. If you select Specify via
dialog, the Offset parameter appears in the dialog box. If you select Input port,
port O appears on the block. The block uses the input to this port at each time step as
your translation values.

Offset source
Enter a vector of real, scalar values that represent the number of pixels by which to
translate your image.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to translate the image. If you
select Nearest neighbor, the block uses the value of one nearby pixel for the new
pixel value. If you select Bilinear, the new pixel value is the weighted average of
the four nearest pixel values. If you select Bicubic, the new pixel value is the
weighted average of the sixteen nearest pixel values.

Maximum offset
Enter a vector of real, scalar values that represent the maximum number of pixels by
which you want to translate your image. This parameter must have the same data
type as the input to the Offset port. This parameter is visible if, for the Output size
after translation parameter, you select Full and, for the Offset source parameter,
you select Input port.

Rounding mode
Select the rounding mode for fixed-point operations.

1 Blocks — Alphabetical List

1-454

Overflow mode
Select the overflow mode for fixed-point operations.

Offset values
Choose how to specify the word length and the fraction length of the offset values.

• When you select Same word length as input, the word length of the offset
values match that of the input to the block. In this mode, the fraction length of the
offset values is automatically set to the binary-point only scaling that provides you
with the best precision possible given the value and word length of the offset
values.

• When you select Specify word length, you can enter the word length of the
offset values, in bits. The block automatically sets the fraction length to give you
the best precision.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the offset values, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the offset values. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

This parameter is visible if, for the Offset source parameter, you select Specify
via dialog.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

 Translate

1-455

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

• When you select Same as first input, these characteristics match those of
the first input to the block.

• When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

1 Blocks — Alphabetical List

1-456

• When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References
[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press,

1990.

See Also
Resize Computer Vision Toolbox software
Rotate Computer Vision Toolbox software
Shear Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Translate

1-457

Video From Workspace
Import video signal from MATLAB workspace

Library
Sources

visionsources

Description
The Video From Workspace block imports a video signal from the MATLAB workspace. If
the video signal is a M-by-N-by-T workspace array, the block outputs an intensity video
signal, where M and N are the number of rows and columns in a single video frame, and T
is the number of frames in the video signal. If the video signal is a M-by-N-by-C-by-T
workspace array, the block outputs a color video signal, where M and N are the number of
rows and columns in a single video frame, C is the number of color channels, and T is the
number of frames in the video stream. In addition to the video signals previously
described, this block supports fi objects.

Note If you generate code from a model that contains this block, Simulink Coder takes a
long time to compile the code because it puts all of the video data into the .c file. Before
you generate code, you should convert your video data to a format supported by the From
Multimedia File block or the Read Binary File block.

1 Blocks — Alphabetical List

1-458

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values or
an M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

R, G, B Scalar, vector, or matrix that
represents one plane of the RGB
video stream. Outputs from the R,
G, or B ports have the same
dimensions.

Same as I port No

For the Computer Vision Toolbox blocks to display video data properly, double- and single-
precision floating-point pixel values must be from 0 to 1. This block does not scale pixel
values.

Use the Signal parameter to specify the MATLAB workspace variable from which to read.
For example, to read an AVI file, use the following syntax:

mov = VideoReader('filename.avi')

If filename.avi has a colormap associated with it, the AVI file must satisfy the
following conditions or the block produces an error:

• The colormap must be empty or have 256 values.
• The data must represent an intensity image.
• The data type of the image values must be uint8.

Use the Sample time parameter to set the sample period of the output signal.

When the block has output all of the available signal samples, it can start again at the
beginning of the signal, repeat the final value, or generate 0s until the end of the
simulation. The Form output after final value by parameter controls this behavior:

• When you specify Setting To Zero, the block generates zero-valued outputs for the
duration of the simulation after generating the last frame of the signal.

 Video From Workspace

1-459

• When you specify Holding Final Value, the block repeats the final frame for the
duration of the simulation after generating the last frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal from the
beginning after it reaches the last frame in the signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer
character, |, as the delimiter. This parameter is available when the Image signal
parameter is set to Separate color signals.

Parameters
Signal

Specify the MATLAB workspace variable that contains the video signal, or use the
VideoReader function to specify an AVI filename.

Sample time
Enter the sample period of the output.

Form output after final value by
Specify the output of the block after all of the specified signal samples have been
generated. The block can output zeros for the duration of the simulation (Setting
to zero), repeat the final value (Holding Final Value) or repeat the entire
signal from the beginning (Cyclic Repetition).

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port outputs one M-by-N plane
of an RGB video stream.

1 Blocks — Alphabetical List

1-460

Output port labels
Enter the labels for your output ports using the spacer character, |, as the delimiter.
This parameter is available when the Image signal parameter is set to Separate
color signals.

See Also
From Multimedia File Computer Vision Toolbox software
Image From Workspace Computer Vision Toolbox software
Read Binary File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Video From Workspace

1-461

Video To Workspace
Export video signal to MATLAB workspace

Library
Sinks

visionsinks

Description
The Video To Workspace block exports a video signal to the MATLAB workspace. If the
video signal is represented by intensity values, it appears in the workspace as a three-
dimensional M-by-N-by-T array, where M and N are the number of rows and columns in a
single video frame, and T is the number of frames in the video signal. If it is a color video
signal, it appears in the workspace as a four-dimensional M-by-N-by-C-by-T array, where
M and N are the number of rows and columns in a single video frame, C is the number of
inputs to the block, and T is the number of frames in the video stream. During code
generation, Simulink Coder does not generate code for this block.

Note This block supports intensity and color images on its ports.

1 Blocks — Alphabetical List

1-462

Port Input Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P is the number of
color planes

• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, 32-bit signed integer
• 8-, 16-, 32-bit unsigned integer

No

R, G, B Scalar, vector, or matrix that
represents one plane of the RGB
video stream. Outputs from the R,
G, or B ports have the same
dimensions.

Same as I port No

Use the Variable name parameter to specify the MATLAB workspace variable to which to
write the video signal.

Use the Number of inputs parameter to determine the number of inputs to the block. If
the video signal is represented by intensity values, enter 1. If it is a color (R, G, B) video
signal, enter 3.

Use the Limit data points to last parameter to determine the number of video frames,
T, you want to export to the MATLAB workspace.

If you want to downsample your video signal, use the Decimation parameter to enter
your decimation factor.

If your video signal is fixed point and you select the Log fixed-point data as a fi object
check box, the block creates a fi object in the MATLAB workspace.

Use the Input port labels parameter to label your input ports. Use the spacer character,
|, as the delimiter. This parameter is available if the Number of inputs parameter is
greater than 1.

 Video To Workspace

1-463

Parameters
Variable name

Specify the MATLAB workspace variable to which to write the video signal.
Number of inputs

Enter the number of inputs to the block. If the video signal is black and white, enter
1. If it is a color (R, G, B) video signal, enter 3.

Limit data points to last
Enter the number of video frames to export to the MATLAB workspace.

Decimation
Enter your decimation factor.

Log fixed-point data as a fi object
If your video signal is fixed point and you select this check box, the block creates a fi
object in the MATLAB workspace. For more information of fi objects, see the Fixed-
Point Designer documentation.

Input port labels
Enter the labels for your input ports using the spacer character, |, as the delimiter.
This parameter is available if the Number of inputs parameter is greater than 1.

See Also
To Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software

Introduced before R2006a

1 Blocks — Alphabetical List

1-464

Video Viewer
Display binary, intensity, or RGB images or video streams

Library
Sinks

visionsinks

Description
The Video Viewer block enables you to view a binary, intensity, or RGB image or a video
stream. The block provides simulation controls for play, pause, and step while running the
model. The block also provides pixel region analysis tools. During code generation,
Simulink Coder software does not generate code for this block.

Note The To Video Display block supports code generation.

See the following table for descriptions of both input types.

Input Description
Image M-by-N matrix of intensity values or an M-by-N-by-P color video

signal where P is the number of color planes.
R/G/B Scalar, vector, or matrix that represents one plane of the RGB

video stream. Inputs to the R, G, or B ports must have the same
dimensions and data type.

Select File > Image Signalto set the input to either Image or RGB.

 Video Viewer

1-465

Dialogs

1 Blocks — Alphabetical List

1-466

Toolbar

Toolbar

GUI Menu
Equivalent

Shortcut Keys
and
Accelerators

Description

File > Print Ctrl+P Print the current display window. Printing
is only available when the display is not
changing. You can enable printing by
placing the display in snapshot mode, or
by pausing or stopping model simulation,
or simulating the model in step-forward
mode.

To print the current window to a figure
rather than sending it to your printer,
select File > Print to figure.

File > Export to
Image Tool

Ctrl+E Send the current video frame to the Image
Tool. For more information, see “Interact
with Images Using Image Viewer App”
(Image Processing Toolbox).

Note The Image Tool can know that the frame is an intensity image only if the colormap
of the frame is grayscale (gray(256)). Otherwise, the Image Tool assumes the frame is
an indexed image and disables the Adjust Contrast button.

Tools > Video
Information

V View information about the video data
source.

Tools > Pixel
Region

N/A Open the Pixel Region tool. For more
information about this tool, see the Image
Processing Toolbox documentation.

Tools > Zoom In N/A Zoom in on the video display.

Tools > Zoom
Out

N/A Zoom out of the video display.

Tools > Pan N/A Move the image displayed in the GUI.

 Video Viewer

1-467

GUI Menu
Equivalent

Shortcut Keys
and
Accelerators

Description

Tools >
Maintain Fit to
Window

N/A Scale video to fit GUI size automatically.
Toggle the button on or off.

N/A N/A Enlarge or shrink the video frame. This
option becomes available if you do not
select the Maintain Fit to Window.

Playback Toolbar

Playback Toolbar

GUI Menu
Equivalent

Shortcut Keys
and
Accelerators

Description

Simulation >
Stop

S Stop the video.

Simulation >
Play

P, Space bar Play the video.

Simulation >
Pause

P, Space bar Pause the video. This button appears only
when the video is playing.

Simulation >
Step Forward

Right arrow,
Page Down

Step forward one frame.

Simulation >
Simulink
Snapshot

N/A Click this button to freeze the display in
the viewer window.

File-
menu
only

Simulation >
Drop Frames to
Improve
Performance

Ctrl+R Enable the viewer to drop video frames to
improve performance.

View >
Highlight
Simulink Signal

Ctrl+L In the model window, highlight the
Simulink signal the viewer is displaying.

1 Blocks — Alphabetical List

1-468

Setting Viewer Configuration

The Video Viewer Configuration preferences enables you to change the behavior and
appearance of the graphic user interface (GUI) as well as the behavior of the playback
shortcut keys.

• To open the Configuration dialog box, select File > Configuration Set > Edit.
• To save the configuration settings for future use, select File > Configuration Set >

Save as.

Core Pane

The Core pane in the Viewer Configuration dialog box controls the GUI's general settings.

General UI
Click General UI, and click the Options button to open the General UI Options dialog
box.

 Video Viewer

1-469

If you select the Display the full source path in the title bar check box, the GUI
displays the model name and full Simulink path to the video data source in the title bar.
Otherwise, it displays a shortened name.

Use the Open message log: parameter to control when the Message log window opens.
You can use this window to debug issues with video playback. Your choices are for any
new messages, for warn/fail messages, only for fail messages, or
manually.

Tools Pane

The Tools pane in the Viewer Configuration dialog box contains the tools that appear on
the Video Viewer GUI. Select the Enabled check box next to the tool name to specify
which tools to include on the GUI.

1 Blocks — Alphabetical List

1-470

Image Tool

Click Image Tool, and then click the Options button to open the Image Tool Options
dialog box.

Select the Open new Image Tool window for export check box if you want to open a
new Image Tool for each exported frame.
Pixel Region
Select the Pixel Region check box to display and enable the pixel region GUI button. For
more information on working with pixel regions see Getting Information about the Pixels
in an Image (Image Processing Toolbox).
Image Navigation Tools

 Video Viewer

1-471

Select the Image Navigation Tools check box to enable the pan-and-zoom GUI button.
Instrumentation Set
Select the Instrumentation Set check box to enable the option to load and save viewer
settings. The option appears in the File menu.

Video Information

The Video Information dialog box lets you view basic information about the video. To open
this dialog box, you can select Tools > Video Information , click the information button

 , or press the V key.

Colormap for Intensity Video

The Colormap dialog box lets you change the colormap of an intensity video. You cannot
access the parameters on this dialog box when the GUI displays an RGB video signal. To
open this dialog box for an intensity signal, select Tools > Colormap or press C.

1 Blocks — Alphabetical List

1-472

Use the Colormap parameter to specify the colormap to apply to the intensity video.

If you know that the pixel values do not use the entire data type range, you can select the
Specify range of displayed pixel values check box and enter the range for your data.
The dialog box automatically displays the range based on the data type of the pixel
values.

Status Bar

A status bar appear along the bottom of the Video Viewer. It displays information
pertaining to the video status (running, paused or ready), type of video (Intensity or RGB)
and video time.

Message Log
The Message Log dialog provides a system level record of configurations and extensions
used. You can filter what messages to display by Type and Category, view the records,
and display record details.

The Type parameter allows you to select either All, Info, Warn, or Fail message logs.
The Category parameter allows you to select either Configuration or Extension
message summaries. The Configuration messages indicate when a new configuration
file is loaded. The Extension messages indicate a component is registered. For example,
you might see a Simulink message, which indicates the component is registered and
available for configuration.

Saving the Settings of Multiple Video Viewer GUIs
The Video Viewer GUI enables you to save and load the settings of multiple GUI
instances. Thus, you only need to configure the Video Viewer GUIs that are associated

 Video Viewer

1-473

with your model once. To save the GUI settings, select File > Instrumentation Sets >
Save Set. To open the preconfigured GUIs, select File > Instrumentation Sets > Load
Set.

Supported Data Types
Port Supported Data Types
Image • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integer
• 8-, 16-, and 32-bit unsigned integer

R/G/B Same as Image port

See Also
From Multimedia File Computer Vision Toolbox software
To Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video To Workspace Computer Vision Toolbox software
implay Image Processing Toolbox

Introduced before R2006a

1 Blocks — Alphabetical List

1-474

Warp
Apply projective or affine transformation to an image

Library
Geometric Transformations

visiongeotforms

Description
The Warp block applies a projective on page 1-478 or affine on page 1-479 transformation
to an image. You can transform the entire image or portions of the image using either a
polygonal or rectangular region of interest (ROI).

Input Port Descriptions

Port Input/
Output Description Supported Data Types

Image Input M-by-N grayscale image or M-by-N-
by-3 truecolor image.

• M— Number of rows in the
image.

• N— Number of columns in the
image.

• Double-precision floating point
• Single-precision floating point
• 8- or 16-bit unsigned integers
• 16-bit signed integers
• logical

 Warp

1-475

Port Input/
Output Description Supported Data Types

TForm Input When you set Transformation
matrix source to Input port, the
TForm port accepts these inputs:

• 3-by-2 matrix (affine transform).
• 3-by-3 matrix (projective

transform).

When you set Transformation
matrix source to Custom, specify
the source in the Transformation
matrix field.

• Double-precision floating point
• Single-precision floating point

ROI Input When you enable the ROI input port,
you can also enable an Err_roi
output port to indicate if any part of
an ROI is outside the input image.
The ROI input port accepts an ROI
rectangle, specified as a 4-element
vector: [x y width height].

• Double-precision floating point
• Single-precision floating point
• 8-, 16-, or 32-bit signed integers
• 8-, 16-, or 32-bit unsigned

integers

Image Output Transformed image. Same as input
Err_roi Output Indicates if any part of an ROI is

outside the input image.
Boolean

Parameters
Transformation matrix source
Input matrix source, specified as either Input port or Custom. If you select Custom,
you can enter the transformation matrix parameter in the field that appears with this
selection.

Transformation matrix
Custom transformation matrix, specified as a 3-by-2 or 3-by-3 matrix. This parameters
appears when you set Transformation matrix source to Custom.

1 Blocks — Alphabetical List

1-476

Interpolation method
Interpolation method used to calculate output pixel values, specified as Nearest
neighbor, Bilinear, or Bicubic. See “Nearest Neighbor, Bilinear, and Bicubic
Interpolation Methods”for an overview of these methods.

Background fill value
Value of the pixels that are outside of the input image, specified as either a scalar value or
a 3-element vector.

Output image position source
Source of the output image size, specified as either either Same as input image or
Custom. If you select Custom, you can specify the bounding box in the field that appears
with this selection.

Output image position vector [x y width height]
Position, width, and height of the output image, specified as a 4-element vector: [x y width
height]. This parameter appears when you set Output image position source to
Custom.

Enable ROI input port
Select this check box to enable the ROI input port. Use this port to specify the
rectangular region you want to transform.

Enable output port indicating if any part of ROI is outside
input image
Select this check box to enable the Err_roi output port.

 Warp

1-477

References
[1] Wolberg, George . Digital Image Warping, 3rd edition. IEEE Computer Society Press,

1994.

[2] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision.
2nd edition. IEEE Computer Society Press, 2003.

See Also
imwarp, Estimate Geometric Transformation, Resize, RotateShearTranslate

Algorithms
The size of the transformation matrix dictates the transformation type.

Projective Transformation
In a projective transformation, the relationship between the input and the output points is
defined by:

x =
xh1 + yh2 + h3
xh7 + yh8 + h9

y =
xh4 + yh5 + h6
xh7 + yh8 + h9

where h1, h2,...,h9 are transformation coefficients.

You must arrange the transformation coefficients as a 3-by-3 matrix as in:

H =
h1 h4 h7
h2 h5 h8
h3 h6 h9

.

1 Blocks — Alphabetical List

1-478

Affine Transformation
In an affine transformation, The value of the pixel located at x , y in the input image
determines the value of the pixel located at x , y in the output image. The relationship
between the input and output point locations is defined by:

x = xh1 + yh2 + h3

y = xh4 + yh5 + h6

where h1, h2,...,h6 are transformation coefficients.

You must arrange the transformation coefficients as a 3-by-2 matrix:

H =
h1 h4
h2 h5
h3 h6

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Topics
“Video Mosaicking”

Introduced in R2015b

 Warp

1-479

Write Binary File
Write binary video data to files

Library
Sinks

visionsinks

Description
The Write Binary File block takes video data from a Simulink model and exports it to a
binary file.

This block produces a raw binary file with no header information. It has no encoded
information providing the data type, frame rate or dimensionality. The video data for this
block appears in row major format.

Note This block supports code generation only for platforms that have file I/O available.
You cannot use this block to do code generation with Simulink Desktop Real-Time.

Port Input Supported Data Types
Complex
Values
Supported

Input Matrix that represents the luma
(Y') and chroma (Cb and Cr)
components of a video stream

• 8-, 16- 32-bit signed integer
• 8-, 16- 32-bit unsigned integer

No

1 Blocks — Alphabetical List

1-480

Four Character Code Video Formats
Four Character Codes (FOURCC) identify video formats. For more information about
these codes, see https://www.fourcc.org.

Use the Four character code parameter to identify the video format.

Custom Video Formats
You can use the Write Binary File block to create a binary file that contains video data in a
custom format.

• Use the Bit stream format parameter to specify whether you want your data in
planar or packed format.

• Use the Number of input components parameter to specify the number of
components in the video stream. This number corresponds to the number of block
input ports.

• Select the Inherit size of components from input data type check box if you want
each component to have the same number of bits as the input data type. If you clear
this check box, you must specify the number of bits for each component.

• Use the Component parameters to specify the component names.
• Use the Component order in binary file parameter to specify how to arrange the

components in the binary file.
• Select the Interlaced video check box if the video stream represents interlaced video

data.
• Select the Write signed data to output file check box if your input data is signed.
• Use the Byte order in binary file parameter to specify whether the byte ordering in

the output binary file is little endian or big endian.

Parameters
File name

Specify the name of the binary file. To specify a different file or location, click the
Save As... button.

 Write Binary File

1-481

https://www.fourcc.org

Video format
Specify the format of the binary video data as either Four character codes or
Custom. See “Four Character Code Video Formats” on page 1-481 or “Custom Video
Formats” on page 1-481 for more details.

Four character code
From the list, select the binary file format.

Line ordering
Specify how the block fills the binary file. If you select Top line first, the block
first fills the binary file with the first row of the video frame. It then fills the file with
the other rows in increasing order. If you select Bottom line first, the block first
fills the binary file with the last row of the video frame. It then fills the file with the
other rows in decreasing order.

Bit stream format
Specify whether you want your data in planar or packed format.

Number of input components
Specify the number of components in the video stream. This number corresponds to
the number of block input ports.

Inherit size of components from input data type
Select this check box if you want each component to have the same number of bits as
the input data type. If you clear this check box, you must specify the number of bits
for each component.

Component
Specify the component names.

Component order in binary file
Specify how to arrange the components in the binary file.

Interlaced video
Select this check box if the video stream represents interlaced video data.

Write signed data to output file
Select this check box if your input data is signed.

Byte order in binary file
Use this parameter to specify whether the byte ordering in the output binary file is
little endian or big endian.

1 Blocks — Alphabetical List

1-482

See Also
Read Binary File Computer Vision Toolbox
To Multimedia File Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Write Binary File

1-483

Alphabetical List

2

pixelLabelImageDatastore
Datastore for semantic segmentation networks

Description
Use pixelLabelImageDatastore to create a datastore for training a semantic
segmentation network using deep learning.

Creation

Syntax
pximds = pixelLabelImageDatastore(gTruth)
pximds = pixelLabelImageDatastore(imds,pxds)
pximds = pixelLabelImageDatastore(___ ,Name,Value)

Description
pximds = pixelLabelImageDatastore(gTruth) returns a datastore for training a
semantic segmentation network based on the input groundTruth object or array of
groundTruth objects. Use the output pixelLabelImageDatastore object with the
Deep Learning Toolbox™ function trainNetwork to train convolutional neural networks
for semantic segmentation.

pximds = pixelLabelImageDatastore(imds,pxds) returns a datastore based on
the input image datastore and the pixel label datastore objects. imds is an
ImageDatastore object that represents the training input to the network. pxds is a
PixelLabelDatastore object that represents the required network output.

pximds = pixelLabelImageDatastore(___ ,Name,Value) additionally uses name-
value pairs to set the DispatchInBackground and OutputSizeMode properties. For 2-
D data, you can also use name-value pairs to specify the ColorPreprocessing,
DataAugmentation, and OutputSize augmentation properties. You can specify
multiple name-value pairs. Enclose each property name in quotes.

2 Alphabetical List

2-2

For example, pixelLabelImageDatastore(gTruth,'PatchesPerImage',40)
creates a pixel label image datastore that randomly generates 40 patches from each
ground truth object in gTruth.

Input Arguments
gTruth — Ground truth data
groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or as an array of groundTruth
objects. Each groundTruth object contains information about the data source, the list of
label definitions, and all marked labels for a set of ground truth labels.

imds — Collection of images
ImageDatastore object

Collection of images, specified as an ImageDatastore object.

pxds — Collection of pixel labeled images
PixelLabelDatastore object

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The
object contains the pixel labeled images for each image contained in the imds input
object.

Properties
Images — Image file names
character vector | cell array of character vectors

This property is read-only.

Image file names used as the source for ground truth images, specified as a character
vector or a cell array of character vectors.

PixelLabelData — Pixel label file names
character | cell array of characters

This property is read-only.

 pixelLabelImageDatastore

2-3

Pixel label data file names used as the source for ground truth label images, specified as a
character or a cell array of characters.

ClassNames — Class names
cell array of character vectors

This property is read-only.

Class names, specified as a cell array of character vectors.

ColorPreprocessing — Color channel preprocessing
'none' (default) | 'gray2rgb' | 'rgb2gray'

Color channel preprocessing for 2-D data, specified as 'none', 'gray2rgb', or
'rgb2gray'. Use this property when you need the image data created by the data source
must be only color or grayscale, but the training set includes both. Suppose you need to
train a network that expects color images but some of your training images are grayscale.
Set ColorPreprocessing to 'gray2rgb' to replicate the color channels of the
grayscale images in the input image set. Using the 'gray2rgb' option creates M-by-N-
by-3 output images.

The ColorPreprocessing property is not supported for 3-D data. To perform color
channel preprocessing of 3-D data, use the transform function.

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or
'none'. When DataAugmentation is 'none', no preprocessing is applied to input
images. Training data can be augmented in real-time during training.

The DataAugmentation property is not supported for 3-D data. To preprocess 3-D data,
use the transform function.

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, and classification,
specified as false or true. To use background dispatching, you must have Parallel
Computing Toolbox™. If DispatchInBackground is true and you have Parallel
Computing Toolbox, then pixelLabelImageDatastore asynchronously reads patches,
adds noise, and queues patch pairs.

2 Alphabetical List

2-4

MiniBatchSize — Number of observations in each batch
positive integer

This property is read-only.

Number of observations that are returned in each batch. For training, prediction, or
classification, the MiniBatchSize property is set to the mini batch size defined in
trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the denoising image datastore. The number of
observations is the length of one training epoch.

OutputSize — Size of output images
[] (default) | vector of two positive integers

This property is read-only.

Size of output images, specified as a vector of two positive integers. The first element
specifies the number of rows in the output images, and the second element specifies the
number of columns. When you specify OutputSize, image sizes are adjusted as
necessary. By default, this property is empty, which means that the images are not
adjusted.

The OutputSize property is not supported for 3-D data. To set the output size of 3-D
data, use the transform function.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following. This property
applies only when you set OutputSize to a value other than [].

• 'resize' — Scale the image to fit the output size. For more information, see
imresize.

• 'centercrop' — Take a crop from the center of the training image. The crop has the
same size as the output size.

 pixelLabelImageDatastore

2-5

• 'randcrop' — Take a random crop from the training image. The random crop has the
same size as the output size.

Data Types: char | string

Object Functions
combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel label for data source images
hasdata Determine if data is available to read
partitionByIndex Partition pixelLabelImageDatastore according to indices
preview Subset of data in datastore
read Read data from pixelLabelImageDatastore
readall Read all data in datastore
readByIndex Read data specified by index from pixelLabelImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in pixelLabelImageDatastore
transform Transform datastore

Examples

Train A Semantic Segmentation Network

Load the training data.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an image datastore for the images.

imds = imageDatastore(imageDir);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle","background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Visualize training images and ground truth pixel labels.

2 Alphabetical List

2-6

I = read(imds);
C = read(pxds);

I = imresize(I,5);
L = imresize(uint8(C),5);
imshowpair(I,L,'montage')

Create a semantic segmentation network. This network uses a simple semantic
segmentation network based on a downsampling and upsampling design.

numFilters = 64;
filterSize = 3;
numClasses = 2;
layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(filterSize,numFilters,'Padding',1)
 reluLayer()
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(filterSize,numFilters,'Padding',1)
 reluLayer()
 transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
 convolution2dLayer(1,numClasses);
 softmaxLayer()
 pixelClassificationLayer()
]

 pixelLabelImageDatastore

2-7

layers =
 10x1 Layer array with layers:

 1 '' Image Input 32x32x1 images with 'zerocenter' normalization
 2 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU
 4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 6 '' ReLU ReLU
 7 '' Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
 8 '' Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 9 '' Softmax softmax
 10 '' Pixel Classification Layer Cross-entropy loss

Setup training options.

opts = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-3, ...
 'MaxEpochs',100, ...
 'MiniBatchSize',64);

Create a pixel label image datastore that contains training data.

trainingData = pixelLabelImageDatastore(imds,pxds);

Train the network.

net = trainNetwork(trainingData,layers,opts);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:00 | 31.86% | 0.6934 | 0.0010 |
| 17 | 50 | 00:00:03 | 94.52% | 0.5564 | 0.0010 |
| 34 | 100 | 00:00:07 | 95.25% | 0.4415 | 0.0010 |
| 50 | 150 | 00:00:11 | 95.14% | 0.3722 | 0.0010 |
| 67 | 200 | 00:00:14 | 94.52% | 0.3336 | 0.0010 |
| 84 | 250 | 00:00:18 | 95.25% | 0.2931 | 0.0010 |
| 100 | 300 | 00:00:21 | 95.14% | 0.2708 | 0.0010 |
|==|

Read and display a test image.

2 Alphabetical List

2-8

testImage = imread('triangleTest.jpg');
imshow(testImage)

Segment the test image and display the results.

C = semanticseg(testImage,net);
B = labeloverlay(testImage,C);
imshow(B)

 pixelLabelImageDatastore

2-9

Improve the results

The network failed to segment the triangles and classified every pixel as "background".
The training appeared to be going well with training accuracies greater than 90%.
However, the network only learned to classify the background class. To understand why
this happened, you can count the occurrence of each pixel label across the dataset.

tbl = countEachLabel(trainingData)

tbl=2×3 table
 Name PixelCount ImagePixelCount
 ____________ __________ _______________

 'triangle' 10326 2.048e+05
 'background' 1.9447e+05 2.048e+05

The majority of pixel labels are for the background. The poor results are due to the class
imbalance. Class imbalance biases the learning process in favor of the dominant class.

2 Alphabetical List

2-10

That's why every pixel is classified as "background". To fix this, use class weighting to
balance the classes. There are several methods for computing class weights. One common
method is inverse frequency weighting where the class weights are the inverse of the
class frequencies. This increases weight given to under-represented classes.

totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

classWeights = 2×1

 19.8334
 1.0531

Class weights can be specified using the pixelClassificationLayer. Update the last
layer to use a pixelClassificationLayer with inverse class weights.

layers(end) = pixelClassificationLayer('Classes',tbl.Name,'ClassWeights',classWeights);

Train network again.

net = trainNetwork(trainingData,layers,opts);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:00 | 47.50% | 0.6925 | 0.0010 |
| 17 | 50 | 00:00:04 | 19.67% | 0.6837 | 0.0010 |
| 34 | 100 | 00:00:08 | 75.77% | 0.4433 | 0.0010 |
| 50 | 150 | 00:00:12 | 85.00% | 0.4018 | 0.0010 |
| 67 | 200 | 00:00:16 | 87.00% | 0.3568 | 0.0010 |
| 84 | 250 | 00:00:20 | 88.03% | 0.3153 | 0.0010 |
| 100 | 300 | 00:00:24 | 90.42% | 0.2890 | 0.0010 |
|==|

Try to segment the test image again.

C = semanticseg(testImage,net);
B = labeloverlay(testImage,C);
imshow(B)

 pixelLabelImageDatastore

2-11

Using class weighting to balance the classes produced a better segmentation result.
Additional steps to improve the results include increasing the number of epochs used for
training, adding more training data, or modifying the network.

Augment Data While Training

Configure a pixel label image datastore to augment data while training.

Load training images and pixel labels.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an imageDatastore object to hold the training images.

imds = imageDatastore(imageDir);

2 Alphabetical List

2-12

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Create a pixelLabelDatastore object to hold the ground truth pixel labels for the
training images.

pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Create an imageDataAugmenter object to randomly rotate and mirror image data.

augmenter = imageDataAugmenter('RandRotation',[-10 10],'RandXReflection',true)

augmenter =
 imageDataAugmenter with properties:

 FillValue: 0
 RandXReflection: 1
 RandYReflection: 0
 RandRotation: [-10 10]
 RandScale: [1 1]
 RandXScale: [1 1]
 RandYScale: [1 1]
 RandXShear: [0 0]
 RandYShear: [0 0]
 RandXTranslation: [0 0]
 RandYTranslation: [0 0]

Create a pixelLabelImageDatastore object to train the network with augmented
data.

plimds = pixelLabelImageDatastore(imds,pxds,'DataAugmentation',augmenter)

plimds =
 pixelLabelImageDatastore with properties:

 Images: {200x1 cell}
 PixelLabelData: {200x1 cell}
 ClassNames: {2x1 cell}
 DataAugmentation: [1x1 imageDataAugmenter]
 ColorPreprocessing: 'none'
 OutputSize: []
 OutputSizeMode: 'resize'

 pixelLabelImageDatastore

2-13

 MiniBatchSize: 1
 NumObservations: 200
 DispatchInBackground: 0

Define Custom Pixel Classification Layer with Dice Loss

This example shows how to define and create a custom pixel classification layer that uses
Dice loss.

This layer can be used to train semantic segmentation networks. To learn more about
creating custom deep learning layers, see “Define Custom Deep Learning Layers” (Deep
Learning Toolbox).

Dice Loss

The Dice loss is based on the Sørensen-Dice similarity coefficient for measuring overlap
between two segmented images. The generalized Dice loss [1,2], L, for between one
image Y and the corresponding ground truth T is given by

L = 1 −
2∑k = 1

K wk∑m = 1
M YkmTkm

∑k = 1
K wk∑m = 1

M Ykm
2 + Tkm

2 ,

where K is the number of classes, M is the number of elements along the first two
dimensions of Y, andwk is a class specific weighting factor that controls the contribution
each class makes to the loss. wk is typically the inverse area of the expected region:

wk = 1
∑m = 1

M Tkm
2

This weighting helps counter the influence of larger regions on the Dice score making it
easier for the network to learn how to segment smaller regions.

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines
the structure of a classification layer and includes the functions that define the layer
behavior. The rest of the example shows how to complete the
dicePixelClassificationLayer.

2 Alphabetical List

2-14

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer

 properties
 % Optional properties
 end

 methods

 function loss = forwardLoss(layer, Y, T)
 % Layer forward loss function goes here.
 end

 function dLdY = backwardLoss(layer, Y, T)
 % Layer backward loss function goes here.
 end
 end
end

Declare Layer Properties

By default, custom output layers have the following properties:

• Name – Layer name, specified as a character vector or a string scalar. To include this
layer in a layer graph, you must specify a nonempty unique layer name. If you train a
series network with this layer and Name is set to '', then the software automatically
assigns a name at training time.

• Description – One-line description of the layer, specified as a character vector or a
string scalar. This description appears when the layer is displayed in a Layer array. If
you do not specify a layer description, then the software displays the layer class name.

• Type – Type of the layer, specified as a character vector or a string scalar. The value of
Type appears when the layer is displayed in a Layer array. If you do not specify a
layer type, then the software displays 'Classification layer' or 'Regression
layer'.

Custom classification layers also have the following property:

• Classes – Classes of the output layer, specified as a categorical vector, string array,
cell array of character vectors, or 'auto'. If Classes is 'auto', then the software
automatically sets the classes at training time. If you specify a string array or cell
array of character vectors str, then the software sets the classes of the output layer
to categorical(str,str). The default value is 'auto'.

If the layer has no other properties, then you can omit the properties section.

 pixelLabelImageDatastore

2-15

The Dice loss requires a small constant value to prevent division by zero. Specify the
property, Epsilon, to hold this value.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;

 end

 ...
end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify
any variables required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

 function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.

 % Set layer name.
 layer.Name = name;

 % Set layer description.
 layer.Description = 'Dice loss';
 end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss
between the predictions made by the network and the training targets. The syntax for
forwardLoss is loss = forwardLoss(layer, Y, T), where Y is the output of the
previous layer and T represents the training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y,
where Y is a 4-D array of size H-by-W-by-K-by-N, where K is the number of classes, and N is
the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same
size as T, you must include a layer that outputs the correct size before the output layer.

2 Alphabetical List

2-16

For example, to ensure that Y is a 4-D array of prediction scores for K classes, you can
include a fully connected layer of size K or a convolutional layer with K filters followed by
a softmax layer before the output layer.

 function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Dice loss between
 % the predictions Y and the training targets T.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 % Compute Dice score.
 dice = numer./denom;

 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;

 end

Create Backward Loss Function

Create the backward loss function that returns the derivatives of the Dice loss with
respect to the predictions Y. The syntax for backwardLoss is loss =
backwardLoss(layer, Y, T), where Y is the output of the previous layer and T
represents the training targets.

The dimensions of Y and T are the same as the inputs in forwardLoss.

 function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 pixelLabelImageDatastore

2-17

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 N = size(Y,4);

 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
 end

Completed Layer

The completed layer is provided in dicePixelClassificationLayer.m.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
 % This layer implements the generalized dice loss function for training
 % semantic segmentation networks.

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;
 end

 methods

 function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.

 % Set layer name.
 layer.Name = name;

 % Set layer description.
 layer.Description = 'Dice loss';
 end

 function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Dice loss between
 % the predictions Y and the training targets T.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

2 Alphabetical List

2-18

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 % Compute Dice score.
 dice = numer./denom;

 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;

 end

 function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 N = size(Y,4);

 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
 end
 end
end

GPU Compatibility

For GPU compatibility, the layer functions must support inputs and return outputs of type
gpuArray. Any other functions used by the layer must do the same.

The MATLAB functions used in forwardLoss, and backwardLoss in
dicePixelClassificationLayer all support gpuArray inputs, so the layer is GPU
compatible.

Check Output Layer Validity

Create an instance of the layer.

 pixelLabelImageDatastore

2-19

layer = dicePixelClassificationLayer('dice');

Check the layer validity of the layer using checkLayer. Specify the valid input size to be
the size of a single observation of typical input to the layer. The layer expects a H-by-W-by-
K-by-N array inputs, where K is the number of classes, and N is the number of
observations in the mini-batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Running nnet.checklayer.OutputLayerTestCase
..........
Done nnet.checklayer.OutputLayerTestCase

Test Summary:
 17 Passed, 0 Failed, 0 Incomplete, 0 Skipped.
 Time elapsed: 1.6227 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the
dicePixelClassificationLayer.

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
 convolution2dLayer(1,2)
 softmaxLayer
 dicePixelClassificationLayer('dice')]

layers =
 10x1 Layer array with layers:

 1 '' Image Input 32x32x1 images with 'zerocenter' normalization
 2 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU

2 Alphabetical List

2-20

 4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 6 '' ReLU ReLU
 7 '' Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
 8 '' Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 9 '' Softmax softmax
 10 'dice' Classification Output Dice loss

Load training data for semantic segmentation using imageDatastore and
pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Associate the image and pixel label data using pixelLabelImageDatastore.

ds = pixelLabelImageDatastore(imds,pxds);

Set the training options and train the network.

options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-2, ...
 'MaxEpochs',100, ...
 'LearnRateDropFactor',1e-1, ...
 'LearnRateDropPeriod',50, ...
 'LearnRateSchedule','piecewise', ...
 'MiniBatchSize',128);

net = trainNetwork(ds,layers,options);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:03 | 27.89% | 0.8346 | 0.0100 |
| 50 | 50 | 00:00:34 | 89.67% | 0.6384 | 0.0100 |

 pixelLabelImageDatastore

2-21

| 100 | 100 | 00:01:09 | 94.35% | 0.5024 | 0.0010 |
|==|

Evaluate the trained network by segmenting a test image and displaying the
segmentation result.

I = imread('triangleTest.jpg');

[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
figure
imshow(imtile({I,B}))

References

1 Crum, William R., Oscar Camara, and Derek LG Hill. "Generalized overlap measures
for evaluation and validation in medical image analysis." IEEE transactions on
medical imaging 25.11 (2006): 1451-1461.

2 Alphabetical List

2-22

2 Sudre, Carole H., et al. "Generalised Dice overlap as a deep learning loss function for
highly unbalanced segmentations." Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support. Springer, Cham, 2017. 240-248.

Semantic Segmentation Using Dilated Convolutions

This example shows how to train a semantic segmentation network using dilated
convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image
that is segmented by class. Applications for semantic segmentation include road
segmentation for autonomous driving and cancer cell segmentation for medical diagnosis.
To learn more, see “Semantic Segmentation Basics”.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated
convolutions (also known as atrous convolutions) because they can increase the receptive
field of the layer (the area of the input which the layers can see) without increasing the
number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32x32 triangle images for illustration purposes. The
dataset includes accompanying pixel label ground truth data. Load the training data using
an imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');

Create an image datastore for the images.

imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)

pxdsTrain =
 PixelLabelDatastore with properties:

 pixelLabelImageDatastore

2-23

 Files: {200×1 cell}
 ClassNames: {2×1 cell}
 ReadSize: 1
 ReadFcn: @readDatastoreImage
 AlternateFileSystemRoots: {}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated
convolutions.

Create a data source for training data and get the pixel counts for each label.

pximdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)

tbl=2×3 table
 Name PixelCount ImagePixelCount
 ____________ __________ _______________

 'triangle' 10326 2.048e+05
 'background' 1.9447e+05 2.048e+05

The majority of pixel labels are for background. This class imbalance biases the learning
process in favor of the dominant class. To fix this, use class weighting to balance the
classes. There are several methods for computing class weights. One common method is
inverse frequency weighting where the class weights are the inverse of the class
frequencies. This increases weight given to under-represented classes. Calculate the class
weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classificaiton with an image input layer with input size
corresponding to the size of the input images. Next, specify three blocks of convolution,
batch normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3
filters with increasing dilation factors and specify to pad the inputs to be the same size as
the outputs by setting the 'Padding' option to 'same'. To classify the pixels, include a
convolutional layer with K 1-by-1 convolutions, where K is the number of classes, followed
by a softmax layer and a pixelClassificationLayer with the inverse class weights.

2 Alphabetical List

2-24

inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);

layers = [
 imageInputLayer(inputSize)

 convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(1,numClasses)
 softmaxLayer
 pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];

Train Network

Specify the training options. Using the SGDM solver, train for 100 epochs, mini-batch size
64, and learn rate 0.001.

options = trainingOptions('sgdm', ...
 'MaxEpochs', 100, ...
 'MiniBatchSize', 64, ...
 'InitialLearnRate', 1e-3);

Train the network using trainNetwork.

net = trainNetwork(pximdsTrain,layers,options);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:00 | 67.54% | 0.7098 | 0.0010 |

 pixelLabelImageDatastore

2-25

| 17 | 50 | 00:00:03 | 84.60% | 0.3851 | 0.0010 |
| 34 | 100 | 00:00:06 | 89.85% | 0.2536 | 0.0010 |
| 50 | 150 | 00:00:09 | 93.39% | 0.1959 | 0.0010 |
| 67 | 200 | 00:00:11 | 95.89% | 0.1559 | 0.0010 |
| 84 | 250 | 00:00:14 | 97.29% | 0.1188 | 0.0010 |
| 100 | 300 | 00:00:18 | 98.28% | 0.0970 | 0.0010 |
|==|

Test Network

Load the test data. Create an image datastore for the images. Create a
pixelLabelDatastore for the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);

Make predictions using the test data and trained network.

pxdsPred = semanticseg(imdsTest,net,'WriteLocation',tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processing 100 images...
[==] 100%
Elapsed time: 00:00:00
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.98334 0.99107 0.85869 0.97109 0.68197

2 Alphabetical List

2-26

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest.jpg.

imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)

Segment the test image using semanticseg and display the results using
labeloverlay.

C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)

 pixelLabelImageDatastore

2-27

References

1 Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs." IEEE transactions on pattern analysis and
machine intelligence 40, no. 4 (2018): 834-848.

Tips
• The pixelLabelDatastore pxds and the imageDatastore imds store files that

are located in a folder in lexicographical order. For example, if you have twelve files
named 'file1.jpg', 'file2.jpg', … , 'file11.jpg', and 'file12.jpg', then
the files are stored in this order:

'file1.jpg'
'file10.jpg'
'file11.jpg'

2 Alphabetical List

2-28

'file12.jpg'
'file2.jpg'
'file3.jpg'
...
'file9.jpg'

Files that are stored in a cell array are read in the same order as they are stored.

If the order of files in pxds and imds are not the same, then you may encounter a
mismatch when you read a ground truth image and corresponding label data using a
pixelLabelImageDatastore. If this occurs, then rename the pixel label files so that
they have the correct order. For example, rename 'file1.jpg', … , 'file9.jpg' to
'file01.jpg', …, 'file09.jpg'.

• To extract semantic segmentation data from a groundTruth object generated by the
Video Labeler or Ground Truth Labeler, use the pixelLabelTrainingData
function.

See Also
ImageDatastore | groundTruth | pixelLabelDatastore |
pixelLabelTrainingData | trainNetwork

Topics
“Semantic Segmentation Basics”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2018a

 pixelLabelImageDatastore

2-29

partitionByIndex
Partition pixelLabelImageDatastore according to indices

Syntax
pximds2 = partitionByIndex(pximds,ind)

Description
pximds2 = partitionByIndex(pximds,ind) partitions a subset of observations in a
pixel label image datastore, pximds, into a new datastore, pximds2. The desired
observations are specified by indices, ind.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
pximds2 — Output datastore
pixelLabelImageDatastore object

Output datastore, returned as a pixelLabelImageDatastore object containing a
subset of files from pximds.

2 Alphabetical List

2-30

See Also
pixelLabelImageDatastore | read | readByIndex | readall

Introduced in R2018a

 partitionByIndex

2-31

read
Read data from pixelLabelImageDatastore

Syntax
data = read(pximds)
[data,info] = read(pximds)

Description
data = read(pximds) returns a batch of data from a pixel label image datastore,
pximds. Subsequent calls to the read function continue reading from the endpoint of the
previous call.

[data,info] = read(pximds) also returns information about the extracted data,
including metadata, in info.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object. The
datastore specifies a MiniBatchSize number of observations in each batch, and a
numObservations total number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.

2 Alphabetical List

2-32

For the last batch of data in the datastore pximds, if numObservations is not cleanly
divisible by MiniBatchSize, then read returns a partial batch containing all the
remaining observations in the datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
Filename Filename is a fully resolved path containing

the path string, name of the file, and file
extension.

FileSize Total file size, in bytes. For MAT-files,
FileSize is the total number of key-value
pairs in the file.

See Also
matlab.io.datastore.read | pixelLabelImageDatastore | readByIndex |
readall

Introduced in R2018a

 read

2-33

readByIndex
Read data specified by index from pixelLabelImageDatastore

Syntax
data = readByIndex(pximds,ind)
[data,info] = readByIndex(pximds,ind)

Description
data = readByIndex(pximds,ind) returns a subset of observations from a pixel label
image datastore, pximds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(pximds,ind) also returns information about the
observations, including metadata, in info.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

2 Alphabetical List

2-34

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
Filename Filename is a fully resolved path containing

the path string, name of the file, and file
extension.

FileSize Total file size, in bytes. For MAT-files,
FileSize is the total number of key-value
pairs in the file.

See Also
partitionByIndex | pixelLabelImageDatastore | read | readall

Introduced in R2018a

 readByIndex

2-35

shuffle
Shuffle data in pixelLabelImageDatastore

Syntax
pximds2 = shuffle(pximds)

Description
pximds2 = shuffle(pximds) returns a pixelLabelImageDatastore object
containing a random ordering of the data from pixel label image datastore pximds.

Input Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore

Pixel label image datastore, specified as a pixelLabelImageDatastore object.

Output Arguments
pximds2 — Output datastore
pixelLabelImageDatastore object

Output datastore, returned as a pixelLabelImageDatastore object containing
randomly ordered files from pximds.

See Also
pixelLabelImageDatastore | read | readByIndex | readall

2 Alphabetical List

2-36

Introduced in R2018a

 shuffle

2-37

crop2dLayer
Neural network layer in a neural network that can be used to crop an input feature map

Description
A 2-D crop layer applies 2-D cropping to the input.

There are two inputs to this layer:

• 'in' — The feature map that will be cropped
• 'ref' — A reference layer used to determine the size, [height width], of the cropped

output

Once you create this layer, you can add it to a layerGraph to make serial connections
between layers. To connect the crop layer to other layers, call connectLayers and
specify the input names. The connectLayers function returns a connected LayerGraph
object ready to train a network. Connecting layers requires Deep Learning Toolbox.

2 Alphabetical List

2-38

Creation

Syntax
layer = crop2dLayer(Mode)
layer = crop2dLayer(Location)
layer = crop2dLayer(___ ,'Name',Name)

 crop2dLayer

2-39

Description
layer = crop2dLayer(Mode) returns a layer that crops an input feature map, and sets
the Mode property.

layer = crop2dLayer(Location) returns a layer that crops an input feature map
using a rectangular window, and sets the Location property that indicates the position
of the window.

layer = crop2dLayer(___ ,'Name',Name) creates a layer for cropping and sets the
optional Name property.

Properties
Mode — Cropping mode
'centercrop' (default) | 'custom'

Cropping mode, specified as 'centercrop' or 'custom'.

Mode Description
'centercrop' The location of the cropping window is the center of

the input feature map.
'custom' The location of the cropping window is based on the

Location property. This value is automatically set
when the Location property is specified as a 2-
element row vector.

Data Types: char

Location — Cropping window location
'auto' (default) | 2-element row vector

Cropping window location, specified as 'auto' or a 2-element row vector.

2 Alphabetical List

2-40

Location Description
2-element row vector in the
format [x y]

The upper-left corner of the cropping window is at the
location [x y] of the input feature map. x indicates the
location in the horizontal direction and y is the vertical
direction.

'auto' The cropping window is located at the center of the
input feature map. This value is automatically set when
the Mode property is specified as 'centercrop'.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'in' 'ref'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'ref'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

 crop2dLayer

2-41

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 2-D Crop Layer

Create a 2-D crop layer and connect both of the inputs using a layerGraph object.

Create the layers.

layers = [
 imageInputLayer([32 32 3],'Name','image')
 crop2dLayer('centercrop','Name','crop')
]

layers =
 2x1 Layer array with layers:

 1 'image' Image Input 32x32x3 images with 'zerocenter' normalization
 2 'crop' Crop 2D center crop

Create a layerGraph. The first input of crop2dLayer is automatically connected to the
first output of the image input layer.

lgraph = layerGraph(layers)

lgraph =
 LayerGraph with properties:

 Layers: [2x1 nnet.cnn.layer.Layer]
 Connections: [1x2 table]

Connect the second input to the image layer output.

lgraph = connectLayers(lgraph,'image','crop/ref')

lgraph =
 LayerGraph with properties:

 Layers: [2x1 nnet.cnn.layer.Layer]

2 Alphabetical List

2-42

 Connections: [2x2 table]

See Also
connectLayers | fcnLayers | layerGraph | pixelClassificationLayer |
trainNetwork

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

 crop2dLayer

2-43

rcnnBoxRegressionLayer
Box regression layer for Fast and Faster R-CNN

Description
A box regression layer refines bounding box locations by using a smooth L1 loss function.
Use this layer to create a Fast or Faster R-CNN object detection network.

Creation

Syntax
layer = rcnnBoxRegressionLayer
layer = rcnnBoxRegressionLayer('Name',Name)

Description
layer = rcnnBoxRegressionLayer creates a box regression layer for a Fast or Faster
R-CNN object detection network.

layer = rcnnBoxRegressionLayer('Name',Name) creates a box regression layer
and sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.

2 Alphabetical List

2-44

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create R-CNN Box Regression Layer

Create an R-CNN box regression layer with the name 'rcnn_box_reg'.

rcnnBoxRegression = rcnnBoxRegressionLayer('Name','rcnn_box_reg');

See Also
regressionLayer | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

Topics
“Create Fast R-CNN Object Detection Network”
“Create Faster R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

 rcnnBoxRegressionLayer

2-45

regionProposalLayer
Region proposal layer for Faster R-CNN

Description
A region proposal layer outputs bounding boxes around potential objects in an image as
part of the region proposal network (RPN) within Faster R-CNN. These outputs are
further refined by additional layers within Faster R-CNN to produce the final object
detection results.

There are two inputs to this layer:

• 'scores' — The classification scores produced by the RPN classification branch
• 'boxDeltas' — The bounding box deltas produced by the RPN regression branch

Use the input names when connecting or disconnecting the region proposal layer to other
layers using connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax
layer = regionProposalLayer(anchorBoxes)
layer = regionProposalLayer(anchorBoxes,'Name',Name)

Description
layer = regionProposalLayer(anchorBoxes) creates a region proposal layer for
building Faster R-CNN object detection networks, and sets the AnchorBoxes property.

layer = regionProposalLayer(anchorBoxes,'Name',Name) creates a region
proposal layer and sets the optional Name property.

2 Alphabetical List

2-46

Properties
AnchorBoxes — Anchor boxes
M-by-2 matrix

Anchor boxes, specified as an M-by-2 matrix defining the [height width] of M anchor
boxes.

Anchor boxes are predefined bounding box templates of fixed size. The size of each
anchor box is typically determined based on a priori knowledge of the scale and aspect
ratio of objects in the training dataset. An RPN network is trained to predict the
translation and rescaling needed to align the anchor boxes with the ground truth
bounding boxes. [1]

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'scores' 'boxDeltas'} (default)

Input names of the layer. This layer has two inputs, named 'scores' and 'boxDeltas'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

 regionProposalLayer

2-47

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Region Proposal Layer

Define three square anchor boxes for the region proposal layer.

anchorBoxes = [
 16 16
 64 64
 128 128
];

Create a region proposal layer with the name 'region_proposal'.

regionProposal = regionProposalLayer(anchorBoxes,'Name','region_proposal');

References
[1] Ren, S., K. He, R. Girshick, and J. Sun. "Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks." Advances in Neural Information
Processing Systems. Vol. 28, 2015.

See Also
connectLayers | layerGraph | removeLayers | trainFasterRCNNObjectDetector

Topics
“Create Faster R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

2 Alphabetical List

2-48

Introduced in R2018b

 regionProposalLayer

2-49

roiInputLayer
ROI input layer for Fast R-CNN

Description
An ROI input layer inputs images to a Fast R-CNN object detection network.

Creation

Syntax
layer = roiInputLayer
layer = roiInputLayer('Name',Name)

Description
layer = roiInputLayer creates an ROI input layer.

layer = roiInputLayer('Name',Name) creates an ROI input layer and sets the
optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

2 Alphabetical List

2-50

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.

roiInput = roiInputLayer('Name','roi_input');

Create an ROI max pooling layer with output size [4 4].

outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');

Add the layers to a LayerGraph.

lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);

Specify that the output of the ROI input layer is the 'roi' input of the ROI max pooling
layer.

lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

 roiInputLayer

2-51

See Also
imageInputLayer | roiMaxPooling2dLayer | trainFastRCNNObjectDetector

Topics
“Create Fast R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

2 Alphabetical List

2-52

Introduced in R2018b

 roiInputLayer

2-53

roiMaxPooling2dLayer
Neural network layer used to output fixed-size feature maps for rectangular ROIs

Description
An ROI max pooling layer outputs fixed size feature maps for every rectangular ROI
within the input feature map. Use this layer to create a Fast or Faster R-CNN object
detection network.

Given an input feature map of size [H W C N], where C is the number of channels and N is
the number of observations, the output feature map size is [height width C sum(M)],
where height and width are the output size. M is a vector of length N and M(i) is the
number of ROIs associated with the i-th input feature map.

There are two inputs to this layer:

• 'in' — The input feature map that will be cropped
• 'roi' — A list of ROIs to pool

Use the input names when connecting or disconnecting the ROI max pooling layer to
other layers using connectLayers or disconnectLayers (requires Deep Learning
Toolbox).

Creation

Syntax
layer = roiMaxPooling2dLayer(outputSize)
layer = roiMaxPooling2dLayer(outputSize,'Name',Name)

Description
layer = roiMaxPooling2dLayer(outputSize) creates a max pooling layer for ROIs
and sets the OutputSize property.

2 Alphabetical List

2-54

layer = roiMaxPooling2dLayer(outputSize,'Name',Name) creates a max
pooling layer for ROIs and sets the optional Name property. To create a network
containing an ROI max pooling layer, you must specify a layer name.

Properties
OutputSize — Pooled output size
two-element vector of positive integers

Pooled output size, specified as a two-element vector of positive integers of the form
[height width].

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'in' 'roi'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'roi'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

 roiMaxPooling2dLayer

2-55

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.

roiInput = roiInputLayer('Name','roi_input');

Create an ROI max pooling layer with output size [4 4].

outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');

Add the layers to a LayerGraph.

lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);

Specify that the output of the ROI input layer is the 'roi' input of the ROI max pooling
layer.

lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

2 Alphabetical List

2-56

See Also
connectLayers | layerGraph | maxPooling2dLayer | removeLayers |
roiInputLayer | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

Topics
“Create Fast R-CNN Object Detection Network”
“Create Faster R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

 roiMaxPooling2dLayer

2-57

“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

2 Alphabetical List

2-58

rpnClassificationLayer
Classification layer for region proposal networks (RPNs)

Description
A region proposal network (RPN) classification layer classifies image regions as either
object or background by using a cross entropy loss function. Use this layer to create a
Faster R-CNN object detection network.

Creation

Syntax
layer = rpnClassificationLayer
layer = rpnClassificationLayer('Name',Name)

Description
layer = rpnClassificationLayer creates a two-class classification layer for a
Faster R-CNN object detection network.

layer = rpnClassificationLayer('Name',Name) creates a two-class classification
layer and sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.

 rpnClassificationLayer

2-59

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.

rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')

rpnSoftmax =
 RPNSoftmaxLayer with properties:

 Name: 'rpn_softmax'

Create an RPN classification layer with the name 'rpn_cls'.

rpnClassification = rpnClassificationLayer('Name','rpn_cls')

rpnClassification =
 RPNClassificationLayer with properties:

 Name: 'rpn_cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the
classification branch of an RPN.

2 Alphabetical List

2-60

numAnchors = 3;
rpnClassLayers = [
 convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
 rpnSoftmax
 rpnClassification
]

rpnClassLayers =
 3x1 Layer array with layers:

 1 'conv1x1_box_cls' Convolution 6 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 2 'rpn_softmax' RPN Softmax rpn softmax
 3 'rpn_cls' RPN Classification Output cross-entropy loss with 'object' and 'background' classes

See Also
classificationLayer | rpnSoftmaxLayer | trainFasterRCNNObjectDetector

Topics
“Create Faster R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

 rpnClassificationLayer

2-61

rpnSoftmaxLayer
Softmax layer for region proposal network (RPN)

Description
A region proposal network (RPN) softmax layer applies a softmax activation function to
the input. Use this layer to create a Faster R-CNN object detection network.

Creation

Syntax
layer = rpnSoftmaxLayer
layer = rpnSoftmaxLayer('Name',Name)

Description
layer = rpnSoftmaxLayer creates a softmax layer for a Faster R-CNN object
detection network.

layer = rpnSoftmaxLayer('Name',Name) creates a softmax layer and sets the
optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.

2 Alphabetical List

2-62

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.

rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')

rpnSoftmax =
 RPNSoftmaxLayer with properties:

 Name: 'rpn_softmax'

 rpnSoftmaxLayer

2-63

Create an RPN classification layer with the name 'rpn_cls'.

rpnClassification = rpnClassificationLayer('Name','rpn_cls')

rpnClassification =
 RPNClassificationLayer with properties:

 Name: 'rpn_cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the
classification branch of an RPN.

numAnchors = 3;
rpnClassLayers = [
 convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
 rpnSoftmax
 rpnClassification
]

rpnClassLayers =
 3x1 Layer array with layers:

 1 'conv1x1_box_cls' Convolution 6 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 2 'rpn_softmax' RPN Softmax rpn softmax
 3 'rpn_cls' RPN Classification Output cross-entropy loss with 'object' and 'background' classes

See Also
rpnClassificationLayer | softmaxLayer | trainFasterRCNNObjectDetector

Topics
“Create Faster R-CNN Object Detection Network”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

2 Alphabetical List

2-64

pixelClassificationLayer
Create pixel classification layer for semantic segmentation

Description
A pixel classification layer provides a categorical label for each image pixel or voxel.

Creation

Syntax
layer = pixelClassificationLayer
layer = pixelClassificationLayer(Name,Value)

Description
layer = pixelClassificationLayer creates a pixel classification output layer for
semantic image segmentation networks. The layer outputs the categorical label for each
image pixel or voxel processed by a CNN. The layer automatically ignores undefined pixel
labels during training.

layer = pixelClassificationLayer(Name,Value) returns a pixel classification
output layer using Name,Value pair arguments to set the optional Classes,
ClassWeights, and Name properties by using name-value pairs. You can specify multiple
name-value pairs. Enclose each property name in quotes.

For example, pixelClassificationLayer('Name','pixclass') creates a pixel
classification layer with the name 'pixclass'.

Properties
Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

 pixelClassificationLayer

2-65

Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets
the classes at training time. If you specify the string array or cell array of character
vectors str, then the software sets the classes of the output layer to
categorical(str,str). The default value is 'auto'.
Data Types: char | categorical | string | cell

ClassWeights — Class weights
'none' (default) | vector of real scalar

Class weights, specified as 'none' or as a vector of real scalar. The elements of the
vector correspond to the classes in Classes. If you specify ClassWeights, then you
must specify Classes.

Use class weighting to balance classes when there are underrepresented classes in the
training data.

OutputSize — Output size
'auto' (default)

This property is read-only.

The output size of the layer. The value is 'auto' prior to training, and is specified as a
numeric value at training time.

LossFunction — Loss function
'crossentropyex' (default)

This property is read-only.

Loss function used for training, specified as 'crossentropyex'.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

2 Alphabetical List

2-66

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Use Pixel Classification Layer to Create Semantic Segmentation Network

Predict the categorical label of every pixel in an input image.

layers = [
 imageInputLayer([32 32 3])
 convolution2dLayer(3,16,'Stride',2,'Padding',1)
 reluLayer
 transposedConv2dLayer(3,1,'Stride',2,'Cropping',1)
 softmaxLayer
 pixelClassificationLayer
]

layers =
 6x1 Layer array with layers:

 1 '' Image Input 32x32x3 images with 'zerocenter' normalization
 2 '' Convolution 16 3x3 convolutions with stride [2 2] and padding [1 1 1 1]
 3 '' ReLU ReLU
 4 '' Transposed Convolution 1 3x3 transposed convolutions with stride [2 2] and cropping [1 1 1 1]
 5 '' Softmax softmax
 6 '' Pixel Classification Layer Cross-entropy loss

 pixelClassificationLayer

2-67

Use Weighting to Balance Classes in Training Data

Balance classes using inverse class frequency weighting when some classes are
underrepresented in the training data. First, count class frequencies over the training
data using pixelLabelImageDatastore. Then, set the 'ClassWeights' in
pixelClassificationLayer to the computed inverse class frequencies.

Set the location of image and pixel label data.

 dataDir = fullfile(toolboxdir('vision'),'visiondata');
 imDir = fullfile(dataDir,'building');
 pxDir = fullfile(dataDir,'buildingPixelLabels');

Create a pixel label image datastore using the ground truth images in imds and the pixel
labeled images in pxds.

 imds = imageDatastore(imDir);
 classNames = ["sky" "grass" "building" "sidewalk"];
 pixelLabelID = [1 2 3 4];
 pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
 pximds = pixelLabelImageDatastore(imds,pxds);

Tabulate class distribution in dataset.

 tbl = countEachLabel(pximds)

tbl=4×3 table
 Name PixelCount ImagePixelCount
 __________ __________ _______________

 'sky' 3.1485e+05 1.536e+06
 'grass' 1.5979e+05 1.536e+06
 'building' 1.0312e+06 1.536e+06
 'sidewalk' 25313 9.216e+05

Calculate inverse frequency class weights.

 totalNumberOfPixels = sum(tbl.PixelCount);
 frequency = tbl.PixelCount / totalNumberOfPixels;
 inverseFrequency = 1./frequency

inverseFrequency = 4×1

 4.8632

2 Alphabetical List

2-68

 9.5827
 1.4848
 60.4900

Set 'ClassWeights' to the inverse class frequencies.

 layer = pixelClassificationLayer(...
 'Classes',tbl.Name,'ClassWeights',inverseFrequency)

layer =
 PixelClassificationLayer with properties:

 Name: ''
 Classes: [sky grass building sidewalk]
 ClassWeights: [4x1 double]
 OutputSize: 'auto'

 Hyperparameters
 LossFunction: 'crossentropyex'

See Also
fcnLayers | pixelLabelDatastore | pixelLabelImageDatastore | segnetLayers
| semanticseg | trainNetwork

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“Specify Layers of Convolutional Neural Network” (Deep Learning Toolbox)

Introduced in R2017b

 pixelClassificationLayer

2-69

yolov2Layers
Create YOLO v2 object detection network

Description
You only look once version 2 (YOLO v2) is a convolutional neural network (CNN) based
object detector. The YOLO v2 network predicts the coordinates of bounding boxes,
objectness scores, and classification scores from a predefined set of anchor boxes. The
yolov2Layers function creates a YOLO v2 network, which represents the network
architecture for YOLO v2 object detector. Use the trainYOLOv2ObjectDetector
function to train the YOLO v2 network for object detection.

Creation

Syntax
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,
featureLayer)
lgraph = yolov2Layers(___ ,'ReorgLayerSource',reorgLayer)

Description
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,
featureLayer) creates a YOLO v2 object detection network and returns it as a
LayerGraph object.

lgraph = yolov2Layers(___ ,'ReorgLayerSource',reorgLayer) specifies the
source of reorganization layer by using a name-value pair. You can specify this name-value
pair to add reorganization layer to the YOLO v2 network architecture. Specify this
argument in addition to the input arguments in the previous syntax.

2 Alphabetical List

2-70

Input Arguments
imageSize — Size of input image
two-element vector | three-element vector

Size of input image, specified as one of these values:

• Two-element vector of form [H W] - For a grayscale image of size H-by-W
• Three-element vector of form [H W 3] - For an RGB color image of size H-by-W

numClasses — Number of object classes
positive integer

Number of object classes, specified as a positive integer.

anchorBoxes — Anchor boxes
M-by-2 matrix

Anchor boxes, specified as an M-by-2 matrix defining the size and the number of anchor
boxes. Each row in the M-by-2 matrix denotes the size of the anchor box in the form of
[height width]. M denotes the number of anchor boxes. This input sets the AnchorBoxes
property of the output layer.

The size of each anchor box is determined based on the scale and aspect ratio of different
object classes present in input training data. Also, the size of each anchor box must be
smaller than or equal to the size of the input image. You can use the clustering approach
for estimating anchor boxes from the training data. For more information, see “Estimate
Anchor Boxes Using Clustering”.

network — Pretrained convolutional neural network
LayerGraph object | DAGNetwork object | SeriesNetwork object

Pretrained convolutional neural network, specified as an LayerGraph, DAGNetwork, or
SeriesNetwork object. This pretrained convolutional neural network is used as the base
for the YOLO v2 object detection network. For details on pretrained networks in MATLAB,
see “Pretrained Deep Neural Networks” (Deep Learning Toolbox).

featureLayer — Name of feature layer
character vector | string scalar

Name of feature layer, specified as a character vector or a string scalar. The name of one
of the deeper layers in the network to be used for feature extraction. The features

 yolov2Layers

2-71

extracted from this layer are given as input to the YOLO v2 object detection subnetwork.
You can use the analyzeNetwork function to view the names of the layers in the input
network.

Note You can specify any network layer except the fully connected layer as the feature
layer.

reorgLayer — Name of reorganization layer
character vector | string scalar

Name of reorganization layer, specified as a character vector or a string scalar. The name
of one of the deeper layers in the network to be used as input to the reorganization layer.
You can use the analyzeNetwork function to view the names of the layers in the input
network. The reorganization layer is the pass-through layer that reorganizes the
dimension of low layer features to facilitate concatenation with high layer features.

Note The input to the reorganization layer must be from any one of the network layers
that lie above the feature layer.

Output Arguments
lgraph — YOLO v2 object detection network
LayerGraph object

YOLO v2 object detection network, returned as a LayerGraph object.

Note The default value for the Normalization property of the image input layer in the
returned lgraph object is set to the Normalization property of the base network
specified in network

Examples

Create YOLO v2 Network for Object Detection

Specify the size of the input image for training the network.

2 Alphabetical List

2-72

imageSize = [224 224 3];

Specify the number of object classes the network has to detect.

numClasses = 1;

Define the anchor boxes.

anchorBoxes = [1 1;4 6;5 3;9 6];

Specify the pretrained ResNet -50 network as the base network for YOLO v2. To use this
pretrained network, you need to install the 'Deep Learning Toolbox Model for ResNet-50
Network' support package.

network = resnet50();

Analyze the network architecture to view all the network layers.

analyzeNetwork(network)

 yolov2Layers

2-73

Specify the network layer to be used for feature extraction. You can choose any layer
except the fully connected layer as feature layer.

featureLayer = 'activation_49_relu';

Create the YOLO v2 object detection network. The network is returned as a LayerGraph
object.

lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer);

Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are
removed. A series of convolution, ReLU, and batch normalization layers along with the
YOLO v2 transform and YOLO v2 output layers are added to the feature layer of the base
network.

analyzeNetwork(lgraph)

2 Alphabetical List

2-74

Create YOLO v2 Network with Reorganization Layer

Specify the size of the input image for training the network.

imageSize = [224 224 3];

Specify the number of object classes the network has to detect.

numClasses = 1;

Define the anchor boxes.

anchorBoxes = [1 1;4 6;5 3;9 6];

 yolov2Layers

2-75

Specify the pretrained ResNet -50 as base network for YOLO v2. To use this pretrained
network, you need to install the 'Deep Learning Toolbox Model for ResNet-50 Network'
support package.

network = resnet50();

Analyze the network architecture to view all the network layers.

analyzeNetwork(network)

Specify the network layer to be used for feature extraction. You can choose any layer
except the fully connected layer as feature layer.

featureLayer = 'activation_49_relu';

Specify the network layer to be used as the source for reorganization layer.

2 Alphabetical List

2-76

reorgLayer = 'activation_47_relu';

Create the YOLO v2 object detection network. The network is returned as a LayerGraph
object.

lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer,'ReorglayerSource',reorgLayer);

Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are
removed. The detection subnetwork along with the YOLO v2 transform and YOLO v2
output layers are added to the feature layer of base network. The reorganization layer
and the depth concatenation layer are also added to the network. The YOLO v2 reorg
layer reorganizes the dimension of output features from activation_47_relu layer.
The depth concatenation layer concatenates the output of the reorganization layer with
the output of a higher layer.

analyzeNetwork(lgraph)

 yolov2Layers

2-77

Algorithms
The YOLOv2Layers object generates the network architecture for YOLO v2 object
detection network presented in [2].

• YOLOv2Layers uses a pretrained neural network as the base network to which it adds
a detection subnetwork required for creating a YOLO v2 object detection network.

2 Alphabetical List

2-78

Given a base network, YOLOv2Layers removes all the layers succeeding the feature
layer in the base network and adds the detection subnetwork. The detection
subnetwork comprises of groups of serially connected convolution, ReLU, and batch
normalization layers. The YOLO v2 transform layer and YOLO v2 output layer are
added to the detection subnetwork. If you specify the name-value pair
'ReorgLayerSource', the YOLO v2 network concatenates the output of
reorganization layer with the output of feature layer.

For information on creating a custom YOLO v2 network layer-by-layer, see “Create YOLO
v2 Object Detection Network”.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-

Time Object Detection." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
Honolulu, HI: CVPR, 2017.

See Also
analyzeNetwork | resnet50 | trainYOLOv2ObjectDetector |
yolov2ObjectDetector | yolov2OutputLayer | yolov2ReorgLayer |
yolov2TransformLayer

Topics
“Create YOLO v2 Object Detection Network”
“Estimate Anchor Boxes Using Clustering”
“Object Detection Using YOLO v2 Deep Learning”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2Layers

2-79

yolov2OutputLayer
Create output layer for YOLO v2 object detection network

Description
The yolov2OutputLayer function creates a YOLOv2OutputLayer object, which
represents the output layer for you look only once version 2 (YOLO v2) object detection
network. The output layer provides the refined bounding box locations of the target
objects.

Creation

Syntax
layer = yolov2OutputLayer(anchorBoxes)
layer = yolov2OutputLayer(anchorBoxes,Name,Value)

Description
layer = yolov2OutputLayer(anchorBoxes) creates a YOLOv2OutputLayer object,
layer, which represents the output layer for YOLO v2 object detection network. The
layer outputs the refined bounding box locations that are predicted using a predefined set
of anchor boxes specified at the input.

layer = yolov2OutputLayer(anchorBoxes,Name,Value) sets the Name and
LossFactors properties using name-value pairs and the input from the preceding
syntax. Enclose each property name in single quotes. For example,
yolov2OutputLayer('Name','yolo_Out') creates an output layer with the name
'yolo_Out'.

2 Alphabetical List

2-80

Input Arguments
anchorBoxes — Set of anchor boxes
M-by-2 matrix

Set of anchor boxes, specified as an M-by-2 matrix, where each row is of the form [height
width]. The matrix defines the height and the width of M number of anchor boxes. This
input sets the AnchorBoxes property of the output layer. You can use the clustering
approach for estimating anchor boxes from the training data. For more information, see
“Estimate Anchor Boxes Using Clustering”.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

LossFunction — Loss function
'mean-squared-error' (default)

Loss function, specified as 'mean-squared-error'. For more information about the
loss function, see “Loss Function for Bounding Box Refinement” on page 2-83.

AnchorBoxes — Set of anchor boxes
M-by-2 matrix

This property is read-only.

Set of anchor boxes used for training, specified as a M-by-2 matrix defining the height
and the width of M number of anchor boxes. This property is set by the input
anchorBoxes.

LossFactors — Weights in the loss function
[5 1 1 1] (default) | 1-by-4 vector

 yolov2OutputLayer

2-81

This property is read-only.

Weights in the loss function, specified as a 1-by-4 vector of form [K1 K2 K3 K4]. Weights
increase the stability of the network model by penalizing incorrect bounding box
predictions and false classifications. For more information about the weights in loss the
function, see “Loss Function for Bounding Box Refinement” on page 2-83.

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create YOLO v2 Output Layer

Create a YOLO v2 output layer with two anchor boxes.

Define the height and the width of the anchor boxes.

anchorBoxes = [16 16;32 32];

Generate a YOLO v2 output layer with the name "yolo_Out".

layer = yolov2OutputLayer(anchorBoxes,'Name','yolo_Out');

Inspect the properties of the YOLO v2 output layer.

layer

layer =
 YOLOv2OutputLayer with properties:

2 Alphabetical List

2-82

 Name: 'yolo_Out'

 Hyperparameters
 LossFunction: 'mean-squared-error'
 AnchorBoxes: [2×2 double]
 LossFactors: [5 1 1 1]

Definitions

Loss Function for Bounding Box Refinement
During training, the output layer of YOLO v2 network predicts refined bounding box
locations by optimizing the mean squared error loss between predicted bounding boxes
and the ground truth. The loss function is defined as

K x x y y

K w w

ij
obj

i i i i

j

B

i

S

ij
obj

i

1

2 2

00

1

1

1

2

-() + -()È
ÎÍ

˘
˚̇

+ -

==
ÂÂ ˆ ˆ

ˆ ii i i
j

B

i

S

ij
obj

i i

j

B

i

h h

K C C

() + -()È

Î
Í
Í

˘

˚
˙
˙

+ -()

==

=

ÂÂ

Â

2 2

00

2

2

0

2

1

ˆ

ˆ

==

==

Â

ÂÂ+ -()

+ () - ()(

0

3

2

00

4

2

2

1

1

S

ij
noobj

i i

j

B

i

S

i
obj

i i

K C C

K p c p c

ˆ

ˆ))
Œ=
ÂÂ

2

0

2

c classesi

S

where:

• S is the number of grid cells
• B is the number of bounding boxes in each grid cell.

 yolov2OutputLayer

2-83

•
1ij

obj

 is 1 if the jth bounding box in grid cell i is responsible for detecting the object.
Otherwise it is set to 0. A grid cell i is responsible for detecting the object, if the
overlap between the ground truth and a bounding box in that grid cell is greater than
or equal to 0.6.

•
1ij

noobj

 is 1 if the jth bounding box in grid cell i does not contain any object. Otherwise
it is set to 0.

•
1i

obj

 is 1 if an object is detected in grid cell i. Otherwise it is set to 0.
• K1, K2, K3, and K4 are the weights. To adjust the weights, modify the LossFactors

property.

The loss function can be split into three parts:

• Localization loss

The first and second terms in the loss function comprise the localization loss. It
measures error between the predicted bounding box and the ground truth. The
parameters for computing the localization loss include the position, size of the
predicted bounding box, and the ground truth. The parameters are defined as follows.

• x yi i,() , is the center of the jth bounding box relative to grid cell i.
• ˆ , ˆx yi i() , is the center of the ground truth relative to grid cell i.
• w hi iand is the width and the height of the jth bounding box in grid cell i,

respectively. The size of the predicted bounding box is specified relative to the
input image size.

•
ˆ ˆw hi iand is the width and the height of the ground truth in grid cell i, respectively.

• K1 is the weight for localization loss. Increase this value to increase the weightage
for bounding box prediction errors.

• Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third
term measures the objectness (confidence score) error when an object is detected in
the jth bounding box of grid cell i. The fourth term measures the objectness error

2 Alphabetical List

2-84

when no object is detected in the jth bounding box of grid cell i. The parameters for
computing the confidence loss are defined as follows.

• Ci is the confidence score of the jth bounding box in grid cell i.
• Ĉi is the confidence score of the ground truth in grid cell i.
• K2 is the weight for objectness error, when an object is detected in the predicted

bounding box. Increase this value to increase the weightage for bounding box and
grid cell that contain the object.

• K3is the weight for objectness error, when an object is not detected in the predicted
bounding box. Decrease this value to decrease the weightage for bounding box and
grid cell that does not contain any object. Decreasing the weight for objectness
error, prevents the network from training to detect the background instead of the
objects.

• Classification loss

The fifth term in the loss function comprises the classification loss. For example,
suppose that an object is detected in the predicted bounding box contained in grid cell
i. Then, the classification loss measures the squared error between the class
conditional probabilities for each class in grid cell i. The parameters for computing the
classification loss are defined as follows.

• pi (c) is the estimated conditional class probability for object class c in grid cell i.
• p̂ ci () is the actual conditional class probability for object class c in grid cell i.
• K4 is the weight for classification error when an object is detected in the grid cell.

Increase this value to increase the weightage for classification loss.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-

Time Object Detection." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
Honolulu, HI: CVPR, 2017.

 yolov2OutputLayer

2-85

See Also
trainYOLOv2ObjectDetector | yolov2Layers | yolov2ObjectDetector |
yolov2ReorgLayer

Topics
“Create YOLO v2 Object Detection Network”
“Estimate Anchor Boxes Using Clustering”
“Object Detection Using YOLO v2 Deep Learning”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

2 Alphabetical List

2-86

yolov2ReorgLayer
Create reorganization layer for YOLO v2 object detection network

Description
The yolov2ReorgLayer function creates a YOLOv2ReorgLayer object, which
represents the reorganization layer for you look only once version 2 (YOLO v2) object
detection network. The reorganization layer reorganizes the high-resolution feature maps
from a lower layer by stacking adjacent features into different channels. The output of
reorganization layer is fed to the depth concatenation layer. The depth concatenation
layer concatenates the reorganized high-resolution features with the low-resolution
features from a higher layer.

Creation

Syntax
layer = yolov2ReorgLayer(stride)
layer = yolov2ReorgLayer(stride,Name,Value)

Description
layer = yolov2ReorgLayer(stride) creates the reorganization layer for YOLO v2
object detection network. The layer reorganizes the dimension of the input feature maps
according to the step size specified in stride. For details on creating a YOLO v2 network
with reorganization layer, see “Design a YOLO v2 Detection Network with a Reorg Layer”.

layer = yolov2ReorgLayer(stride,Name,Value) sets the Name property using a
name-value pair. Enclose the property name in single quotes. For example,
yolov2ReorgLayer('Name','yolo_Reorg') creates reorganization layer with the
name 'yolo_Reorg'.

 yolov2ReorgLayer

2-87

Input Arguments
stride — Step size for traversing input
vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a 2- element
vector of positive integers in form [a b]. a is the vertical step size and b is the horizontal
step size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

2 Alphabetical List

2-88

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create YOLO v2 Reorganization Layer

Specify the step size for reorganising the dimension of input feature map.

stride = [2 2];

Create a YOLO v2 reorganization layer with the specified step size and the name as
"yolo_Reorg".

layer = yolov2ReorgLayer(stride,'Name','yolo_Reorg');

Inspect the properties of the YOLO v2 reorganization layer.

layer

layer =
 YOLOv2ReorgLayer with properties:

 Name: 'yolo_Reorg'

 Hyperparameters
 Stride: [2 2]

Tips
• You can find the desired value of stride using:

 yolov2ReorgLayer

2-89

stride = floor
size of input feature map to reorganization layyer

size of output feature map from higher layer

Ê

Ë
Á

ˆ

¯
˜

Algorithms
The reorganization layer improves the performance of the YOLO v2 object detection
network by facilitating feature concatenation from different layers. It reorganizes the
dimension of a lower layer feature map so that it can be concatenated with the higher
layer feature map.

Consider an input feature map of size [H W C], where:

• H is the height of the feature map.
• W is the width of the feature map.
• C is the number of channels.

The reorganization layer chooses feature map values from locations based on the step
sizes in stride and adds those feature values to the third dimension C. The size of the
reorganized feature map from the reorganization layer is [floor(H/stride(1))
floor(W/stride(2)) C×stride(1)×stride(2)].

For feature concatenation, the height and width of the reorganized feature map must
match with the height and width of the higher layer feature map.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-

Time Object Detection." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
Honolulu, HI: CVPR, 2017.

2 Alphabetical List

2-90

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
trainYOLOv2ObjectDetector | yolov2Layers | yolov2ObjectDetector |
yolov2OutputLayer | yolov2TransformLayer

Topics
“Create YOLO v2 Object Detection Network”
“Estimate Anchor Boxes Using Clustering”
“Object Detection Using YOLO v2 Deep Learning”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2ReorgLayer

2-91

yolov2TransformLayer
Create transform layer for YOLO v2 object detection network

Description
The yolov2TransformLayer function creates a YOLOv2TransformLayer object, which
represents the transform layer for you look only once version 2 (YOLO v2) object
detection network. The transform layer in YOLO v2 object detection network improves the
stability of the network by constraining the location predictions. The transform layer
extracts activations of the last convolutional layer and transforms the bounding box
predictions to fall within the bounds of the ground truth.

Creation

Syntax
layer = yolov2TransformLayer(numAnchorBoxes)
layer = yolov2TransformLayer(numAnchorBoxes,Name,Value)

Description
layer = yolov2TransformLayer(numAnchorBoxes) creates the transform layer for
YOLO v2 object detection network.

layer = yolov2TransformLayer(numAnchorBoxes,Name,Value) sets the Name
property using a name-value pair. Enclose the property name in single quotes. For
example, yolov2TransformLayer('Name','yolo_Transform') creates a transform
layer with the name 'yolo_Transform'.

Input Arguments
numAnchorBoxes — Number of anchor boxes
positive integer

2 Alphabetical List

2-92

Number of anchor boxes used for training, specified as a positive integer. This input sets
the NumAnchorBoxes property of the transform layer.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer
graph, you must specify a nonempty unique layer name. If you train a series network with
the layer and Name is set to '', then the software automatically assigns a name to the
layer at training time.
Data Types: char | string

NumAnchorBoxes — Number of anchor boxes
positive integer

This property is read-only.

Number of anchor boxes used for training, specified as a positive integer. This property is
set by the input numAnchorBoxes.

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

 yolov2TransformLayer

2-93

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create YOLO v2 Transform Layer

Specify the number of anchor boxes.

numAnchorBoxes = 5;

Create a YOLO v2 transform layer with the name "yolo_Transform".

layer = yolov2TransformLayer(numAnchorBoxes,'Name','yolo_Transform');

Inspect the properties of the YOLO v2 transform layer.

layer

layer =
 YOLOv2TransformLayer with properties:

 Name: 'yolo_Transform'

 Hyperparameters
 NumAnchorBoxes: 5

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-

Time Object Detection." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
Honolulu, HI: CVPR, 2017.

2 Alphabetical List

2-94

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
trainYOLOv2ObjectDetector | yolov2Layers | yolov2ObjectDetector |
yolov2OutputLayer | yolov2ReorgLayer

Topics
“Create YOLO v2 Object Detection Network”
“Estimate Anchor Boxes Using Clustering”
“Object Detection Using YOLO v2 Deep Learning”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 yolov2TransformLayer

2-95

pixelLabelDatastore
Datastore for pixel label data

Description
You can use a PixelLabelDatastore object to read pixel label data for semantic
segmentation.

To read pixel label data from a PixelLabelDatastore, use the read function. This
function returns a categorical array that contains a categorical label assigned to every
(i,j) pixel location or (i,j,k) voxel location.

Creation
Create a PixelLabelDatastore object using the pixelLabelDatastore function
described here. Once the object is created, you can use functions that access and manage
the data. You can use dot notation to modify the ReadSize and ReadFcn properties.

Syntax
pxds = pixelLabelDatastore(gTruth)
pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs)
pxds = pixelLabelDatastore(___ ,Name,Value)

Description
pxds = pixelLabelDatastore(gTruth) creates a PixelLabelDatastore object
from a groundTruth object or an array of groundTruth objects.

pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs) creates a
PixelLabelDatastore object from image files that store pixel label data, in the folder
or files specified by location. The function creates the object using pixel IDs that map
image pixel label values to class names.

2 Alphabetical List

2-96

pxds = pixelLabelDatastore(___ ,Name,Value) creates a
PixelLabelDatastore object using name-value pair arguments to set one or both of
the ReadSize or AlternateFileSystemRoots properties. For image file input, you can
also use name-value pair arguments to set the ReadFcn property or to specify options on
page 2-99 about files to include in the datastore. You can specify multiple name-value
pairs. Enclose each property name in quotes.

For example,
pixelLabelDatastore(loc,names,ids,'ReadSize',8,'FileExtensions','png
') creates a pixel label datastore that includes only PNG images and that reads eight
images during each call to the read function.

Input Arguments
gTruth — Ground truth data
groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or as an array of groundTruth
objects. Each groundTruth object contains information about the data source, the list of
label definitions, and all marked labels for a set of ground truth labels.

location — Folder or image file names
character vector | cell array of character vectors | string array

Folder or image file names, specified as a character vector, string array, or cell array of
character vectors. Images must contain uint8 data.

location Description
character vector, string array Name of a folder. Files within subfolders of the

specified folder are not automatically included in the
datastore. The datastore includes only images with
supported file formats and ignores any other format.
See a list of supported file formats by using the
imformats function.

cell array of character vectors File names of multiple images.

pixelLabelDatastore expands the file names and stores the full file paths in the
Files property.

 pixelLabelDatastore

2-97

You can use the wildcard character (*) when specifying location. This character
indicates that all matching files or all files in the matching folders are included in the
datastore.

If the files are not in the current folder, then you must include the full or relative path.

If the files are not available locally, then the full path of the files or folders must be an
internationalized resource identifier (IRI), such as hdfs://hostname:portnumber/
path_to_file. For information on using a datastore with Amazon S3™ and HDFS™,
see “Work with Remote Data” (MATLAB).
Example: 'file1.jpg'
Example: '../dir/data/file1.png'
Example: {'C:\dir\data\file1.tif','C:\dir\data\file2.tif'}
Example: 'C:\dir\data*.jpg'
Data Types: char | cell

classNames — Class names
cell array of character vectors | cell array of strings

Class names, specified as a cell array of strings or character vectors.
pixelLabelDatastore converts the names to a cell array and stores the names in the
ClassNames property.
Example: ["sky" "grass" "building" "sidewalk"]

pixelLabelIDs — IDs to relate pixel labels to class names
vector | m-by-3 matrix | cell array of column vectors | cell array of m-by-3 matrices

IDs to map pixel labels to ClassNames, specified as a vector, an m-by-3 matrix, a cell
array of column vectors, or a cell array of m-by-3 matrices. Values must be integers in the
range [0, 255]. m-by-3 matrices are only supported for RGB images.

Format Description
vector The length of the vector must equal the

number of class names. Values must be
unique.

2 Alphabetical List

2-98

Format Description
m-by-3 matrix m corresponds to the number of class

names. Each row contains a 3-element
vector representing the RGB pixel value to
associate with each class name. Vectors
must be unique. Use this format for pixel
label data stored as RGB images.

cell array of column vectors

cell array of m-by-3 matrices

Use a cell array to map multiple pixel label
IDs to one class name.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IncludeSubfolders',true

IncludeSubfolders — Include subfolders
false (default) | true

Include subfolders, specified as the comma-separated pair consisting of
'IncludeSubfolders' and false (0), or true (1). Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

The IncludeSubfolders argument is not supported when you specify ground truth data
gTruth.

FileExtensions — File extensions
character vector | cell array of character vectors | string scalar | string array

File extensions of files to include in the datastore, specified as the comma-separated pair
consisting of 'FileExtensions' and a character vector, cell array of character vectors,
string scalar, or string array. By default, the datastore includes files with all extensions
supported by the imformats function.

The FileExtensions argument is not supported when you specify ground truth data
gTruth.
Example: ["png" "gif" "bmp"]

 pixelLabelDatastore

2-99

Properties
Files — Files included in datastore
character vector | cell array of character vectors

This property is read-only.

Files included in the datastore, specified as a character vector or cell array of character
vectors. Each character vector is a full path to a file. When you create a
PixelLabelDatastore object, use the location argument to set this property.

ClassNames — Class names
cell array of character vectors

This property is read-only.

Class names, specified as a cell array of character vectors.

ReadSize — Maximum number of image files
1 (default) | positive integer

Maximum number of image files to read in each call to the read function, specified as a
positive integer.

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of
'AlternateFileSystemRoots' and a string vector or a cell array. Use
'AlternateFileSystemRoots' when you create a datastore on a local machine, but
need to access and process the data on another machine (possibly of a different operating
system). Also, when processing data using the Parallel Computing Toolbox and the
MATLAB Parallel Server™, and the data is stored on your local machines with a copy of
the data available on different platform cloud or cluster machines, you must use
'AlternateFileSystemRoots' to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
'AlternateFileSystemRoots' as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]
• To associate multiple sets of root paths that are equivalent for the datastore, specify

'AlternateFileSystemRoots' as a cell array containing multiple rows where each

2 Alphabetical List

2-100

row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array
of character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of 'AlternateFileSystemRoots' must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or
Clusters” (MATLAB).
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

ReadFcn — Function that reads pixel labeled image data
@readDatastoreImage (default) | function handle

Function that reads pixel labeled image data, specified as a function handle. The custom
read function must take an image file name as input, and then output the corresponding
pixel labeled data as a categorical matrix, logical matrix, or numeric matrix of data type
uint8. For example, if customreader is the specified function to read the image data,
then it must have a signature similar to the following:

function C = customreader(filename)
...
end

If the read function has more than one output argument, then only the first one is used.
The rest are ignored.

 pixelLabelDatastore

2-101

The ReadFcn property is not supported when you specify ground truth data gTruth.
Example: @customreader

Object Functions
combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel label for data source images
hasdata Determine if data is available to read from datastore
numpartitions Number of partitions for pixel label datastore
partition Partition a pixel label datastore
preview Reads first image from pixel label datastore
read Read next consecutive file from pixel label datastore
readall Read all pixel label data
readimage Read specified pixel label data file
reset Reset pixel label datastore to initial state
transform Transform datastore

Examples

Read and Display Pixel Label Data

Overlay pixel label data on an image.

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create an image datastore and a pixel label datastore

imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

Read the image and pixel label data. read(pxs) returns a categorical matrix, C. The
element C(i,j) in the matrix is the categorical label assigned to the pixel at the location
l(i,j).

2 Alphabetical List

2-102

I = read(imds);
C = read(pxds);

Display the label categories in C.

categories(C)

ans = 4x1 cell array
 {'sky' }
 {'grass' }
 {'building'}
 {'sidewalk'}

Overlay and display the pixel label data onto the image.

B = labeloverlay(I,C);
figure
imshow(B)

 pixelLabelDatastore

2-103

Read and Display 3-D Pixel Label Data

Specify the location of 3-D volume and pixel label data. This data is a labeled 3-D MRI
scan of a brain.

dataDir = fullfile(toolboxdir('images'),'imdata');
imDir = fullfile(dataDir,'BrainMRILabeled','images');
pxDir = fullfile(dataDir,'BrainMRILabeled','labels');

2 Alphabetical List

2-104

Specify a custom ReadFcn. This example specifies a function called
samplePXDSMatReader (defined at the end of the example) that read 3-D image data
from .MAT image files.

matReader = @samplePXDSMatReader;

Create an image datastore.

imds = imageDatastore(imDir,'FileExtensions','.mat','ReadFcn',matReader);

Create a pixel label datastore.

classNames = ["edema","nonEnhancingTumor","enhancingTumour"];
pixelLabelID = [1 2 3];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID,'FileExtensions','.mat','ReadFcn',matReader);

Read volume and pixel label data. L is a categorical matrix, where L(i,j,k) is the
categorical label assigned to V(i,j,k).

V = read(imds);
L = read(pxds);

Display the label categories.

categories(L)

ans = 3×1 cell array
 {'edema' }
 {'nonEnhancingTumor'}
 {'enhancingTumour' }

Visualize result using labelvolshow.

h = labelvolshow(L,V);

 pixelLabelDatastore

2-105

This example defines a helper function, samplePXDSMatReader, to read the 3-D image
data from the image files. This function loads a .MAT file and returns the first variable
saved in that file.

function data = samplePXDSMatReader(filename)
 inp = load(filename);
 f = fields(inp);
 data = inp.(f{1});
end

2 Alphabetical List

2-106

Tips
• A pixelLabelDatastore stores files in lexicographical order. For example, if you

have twelve files named 'file1.jpg', 'file2.jpg', … , 'file11.jpg', and
'file12.jpg', then the files are stored in this order:

'file1.jpg'
'file10.jpg'
'file11.jpg'
'file12.jpg'
'file2.jpg'
'file3.jpg'
...
'file9.jpg'

In contrast, an imageDatastore stores files in the order they are added to the
datastore. If you simultaneously read a ground truth image and pixel label data, then
you may encounter a mismatch between the images and the labels. If this occurs, then
rename the pixel label files so that they have the correct order. For example, rename
'file1.jpg', … , 'file9.jpg' to 'file01.jpg', …, 'file09.jpg'.

• To extract semantic segmentation data from a groundTruth object generated by the
Video Labeler or Ground Truth Labeler, use the pixelLabelTrainingData
function.

See Also
ImageDatastore | evaluateSemanticSegmentation | groundTruth |
pixelLabelImageDatastore | randomPatchExtractionDatastore |
semanticSegmentationMetrics | semanticseg

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“3-D Brain Tumor Segmentation Using Deep Learning”
“Semantic Segmentation Basics”
“Datastores for Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

 pixelLabelDatastore

2-107

KAZEPoints
Object for storing KAZE interest points

Description
This object provides the ability to pass data between the detectKAZEPoints and
extractFeatures functions. You can also use this object to manipulate and plot the data
returned by these functions.Use the object to fill points interactively, where you might
want to mix a non-KAZE interest oint detector with a KAZE descriptor.

Creation

Syntax
points = KAZEPoints(location)
points = KAZEPoints(location,Name,Value)

Description
points = KAZEPoints(location) constructs a KAZEPoints object from an M-by-2
array [x y] of location coordinates.

The scalar KAZEPoints object contains many points. Therefore numel(KAZEPoints)
always returns 1. This value can be different than the result of length(KAZEPoints),
which returns the true number of points contained in the object.

points = KAZEPoints(location,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, points =
KAZEPoints('Metric',0.0)

2 Alphabetical List

2-108

Input Arguments
location — Location coordinates
M-by-2 array

Location of points, specified as an M-by-2 array of [x y] coordinates.

Properties
Scale — Scale
1.6 (default) | scalar | vector

Scale, specified as a scalar. The scale sets the size at which the interest points are
detected.

Metric — Strength of response
0.0 (default) | numeric value | vector

Strength of response for the detected points, specified as a numeric value. The KAZE
algorithm uses a determinant of an approximated Hessian.

Orientation — Orientation
0.0 (default) | radians

Orientation of the detected feature, specified as an angle in radians. The angle is
measured from the x-axis with the origin set by the location input. The
extractFeatures function sets this property. Do not set it manually.

Object Functions
isempty Determine if points object is empty
length Number of stored points
plot Plot points
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

 KAZEPoints

2-109

Examples

Detect KAZE Features

Detect KAZE features and display 10 strongest points.

Read an image.

I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select the 10 strongest points.

strongest = selectStrongest(points,10);

Display the selected points.

 imshow(I);
 hold on;

Display the location and scale. The size of the circles displayed relate to the scale.

plot(strongest);
hold on;

2 Alphabetical List

2-110

Display the [x y] coordinates for the strongest points in the MATLAB Command Window.

strongest.Location

ans = 10x2 single matrix

 138.5041 95.8063
 139.9253 95.8802
 111.8975 48.2950
 106.4036 174.1800
 44.3964 106.4899
 122.0368 65.9064
 116.2702 138.2877
 123.6542 64.7193
 104.2719 76.5821
 140.6228 97.9271

 KAZEPoints

2-111

Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.

Read an image.

I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select and display the last 5 points detected.

imshow(I);
hold on;
plot(points(end-4:end));
hold off;

2 Alphabetical List

2-112

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for
points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the
“Introduction to Code Generation with Feature Matching and Registration” example.

See Also
BRISKPoints | MSERRegions | SURFPoints | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectKAZEFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectSURFFeatures | extractFeatures | matchFeatures

Introduced in R2017b

 KAZEPoints

2-113

binaryFeatures
Object for storing binary feature vectors

Description
This object provides the ability to pass data between the extractFeatures and
matchFeatures functions. It can also be used to manipulate and plot the data returned
by extractFeatures.

Creation

Syntax
features= binaryFeatures(featureVectors)
features = binaryFeatures(featureVectors,Name,Value)

Description
features= binaryFeatures(featureVectors) constructs a binaryFeatures
object from the M-by-N input matrix, featureVectors. This matrix contains M feature
vectors stored in N uint8 containers.

features = binaryFeatures(featureVectors,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Input Arguments
featureVectors — Input feature vectors
M-by-N matrix

Input feature vectors, specified as an M-by-N input matrix. This matrix contains M binary
feature vectors stored in N uint8 containers.

2 Alphabetical List

2-114

Read-only Properties
Features — Feature vectors
M-by-N matrix

Input feature vectors, saved as an M-by-N input matrix. This matrix contains M binary
feature vectors stored in N uint8 containers.

NumBits — Number of bits per feature
integer

Number of bits per feature, saved as an integer. NumBits equals the number of uint8
feature vector containers times 8.

NumFeatures — Number of feature vectors
integer

Number of feature vectors contained in the binaryFeatures object, saved as a positive
integer.

Examples

Match Two Sets of Binary Feature Vectors

Input feature vectors.

features1 = binaryFeatures(uint8([1 8 7 2; 8 1 7 2]));
features2 = binaryFeatures(uint8([8 1 7 2; 1 8 7 2]));

Match the vectors using the Hamming distance.

[indexPairs matchMetric] = matchFeatures(features1, features2)

indexPairs = 2x2 uint32 matrix

 1 2
 2 1

 binaryFeatures

2-115

matchMetric = 2x1 single column vector

 0
 0

See Also
extractFeatures | extractHOGFeatures | matchFeatures

Introduced in R2013a

2 Alphabetical List

2-116

cameraIntrinsics
Object for storing intrinsic camera parameters

Description
Store information about a camera’s intrinsic calibration parameters, including the lens
distortion parameters.

Creation

Syntax
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)
intrinsics = cameraIntrinsics(___ ,Name,Value)

Description
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)
returns a camera intrinsics object that contains the focal length specified as [fx,fy], and
the camera's principal point specified as [cx, cy]. See cameraParameters for more
details.

intrinsics = cameraIntrinsics(___ ,Name,Value) uses additional options
specified by one or name-value pairs. Enclose each property name in quotes. For example,
intrinsics = cameraIntrinsics('RadialDistortion',[0,0])

Input Arguments
focalLength — Camera focal length
two-element vector

Camera focal length, specified as a two-element vector, [fx, fy].

fx = F × sx

 cameraIntrinsics

2-117

f y = F × sy

• F is the focal length in world units, typically millimeters
• [sx, sy] are the number of pixels per world unit in the x and y direction respectively
• fx and fy are in pixels

principalPoint — Optical center of camera
two-element vector

Optical center of camera, specified as a two-element vector, [cx,cy], in pixels.

imageSize — Image size produced by the camera
two-element vector

Image size produced by the camera, specified as a two-element vector, [mrows,ncols].

Properties
RadialDistortion — Radial lens distortion
[0,0] (default) | two-element vector | three-element vector

Radial lens distortion, specified as the comma-separated pair consisting of
RadialDistortion and a two-element vector, [k1,k2], or a three-element vector,
[k1,k2,k3]. k1,k2, and k3 are radial distortion coefficients. Radial distortion occurs when
light rays bend more near the edges of a lens than they do at its optical center. The
smaller the lens, the greater the distortion.

Radial distortion occurs when light rays bend more near the edges of a lens than they do
at its optical center. The smaller the lens, the greater the distortion.

2 Alphabetical List

2-118

The camera parameters object calculates the radial distorted location of a point. You can
denote the distorted points as (xdistorted, ydistorted), as follows:

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6) (2-1)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6) (2-2)

x, y = undistorted pixel locations
k1, k2, and k3 = radial distortion coefficients of the lens
r2 = x2 + y2

Typically, two coefficients are sufficient. For severe distortion, you can include k3. The
undistorted pixel locations appear in normalized image coordinates, with the origin at the
optical center. The coordinates are expressed in world units.

TangentialDistortion — Tangential distortion coefficients
[0,0] (default) | two-element vector

Tangential distortion coefficients, specified as the comma-separated pair consisting of
'TangentialDistortion' and a 2-element vector, [p1,p2]. Tangential distortion occurs
when the lens and the image plane are not parallel.

 cameraIntrinsics

2-119

The camera parameters object calculates the tangential distorted location of a point. You
can denote the distorted points as (xdistorted, ydistorted), as follows:

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)] (2-3)

ydistorted = y + [p1 * (r2 + 2*y2) + 2 * p2 * x * y] (2-4)

x, y = undistorted pixel locations
p1 and p2 = tangential distortion coefficients of the lens
r2 = x2 + y2

The undistorted pixel locations appear in normalized image coordinates, with the origin at
the optical center. The coordinates are expressed in world units.

Skew — Camera axes skew
0 (default) | angle

Camera axes skew, specified as the comma-separated pair consisting of 'skew' and an
angle. If the x and the y axes are exactly perpendicular, then the skew must be 0.

2 Alphabetical List

2-120

FocalLength — Focal length
2-element vector

This property is read-only.

Focal length in x and y, stored as a 2-element vector [fx, fy] in pixels.
fx = F * sx
fy = F * sy
F is the focal length in world units, typically in millimeters, and [sx, sy] are the number of
pixels per world unit in the x and y direction respectively. Thus, fx and fy are in pixels.

The focal length F influences the angle of view and thus affects the area of the scene that
appears focused in an image. For a fixed subject distance:

• A short focal length offers a wide angle of view allowing to capture large area of the
scene under focus. It emphasizes both the subject and the scene background.

• A long focal length offers a narrow angle of view, thus reducing the area of the scene
under focus. It emphasizes more on the subject and restricts the amount of
background from being captured.

PrincipalPoint — Optical center of camera
two-element vector

This property is read-only.

Optical center of camera, stored as a two-element vector [cx,cy] in pixels. The vector
contains the coordinates of the optical center of the camera.

ImageSize — Image size produced by the camera
two-element vector

This property is read-only.

Image size produced by the camera, stored as a two-element vector, [mrows,ncols].

IntrinsicMatrix — Projection matrix
3-by-3 identity matrix (default) | 3-by-3 intrinsic matrix

This property is read-only.

Projection matrix, stored as the comma-separated pair consisting of 'IntrinsicMatrix'
and a 3-by-3 matrix. For the matrix format, the object uses the following format:

 cameraIntrinsics

2-121

fx 0 0
s f y 0
cx cy 1

The coordinates [cx cy] represent the optical center (the principal point), in pixels. When
the x and y axis are exactly perpendicular, the skew parameter, s, equals 0.
fx = F*sx
fy = F*sy
F, is the focal length in world units, typically expressed in millimeters.
[sx, sy] are the number of pixels per world unit in the x and y direction respectively.
fx and fy are expressed in pixels.

Examples

Create an Object Containing Fundamental Camera Parameters

Define camera parameters without lens distortion or skew.

Specify the focal length and principal point in pixels.

 focalLength = [800, 800];
 principalPoint = [320, 240];
 imageSize = [480, 640];

Create a camera intrinsics object.

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)

intrinsics =
 cameraIntrinsics with properties:

 FocalLength: [800 800]
 PrincipalPoint: [320 240]
 ImageSize: [480 640]
 RadialDistortion: [0 0]
 TangentialDistortion: [0 0]
 Skew: 0
 IntrinsicMatrix: [3x3 double]

2 Alphabetical List

2-122

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
undistortImage

Topics
“Single Camera Calibrator App”

Introduced in R2017a

 cameraIntrinsics

2-123

pcplayer
Visualize streaming 3-D point cloud data

Description
Visualize 3-D point cloud data streams from devices such as Microsoft®Kinect®.

To improve performance, pcplayer automatically downsamples the rendered point cloud
during interaction with the figure. The downsampling occurs only for rendering the point
cloud and does not affect the saved points.

You can set the default center of rotation for the point cloud viewer to rotate around the
axes center or around a point. Set the default behavior from the “Computer Vision
Toolbox Preferences”.

Creation

Syntax
player = pcplayer(xlimits,ylimits,zlimits)
player = pcplayer(xlimits,ylimits,zlimits,Name,Value)

Description
player = pcplayer(xlimits,ylimits,zlimits) returns a player with
xlimits,ylimits, and zlimits set for the axes limits.

player = pcplayer(xlimits,ylimits,zlimits,Name,Value) returns a player
with additional properties specified by one or more Name,Value pair arguments.

Input Arguments
xlimits — Range of x-axis coordinates
1-by-2 vector

2 Alphabetical List

2-124

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max].
pcplayer does not display data outside these limits.

ylimits — Range of y-axis coordinates
1-by-2 vector

Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max].
pcplayer does not display data outside these limits.

zlimits — Range of z-axis coordinates
1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min
max].pcplayer does not display data outside these limits.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'VerticalAxisDir', 'Up'.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize'
and a positive scalar. The value specifies the approximate diameter of the point marker.
MATLAB graphics defines the unit as points. A marker size larger than six can reduce the
rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and
'X', 'Y', or 'Z'.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of
'VerticalAxisDir' and 'Up' or 'Down'.

 pcplayer

2-125

Properties
Axes — Player axes handle
axes graphics object

Player axes handle, specified as an axes graphics object.

Usage

Color and Data Point Values in Figure
To view point data or modify color display values, hover over the axes toolbar and select
one of the following options.

2 Alphabetical List

2-126

Feature Description
Datatip Click Data Tips to view the data point values for any point in

the point cloud figure. For a normal point cloud, the Data Tips
displays the x,y,z values. Additional data properties for the
depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth

angle, elevation angle, row,
column

 pcplayer

2-127

Feature Description
Background color Click Rotate and then right-click in the figure for background

options.

2 Alphabetical List

2-128

Feature Description
Colormap value Click Rotate and then right-click in the figure for colormap

options. You can modify colornap values for the coordinate and
range values available, depending on the type of point cloud
displayed.

View Click Rotate to change the viewing angle of the point cloud
figure to the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore
View to reset the viewing angle.

 pcplayer

2-129

OpenGL Option
pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions
hide Hide player figure
isOpen Visible or hidden status for player
show Show player
view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

player = pcplayer([0 1],[0 1],[0 1]);

Display continuous player figure. Use the isOpen function to check if player figure
window is open.

while isOpen(player)
 ptCloud = pointCloud(rand(1000,3,'single'));
 view(player,ptCloud);
end

Terminate while-loop by closing pcplayer figure window.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcread | pcregistericp |
pcshow | pcshowpair | pcwrite | planeModel | plot3 | pointCloud | scatter3

Introduced in R2015b

2 Alphabetical List

2-130

view
Display point cloud

Syntax
view(player,ptCloud)
view(player,xyzPoints)
view(player,xyzPoints,color)
view(player,xyzPoints,colorMap)

Description
view(player,ptCloud) displays a point cloud in the pcplayer figure window,
player. The points, locations, and colors are stored in the ptCloud object.

view(player,xyzPoints) displays the points of a point cloud at the locations specified
by the xyzPoints matrix. The color of each point is determined by the z value.

view(player,xyzPoints,color) displays a point cloud with colors specified by
color.

view(player,xyzPoints,colorMap) displays a point cloud with colors specified by
colorMap.

Examples

View Rotating 3-D Point Cloud

Load point cloud.

ptCloud = pcread('teapot.ply');

Define a rotation matrix and 3-D transform.

 view

2-131

x = pi/180;
R = [cos(x) sin(x) 0 0
 -sin(x) cos(x) 0 0
 0 0 1 0
 0 0 0 1];

tform = affine3d(R);

Compute x-_y_ limits that ensure that the rotated teapot is not clipped.

lower = min([ptCloud.XLimits ptCloud.YLimits]);
upper = max([ptCloud.XLimits ptCloud.YLimits]);

xlimits = [lower upper];
ylimits = [lower upper];
zlimits = ptCloud.ZLimits;

Create the player and customize player axis labels.

player = pcplayer(xlimits,ylimits,zlimits);

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

2 Alphabetical List

2-132

Rotate the teapot around the z-axis.

for i = 1:360
 ptCloud = pctransform(ptCloud,tform);
 view(player,ptCloud);
end

 view

2-133

Input Arguments
ptCloud — Point cloud
pointCloud object

2 Alphabetical List

2-134

Point cloud, specified as a pointCloud object. The object contains the locations,
intensities, and RGB colors to render the point cloud.

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the

current color map.
Location and Intensity Maps the intensity to a color value in the

current color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

player — Player
pcplayer object

Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints — Point cloud x, y, and z locations
M-by-3 numeric matrix | M-by-N-by-3 numeric matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric
matrix. The M-by-N-by-3 numeric matrix is commonly referred to as an organized point
cloud. The xyzPoints numeric matrix contains M or M-by-N [x,y,z] points. The z values
in the numeric matrix, which generally correspond to depth or elevation, determine the
color of each point.

color — Point cloud color
1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3
matrix

Point cloud color of points, specified as one of:

• 1-by-3 RGB vector
• short name of a MATLAB ColorSpec color, such as 'b'
• long name of a MATLAB ColorSpec color, such as 'blue'
• M-by-3 matrix
• M-by-N-by-3 matrix

 view

2-135

You can specify the same color for all points or a different color for each point. When you
set color to single or double, the RGB values range between [0, 1]. When you set
color to uint8, the values range between [0, 255].

Points
Input

Color
Selection

Valid Values of C

xyzPoints Same color
for all
points

1-by-3 RGB vector, or the short or long name
of a MATLAB ColorSpec color

1-by-3

bgr

Different
color for
each point

M-by-3 matrix or M-by-N-by-3 matrix
containing RGB values for each point.

bgr

M

M-by-3

x1 y1 z1
.

.

.

xm ym zm

M

N

point(m,n)

M-by-N-by-3

g

r

b

colorMap — Point cloud color map
M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

• M-by-1 vector
• M-by-N matrix

2 Alphabetical List

2-136

Points
Input

Color
Selection

Valid Values of C

xyzPoints Different
color for
each point

Vector or M-by-N matrix. The matrix must
contain values that are linearly mapped to a
color in the current colormap.

vector

prescaled value

(1)

.

.

.

length(XYZ)
scaling colormap

M

N

point(m,n) prescaled value

M-by-N scaling colormap

Introduced in R2015b

 view

2-137

pointTrack class

Object for storing matching points from multiple views

Syntax
track = pointTrack(viewIDs,points)

Description
track = pointTrack(viewIDs,points) returns an object that stores matching 2-D
points from multiple views. You can also create this point track object using the
findTracks method of the viewSet object.

Input Arguments
viewIDs — View IDs of camera poses
M-element vector

View IDs of camera poses, specified as an M-element vector of scalar integers.

points — 2-D points that match across multiple camera views
M-by-2 matrix

2-D points that match across multiple camera views, specified as an M-by-2 matrix of (x,y)
point coordinates. You can use the matchFeatures function to find these points, and
then save them using this object.

Output Arguments
track — Point track object
pointTrack object

2 Alphabetical List

2-138

Point track object, returned as a pointTrack object. You can use this object to store
matching 2-D points from multiple views. You can also create this point track object using
the findTracks method of the viewSet object.

Examples

Create a Point Track Object

Save (x , y) points and view IDs.

points = [10,20;11,21;12,22];
viewIDs = [1 2 3];

Create a pointTrack object to save points and IDs.

track = pointTrack(viewIDs,points);

See Also
bundleAdjustment | matchFeatures | triangulateMultiview | viewSet |
vision.PointTracker

Topics
“3-D Point Cloud Registration and Stitching”
“Coordinate Systems”

Introduced in R2016a

 pointTrack class

2-139

vision.PointTracker
Package: vision

Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm

Description
The point tracker object tracks a set of points using the Kanade-Lucas-Tomasi (KLT),
feature-tracking algorithm. You can use the point tracker for video stabilization, camera
motion estimation, and object tracking. It works particularly well for tracking objects that
do not change shape and for those that exhibit visual texture. The point tracker is often
used for short-term tracking as part of a larger tracking framework.

As the point tracker algorithm progresses over time, points can be lost due to lighting
variation, out of plane rotation, or articulated motion. To track an object over a long
period of time, you may need to reacquire points periodically.

To track a set of points:

1 Create the vision.PointTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
pointTracker = vision.PointTracker
pointTracker = vision.PointTracker(Name,Value)

2 Alphabetical List

2-140

Description
pointTracker = vision.PointTracker returns a point tracker object that tracks a
set of points in a video.

pointTracker = vision.PointTracker(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example,
pointTracker = vision.PointTracker('NumPyramidLevels',3)

Initialize Tracking Process:

To initialize the tracking process, you must use initialize to specify the initial
locations of the points and the initial video frame.

initialize(pointTracker,points,I) initializes points to track and sets the initial
video frame. The initial locations points, must be an M-by-2 array of [x y] coordinates.
The initial video frame, I, must be a 2-D grayscale or RGB image and must be the same
size and data type as the video frames passed to the step method.

The detectFASTFeatures, detectSURFFeatures, detectHarrisFeatures, and
detectMinEigenFeatures functions are few of the many ways to obtain the initial
points for tracking.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

NumPyramidLevels — Number of pyramid levels
integer (default) | 3

Number of pyramid levels, specified as integer. The point tracker implementation of the
KLT algorithm uses image pyramids. The tracker generates an image pyramid, where
each level is reduced in resolution by a factor of two compared to the previous level.

 vision.PointTracker

2-141

Selecting a pyramid level greater than 1, enables the algorithm to track the points at
multiple levels of resolution, starting at the lowest level. Increasing the number of
pyramid levels allows the algorithm to handle larger displacements of points between
frames. However, computation cost also increases. Recommended values are between 1
and 4.

1. Optical �ow computation at lowest resolution

3. Final optical �ow computation of original image

}
}

}
ical �ow compu

3. Fin

Distance the object moved between frames

2. Optical �ow at next highest resolution

Each pyramid level is formed by down-sampling the previous level by a factor of two in
width and height. The point tracker begins tracking each point in the lowest resolution
level, and continues tracking until convergence. The object propagates the result of that
level to the next level as the initial guess of the point locations. In this way, the tracking is
refined with each level, up to the original image. Using the pyramid levels allows the
point tracker to handle large pixel motions, which can comprise distances greater than
the neighborhood size.

MaxBidirectionalError — Forward-backward error threshold
inf (default) | scalar

Forward-backward error threshold, specified as a scalar. If you set the value to less than
inf, the tracker tracks each point from the previous to the current frame. It then tracks
the same points back to the previous frame. The object calculates the bidirectional error.
This value is the distance in pixels from the original location of the points to the final
location after the backward tracking. The corresponding points are considered invalid
when the error is greater than the value set for this property. Recommended values are
between 0 and 3 pixels.

2 Alphabetical List

2-142

Using the bidirectional error is an effective way to eliminate points that could not be
reliably tracked. However, the bidirectional error requires additional computation. When
you set the MaxBidirectionalError property to inf, the object does not compute the
bidirectional error.

BlockSize — Size of neighborhood
[31 31] (default) | two-element vector

Size of neighborhood around each point being tracked, specified as a two-element vector,
[height, width]. The height and width must be odd integers. This neighborhood defines
the area for the spatial gradient matrix computation. The minimum value for BlockSize
is [5 5]. Increasing the size of the neighborhood, increases the computation time.

MaxIterations — Maximum number of search iterations
30 (default) | integer

Maximum number of search iterations for each point, specified as an integer. The KLT
algorithm performs an iterative search for the new location of each point until
convergence. Typically, the algorithm converges within 10 iterations. This property sets
the limit on the number of search iterations. Recommended values are between 10 and
50.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

 vision.PointTracker

2-143

Syntax
[points,point_validity] = pointTracker(I)
[points,point_validity,scores] = pointTracker(I)
setPoints(pointTracker,points)
setPoints(pointTracker,points,point_validity)

Description
[points,point_validity] = pointTracker(I) tracks the points in the input
frame, I.

[points,point_validity,scores] = pointTracker(I) additionally returns the
confidence score for each point.

setPoints(pointTracker,points) sets the points for tracking. The function sets the
M-by-2 points array of [x y] coordinates with the points to track. You can use this
function if the points need to be redetected because too many of them have been lost
during tracking.

setPoints(pointTracker,points,point_validity) additionally lets you mark
points as either valid or invalid. The input logical vector point_validity of length M,
contains the true or false value corresponding to the validity of the point to be tracked.
The length M corresponds to the number of points. A false value indicates an invalid point
that should not be tracked. For example, you can use this function with the
estimateGeometricTransform function to determine the transformation between the
point locations in the previous and current frames. You can mark the outliers as invalid.

Input Arguments
I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

Output Arguments
points — Tracked points
M-by-2 array

2 Alphabetical List

2-144

Tracked points, returned as an M-by-2 array of [x y] coordinates that correspond to the
new locations of the points in the input frame, I.

point_validity — Reliability of track
M-by-1 logical array

Reliability of track for each point, returned as an an M-by-1 logical array. A point can be
invalid for several reasons. The point can become invalid if it falls outside of the image.
Also, it can become invalid if the spatial gradient matrix computed in its neighborhood is
singular. If the bidirectional error is greater than the MaxBidirectionalError
threshold, this condition can also make the point invalid.

score — Confidence score
M-by-1 array

Confidence score between 0 and 1, returned as an M-by-1 array. The values correspond to
the degree of similarity between the neighborhood around the previous location and new
location of each point. These values are computed as a function of the sum of squared
differences between the previous and new neighborhoods. The greatest tracking
confidence corresponds to a perfect match score of 1.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.PointTracker
initialize Initialize video frame and points to track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

 vision.PointTracker

2-145

Examples

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of
the object.

videoFileReader = vision.VideoFileReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = videoFileReader();
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a
mouse. The object must occupy the majority of the region:

figure; imshow(objectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');

2 Alphabetical List

2-146

Detect interest points in the object region.

points = detectMinEigenFeatures(rgb2gray(objectFrame),'ROI',objectRegion);

Display the detected points.

pointImage = insertMarker(objectFrame,points.Location,'+','Color','white');
figure;
imshow(pointImage);
title('Detected interest points');

 vision.PointTracker

2-147

Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);

Read, track, display points, and results in each video frame.

while ~isDone(videoFileReader)
 frame = videoFileReader();
 [points,validity] = tracker(frame);
 out = insertMarker(frame,points(validity, :),'+');

2 Alphabetical List

2-148

 videoPlayer(out);
end

Release the video reader and player.

 vision.PointTracker

2-149

release(videoPlayer);
release(videoFileReader);

2 Alphabetical List

2-150

References
[1] Lucas, Bruce D. and Takeo Kanade. “An Iterative Image Registration Technique with

an Application to Stereo Vision,”Proceedings of the 7th International Joint
Conference on Artificial Intelligence, April, 1981, pp. 674–679.

 vision.PointTracker

2-151

[2] Tomasi, Carlo and Takeo Kanade. Detection and Tracking of Point Features, Computer
Science Department, Carnegie Mellon University, April, 1991.

[3] Shi, Jianbo and Carlo Tomasi. “Good Features to Track,” IEEE Conference on
Computer Vision and Pattern Recognition, 1994, pp. 593–600.

[4] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. “Forward-Backward Error:
Automatic Detection of Tracking Failures,” Proceedings of the 20th International
Conference on Pattern Recognition, 2010, pages 2756–2759, 2010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
detectHarrisFeatures | detectMinEigenFeatures | detectSURFFeatures |
estimateGeometricTransform | imrect | insertMarker |
vision.HistogramBasedTracker

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”

External Websites
Object Recognition and Tracking for Augmented Reality
Detect and Track Multiple Faces in a Live Video Stream

2 Alphabetical List

2-152

https://www.mathworks.com/videos/object-recognition-and-tracking-for-augmented-reality-90546.html
https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces

Introduced in R2012b

 vision.PointTracker

2-153

viewSet class

Object for managing data for structure-from-motion and visual odometry

Syntax
vSet = viewSet

Description
vSet = viewSet returns an empty viewSet object that stores views and connections
between views. A view includes feature points and an absolute camera pose. A connection
between two views includes point correspondences and the relative camera pose between
them. Once you populate a viewSet object, you can use it to find point tracks across
multiple views and retrieve the camera poses to be used
by triangulateMultiview and bundleAdjustment functions.

Code Generation Support:
Supports Code Generation: No
Supports MATLAB Function block: No
“Code Generation Support, Usage Notes, and Limitations”

Properties
These properties are read-only.

NumViews — Number of views
integer

Number of views, stored as an integer.

Views — View attributes
four-column table

2 Alphabetical List

2-154

View attributes, stored as a four-column table. The table contains columns for ViewID,
Points, Orientation, and Location. Use the poses method to obtain the IDs,
orientation, and location for the points.

Connections — Pairwise connections between views
five-column table

Pairwise connections between views, stored as a five-column table. The columns are
ViewID1, ViewID2, Matches, RelativeOrientation, and RelativeLocation. The
number of entries in the table represent the number of connections. Each index in the
Matches column represents a connection between the two views indicated by the view
IDs.

 viewSet class

2-155

Output Arguments
vSet — View set object
viewSet object

viewSet object used to store views and connections between the views.

2 Alphabetical List

2-156

Methods
addView Add a new view to view set object
updateView Modify an existing view in a view set object
deleteView Delete an existing view from view set object
hasView Check if view exists
addConnection Add a connection between two views
updateConnection Modify a connection between two views in a view set object
deleteConnection Delete a connection between two views from view set object
hasConnection Check if a connection exists between two views
findTracks Find matched points across multiple views
poses Returns camera poses associated to views

Examples

Find Point Tracks Across Sequence of Images

Load images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);

Compute features for the first image.

I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create a viewSet object.

vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:images.Count
 I = rgb2gray(read(images,i));

 viewSet class

2-157

 points = detectSURFFeatures(I);
 [features, points] = extractFeatures(I,points);
 vSet = addView(vSet,i,'Points',points);
 pairsIdx = matchFeatures(featuresPrev,features);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

Find point tracks.

tracks = findTracks(vSet);

See Also
bundleAdjustment | detectBriskFeatures | detectFastFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectSURFFeatures | matchFeatures | pointTrack | table |
triangulateMultiview

Topics
“Structure From Motion From Multiple Views”
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Single Camera Calibrator App”
“Structure from Motion”

Introduced in R2016a

2 Alphabetical List

2-158

addView
Class: viewSet

Add a new view to view set object

Syntax
vSet = addView(vSet,viewId)
vSet = addView(vSet,viewId,Name,Value)

Description
vSet = addView(vSet,viewId) adds the view specified by viewID to the specified
viewSet object.

vSet = addView(vSet,viewId,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — Camera pose view ID
integer

Camera pose view ID in the viewSet object, specified as an integer.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 addView

2-159

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Location','[0,0,0]'

Points — Image points
M-by-2 matrix | points object

Image points, specified as the comma-separated pair consisting of 'Points' and an M-
by-2 matrix of [x,y] coordinates or any points object.

Orientation — Orientation of the second camera relative to the first
3-by-3 matrix

Orientation of the second camera relative to the first, specified as the comma-separated
pair consisting of 'Orientation' and a 3-by-3 matrix.

Location — Location of the second camera relative to the first
three-element vector

Location of the second camera relative to the first, specified as the comma-separated pair
consisting of 'Location' and a three-element vector.

Output Arguments
vSet — View set object
viewSet object

viewSet object containing the added view specified by viewId.

Examples

Add View to View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

2 Alphabetical List

2-160

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add the points to the object.

vSet = addView(vSet,1,'Points',points,'Orientation',eye(3),'Location',[0,0,0]);

Introduced in R2016a

 addView

2-161

updateView
Class: viewSet

Modify an existing view in a view set object

Syntax
vSet = updateView(vSet,viewId)
vSet = updateView(vSet,viewId,Name,Value)
vSet = updateView(vSet,views)

Description
vSet = updateView(vSet,viewId) modifies the view specified by viewId in the
specified viewSet object, vSet.

vSet = updateView(vSet,viewId,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

vSet = updateView(vSet,views) modifies a view or a set of views specified by the
view table.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — Camera pose view ID
integer

Camera pose view ID in the viewSet object, specified as an integer.

2 Alphabetical List

2-162

views — Camera views
table

Camera views, specified as a table. The table must contain a column named ViewID, and
one or more columns named Points, Orientation, or Location.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Location, '[0,0,0]'

Points — Image points
M-by-2 matrix | points object

Image points, specified as the comma-separated pair consisting of 'Points' and an M-
by-2 matrix of [x,y] coordinates or any points object.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the
[x,y,z] orientation of the second camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Location' and a three-element vector that represents the
[x,y,z] location of the second camera in the first camera’s coordinate system.

Output Arguments
vSet — View set object
viewSet object

viewSet object containing the modified view specified by viewId.

 updateView

2-163

Examples

Update View in View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add the points to the object.

vSet = addView(vSet,1,'Points',points);

Update the view to specify the camera pose.

vSet = updateView(vSet, 1,'Orientation',eye(3),'Location',[0,0,0]);

Introduced in R2016a

2 Alphabetical List

2-164

deleteView
Class: viewSet

Delete an existing view from view set object

Syntax
vSet = deleteView(vSet,viewId)

Description
vSet = deleteView(vSet,viewId) deletes an existing view or a set of views from the
specified viewSet object,vSet.

Input Arguments
vSet — View set object
viewSet object

A viewSet object.

viewId — View IDs
integer scalar | vector

View IDs, specified as an integer scalar for a single view, or as a vector of integers for a
set of views.

Output Arguments
vSet — View set object
viewSet object

viewSet object.

 deleteView

2-165

Examples

Delete a View from View Set Object

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add a view.

vSet = addView(vSet,1,'Points',points);

Delete the view.

vSet = deleteView(vSet,1);

Introduced in R2016a

2 Alphabetical List

2-166

hasView
Class: viewSet

Check if view exists

Syntax
tf = hasView(vSet,viewId)

Description
tf = hasView(vSet,viewId) returns 1 if the view specified by viewID exists and 0 if
it does not exist.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID
integer

View ID in the viewSet object, specified as an integer.

Output Arguments
tf — Validity of view connection
logical

Validity of view connection, returned as a logical 1 or 0.

 hasView

2-167

Examples

Check If View Exists

Create an empty viewSet object.

vSet = viewSet;

Detect interest points in the image.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));

Add a new view.

vSet = addView(vSet, 1,'Points',points);

Confirm that the view with ID 1 exists.

tf = hasView(vSet,1);

Introduced in R2016a

2 Alphabetical List

2-168

addConnection
Class: viewSet

Add a connection between two views

Syntax
vSet = addConnection(vSet,viewId1,viewId2)
vSet = addConnection(vSet,viewId1,viewId2,Name,Value,)

Description
vSet = addConnection(vSet,viewId1,viewId2) adds a connection between two
views in the specified viewSet object, vSet.

vSet = addConnection(vSet,viewId1,viewId2,Name,Value,) uses additional
options specified by one or more Name,Value pair arguments.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

 addConnection

2-169

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Location','[0,0,0]'

Matches — Indices of matched points between two views
M-by-2 matrix

Indices of matched points between two views, specified as the comma-separated pair
consisting of 'Matches' and an M-by-2 matrix.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the
[x,y,z] orientation of the second camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Location' and a three-element vector that represents the
[x,y,z] location of the second camera in the first camera’s coordinate system.

Output Arguments
vSet — View set object
viewSet object

viewSet object.

Examples

2 Alphabetical List

2-170

Add Connection Between Two Views in View Set Object

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);

Extract feature descriptors from both images.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

indexPairs = matchFeatures(features1,features2);

Add the connection between the two views.

vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Introduced in R2016a

 addConnection

2-171

updateConnection
Class: viewSet

Modify a connection between two views in a view set object

Syntax
vSet = updateConnection(vSet,viewId1,viewId2)
vSet = updateConnection(vSet,viewId1,viewId2,Name,Value)

Description
vSet = updateConnection(vSet,viewId1,viewId2) modifies a connection
between two views in the specified view set object, vSet.

vSet = updateConnection(vSet,viewId1,viewId2,Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Unspecified properties
have default values.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

2 Alphabetical List

2-172

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Location', '[0,0,0]'

Matches — Indices of matched points between two views
M-by-2 matrix

Indices of matched points between two views, specified as the comma-separated pair
consisting of 'Matches' and an M-by-2 matrix.

Orientation — Orientation of the second camera relative to the first camera
3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the
[x,y,z] orientation of the second camera.

Location — Location of the second camera relative to the first camera
three-element vector

Location of the second camera relative to the first camera, specified as the comma-
separated pair consisting of 'Location' and a three-element vector that represents the
[x,y,z] location of the second camera in the first camera’s coordinate system.

Output Arguments
vSet — View set object
viewSet object

A viewSet object containing the modified connection.

Examples

 updateConnection

2-173

Update Connection Between Two Views in View Set Object

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet, 1,'Points',points1);
vSet = addView(vSet, 2,'Points',points2);

Extract feature descriptors.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Update the connection to store a relative pose between the views.

vSet = updateConnection(vSet,1,2,'Orientation', eye(3),'Location',[1 0 0]);

Introduced in R2016a

2 Alphabetical List

2-174

deleteConnection
Class: viewSet

Delete a connection between two views from view set object

Syntax
vSet = deleteConnection(vSet,viewId1,viewId2)

Description
vSet = deleteConnection(vSet,viewId1,viewId2) deletes a connection between
two views in the specified viewSet object, vSet.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

 deleteConnection

2-175

Output Arguments
vSet — View set object
viewSet object

viewSet object.

Examples

Delete a Connection Between Two Views In View Set Object

Create an empty viewSet object.

vSet = viewSet;

Read a pair of images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));

Detect interest points in the two images.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Add the points to the viewSet object.

vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);

Extract feature descriptors.

features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);

Match features and store the matches.

indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);

Delete the connection between the views.

2 Alphabetical List

2-176

vSet = deleteConnection(vSet,1,2);

Introduced in R2016a

 deleteConnection

2-177

hasConnection
Class: viewSet

Check if a connection exists between two views

Syntax
tf = hasConnection(vSet,viewId1,viewId2)

Description
tf = hasConnection(vSet,viewId1,viewId2) returns true if both views exist and
have a connection.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId1 — View ID 1
integer

View ID 1 in the viewSet object, specified as an integer.

viewId2 — View ID 2
integer

View ID 2 in the viewSet object, specified as an integer.

2 Alphabetical List

2-178

Output Arguments
tf — Validity of view connection
logical

Validity of view connection, returned as a logical 1 or 0.

Examples

Check Whether a Connection Exists Between Two Views

Create an empty viewSet object.

vSet = viewSet;

Add a pair of views.

vSet = addView(vSet,1);
vSet = addView(vSet,2);

Add a connection.

vSet = addConnection(vSet,1,2);

Confirm that the connection exists.

tf = hasConnection(vSet,1,2);

Introduced in R2016a

 hasConnection

2-179

findTracks
Class: viewSet

Find matched points across multiple views

Syntax
tracks = findTracks(vSet)
tracks = findTracks(vSet,viewIds)

Description
tracks = findTracks(vSet) finds point tracks across multiple views.

tracks = findTracks(vSet,viewIds) finds point tracks across a subset of views.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewIds — Subset of views
vector of integers

Subset of views in the viewSet object, specified as a vector of integers.

Output Arguments
tracks — Point track objects
array of pointTrack objects

2 Alphabetical List

2-180

Point track objects, returned as an array of pointTrack objects. Each track contains 2-D
projections of the same 3-D world point.

Examples

Find Point Tracks Across Sequence of Images

Load images.

imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);

Compute features for the first image.

I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Create a viewSet object.

vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);

Compute features and matches for the rest of the images.

for i = 2:images.Count
 I = rgb2gray(read(images,i));
 points = detectSURFFeatures(I);
 [features, points] = extractFeatures(I,points);
 vSet = addView(vSet,i,'Points',points);
 pairsIdx = matchFeatures(featuresPrev,features);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

Find point tracks.

tracks = findTracks(vSet);

Introduced in R2016a

 findTracks

2-181

poses
Class: viewSet

Returns camera poses associated to views

Syntax
cameraPoses = poses(vSet)
cameraPoses = poses(vSet,viewIds)

Description
cameraPoses = poses(vSet) returns the camera poses that correspond to the views
contained in the input viewSet, object, vSet.

cameraPoses = poses(vSet,viewIds) returns the camera poses that correspond to
a subset of views specified by the vector viewIds.

Input Arguments
vSet — View set object
viewSet object

viewSet object.

viewId — View IDs
integer scalar | vector

View IDs, specified as an integer scalar for a single view, or as a vector of integers for a
set of views.

2 Alphabetical List

2-182

Output Arguments
cameraPoses — Camera pose information
three-column table

Camera pose information, returned as a three-column table. The table contains columns
for ViewId, Orientation, and Location. The view IDs correspond to the IDs in the
viewSet object. The orientations are specified as 3-by-3 rotation matrices and locations
are specified as three-element vectors. You can pass the cameraPoses table to the
triangulateMultiview and the bundleAdjustment functions.

Examples

Retrieve Camera Poses from View Set Object

Create an empty viewSet object.

vSet = viewSet;

Add views to the object.

vSet = addView(vSet,1,'Orientation',eye(3),'Location',[0,0,0]);
vSet = addView(vSet,2,'Orientation',eye(3),'Location',[1,0,0]);

Retrieve the absolute camera poses.

camPoses = poses(vSet);

See Also
bundleAdjustment | triangulateMultiview

Introduced in R2016a

 poses

2-183

acfObjectDetector
Detect objects using aggregate channel features

Description
The acfObjectDetector object detects objects from an image, using the aggregate
channel features (ACF) object detector. To detect objects in an image, pass the trained
detector to the detect function.

The ACF object detector recognizes specific objects in images, based on the training
images and the object ground truth locations used with the trainACFObjectDetector
function.

Creation
Create an acfObjectDetector object by calling the trainACFObjectDetector
function with training data.

detector = trainACFObjectDetector(trainingData,...)

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainACFObjectDetector function. You can modify this name after
creating your acfObjectDetector object.
Example: 'stopSign'

ObjectTrainingSize — Size of training images
[height width] vector

This property is read-only.

2 Alphabetical List

2-184

Size of training images, specified as a [height width] vector.
Example: [100 100]

NumWeakLearners — Number of weak learners
integer

This property is read-only.

Number of weak learners used in the detector, specified as an integer.
NumWeakLearners is less than or equal to the maximum number of weak learners for the
last training stage. To restrict this maximum, you can use the 'MaxWeakLearners'
name-value pair in the trainACFObjectDetector function.

Object Functions
detect Detect objects using ACF object detector

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object
detector that can detect stop signs. Test the detector with a separate image.

Load the training data.

load('stopSignsAndCars.mat')

Select the ground truth for stop signs. These ground truth is the set of known locations of
stop signs in the images.

stopSigns = stopSignsAndCars(:,1:2);

Add the full path to the image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
 'visiondata',stopSigns.imageFilename);

Train the ACF detector. You can turn off the training progress output by specifying
'Verbose',false as a Name,Value pair.

 acfObjectDetector

2-185

acfDetector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 37.2905 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');

[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

2 Alphabetical List

2-186

for i = 1:length(scores)
 annotation = sprintf('Confidence = %.1f',scores(i));
 img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object

Detection." Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36,
Issue 8, 2014, pp. 1532–1545.

 acfObjectDetector

2-187

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

See Also
Apps
Image Labeler | Video Labeler

Functions
detectPeopleACF | groundTruth | trainACFObjectDetector |
trainCascadeObjectDetector

Introduced in R2017a

2 Alphabetical List

2-188

rcnnObjectDetector
Detect objects using R-CNN deep learning detector

Description
The rcnnObjectDetector object detects objects from an image, using a R-CNN
(regions with convolution neural networks) object detector. To detect objects in an image,
pass the trained detector to the detect function. To classify image regions, pass the
detector to the classifyRegions function.

Use of the rcnnObjectDetector requires Statistics and Machine Learning Toolbox™
and Deep Learning Toolbox.

When using the detect or classifyRegions functions with rcnnObjectDetector,
use of a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher is highly
recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

Creation
Create a rcnnObjectDetector object by calling the trainRCNNObjectDetector
function with training data (requires Deep Learning Toolbox).

detector = trainRCNNObjectDetector(trainingData,...)

Properties
Network — Series network object
SeriesNetwork | DAGNetwork

Series network object representing the convolutional neural network (CNN), specified as
an SeriesNetwork or DAGNetwork. The object is used within the R-CNN detector.

RegionProposalFcn — Custom region proposal
function handle

 rcnnObjectDetector

2-189

Custom region proposal function handle, specified as a function name. A custom function
proposalFcn must have the following functional form:

 [bboxes,scores] = proposalFcn(I)

The input argument I is an image. The function must return rectangular bounding boxes
in an M-by-4 array. Each row of bboxes contains a four-element vector, [x,y,width,height],
that specifies the upper–left corner and size of a bounding box in pixels. The function
must also return a score for each bounding box in an M-by-1 vector. Higher scores
indicate that the bounding box is more likely to contain an object.

ClassNames — Object class names
cell array

Object class names, specified as a cell array. The array contains the names of the object
classes the R-CNN detector was trained to find.

BoxRegressionLayer — Bounding box regression layer
character vector

This property is read-only.

Bounding box regression layer name, specified as a character vector. This property is set
during training using the BoxRegressionLayer argument of
trainRCNNObjectDetector.

Object Functions
detect Detect objects using R-CNN deep learning detector
classifyRegions Classify objects in image regions using R-CNN object detector

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

2 Alphabetical List

2-190

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
 'stopSignImages');
addpath(imDir);

Set network training options to use mini-batch size of 32 to reduce GPU memory usage.
Lower the InitialLearningRate to reduce the rate at which network parameters are
changed. This is beneficial when fine-tuning a pre-trained network and prevents the
network from changing too rapidly.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|===|
| 3 | 50 | 9.27 | 0.2895 | 96.88% | 0.000001 |
| 5 | 100 | 14.77 | 0.2443 | 93.75% | 0.000001 |
| 8 | 150 | 20.29 | 0.0013 | 100.00% | 0.000001 |
| 10 | 200 | 25.94 | 0.1524 | 96.88% | 0.000001 |
|===|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.

 rcnnObjectDetector

2-191

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

Remove the image directory from the path.

2 Alphabetical List

2-192

rmpath(imDir);

Resume Training an R-CNN Object Detector

Resume training an R-CNN object detector using additional data. To illustrate this
procedure, half the ground truth data will be used to initially train the detector. Then,
training is resumed using all the data.

Load training data and initialize training options.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10, ...
 'Verbose', false);

Train the R-CNN detector with a portion of the ground truth.

rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRange', [0 0.3]);

Get the trained network layers from the detector. When you pass in an array of network
layers to trainRCNNObjectDetector, they are used as-is to continue training.

network = rcnn.Network;
layers = network.Layers;

Resume training using all the training data.

rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);

Create a network for multiclass R-CNN object detection

Create an R-CNN object detector for two object classes: dogs and cats.

objectClasses = {'dogs','cats'};

 rcnnObjectDetector

2-193

The network must be able to classify both dogs, cats, and a "background" class in order to
be trained using trainRCNNObjectDetector. In this example, a one is added to include
the background.

numClassesPlusBackground = numel(objectClasses) + 1;

The final fully connected layer of a network defines the number of classes that the
network can classify. Set the final fully connected layer to have an output size equal to the
number of classes plus a background class.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 fullyConnectedLayer(numClassesPlusBackground);
 softmaxLayer()
 classificationLayer()];

These network layers can now be used to train an R-CNN two-class object detector.

Use A Saved Network In R-CNN Object Detector

Create an R-CNN object detector and set it up to use a saved network checkpoint. A
network checkpoint is saved every epoch during network training when the
trainingOptions 'CheckpointPath' parameter is set. Network checkpoints are useful in
case your training session terminates unexpectedly.

Load the stop sign training data.

load('rcnnStopSigns.mat','stopSigns','layers')

Add full path to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Set the 'CheckpointPath' using the trainingOptions function.

checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
 'CheckpointPath',checkpointLocation);

Train the R-CNN object detector with a few images.

2 Alphabetical List

2-194

rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);

Load a saved network checkpoint.

wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);

Load one of the checkpoint networks.

filepath = fullfile(contents(1).folder,contents(1).name);
checkpoint = load(filepath);

checkpoint.net

ans =

 SeriesNetwork with properties:

 Layers: [15×1 nnet.cnn.layer.Layer]

Create a new R-CNN object detector and set it up to use the saved network.

rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;

Set the Network to the saved network checkpoint.

rcnnCheckPoint.Network = checkpoint.net

rcnnCheckPoint =

 rcnnObjectDetector with properties:

 Network: [1×1 SeriesNetwork]
 ClassNames: {'stopSign' 'Background'}

 rcnnObjectDetector

2-195

 RegionProposalFcn: @rcnnObjectDetector.proposeRegions

See Also
Apps
Image Labeler | Video Labeler

Functions
SeriesNetwork | fastRCNNObjectDetector | fasterRCNNObjectDetector |
selectStrongestBboxMulticlass | trainNetwork | trainRCNNObjectDetector |
vision.CascadeObjectDetector

Topics
“Image Category Classification Using Deep Learning”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2016b

2 Alphabetical List

2-196

bagOfFeatures
Bag of visual words object

Description
Manage your image collections and partition them into training and validation sets. You
can construct a bag of visual words for use in image category classification. The training
and classification includes support for Parallel Computing Toolbox.

Creation

Syntax
bag = bagOfFeatures(imds)
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)
bag = bagOfFeatures(imds,Name,Value)

Description
bag = bagOfFeatures(imds) returns a bag of features object. The bag output object
is generated using samples from the imds input.

bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn) returns a bag of
features that uses a custom feature extractor function to extract features from the output
bag to learn its visual vocabulary. extractorFcn is a function handle to a custom feature
extraction function.

bag = bagOfFeatures(imds,Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, bag =
bagOfFeatures('Verbose',true)

This object supports parallel computing using multiple MATLAB workers. Enable parallel
computing from the “Computer Vision Toolbox Preferences” dialog box. To open

 bagOfFeatures

2-197

Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Then select Computer Vision System Toolbox.

Input Arguments
imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object. The bagOfFeatures extracts an equal
number of strongest features from the images contained in the imds object.

number of strongest features = min(number of features found in each set) x
StrongestFraction (2-5)

The object obtains the StrongestFraction value from the 'StrongestFeatures'
property.

extractorFcn — Custom feature extractor function
function handle

Custom feature extractor function, specified the comma-separated pair consisting of
'CustomExtractor' and a function handle. This custom function extracts features from
the output bagOfFeatures object to learn the visual vocabulary of the object.

The function, extractorFcn, must be specified as a function handle for a file:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)

where exampleBagOfFeaturesExtractor is a MATLAB function. For example:

function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)
...

The function must be on the path or in the current working directory.

For more details on the custom extractor function and its input and output requirements,
see “Create a Custom Feature Extractor”.

You can open an example function file, and use it as a template by typing the following
command at the MATLAB command-line:

edit('exampleBagOfFeaturesExtractor.m')

2 Alphabetical List

2-198

Properties
CustomExtractor — Custom extraction function
function handle

Custom feature extractor function, specified as a handle to a function. The custom feature
extractor function extracts features used to learn the visual vocabulary for
bagOfFeatures. You must specify 'CustomExtractor' and the function handle,
extractorFcn, to a custom feature extraction function.

The function, extractorFcn, must be specified as a function handle for a file:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)

where exampleBagOfFeaturesExtractor is a MATLAB function such as:

function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)
...

The function must be on the path or in the current working directory.

For more details on the custom extractor function and it’s input and output requirements,
see “Create a Custom Feature Extractor”. You can open an example function file, and use
it as a template by typing the following command at the MATLAB command-line:

edit('exampleBagOfFeaturesExtractor.m')

VocabularySize — Number of visual words
500 (default) | integer scalar

Number of visual words to include in the bagOfFeatures object, specified as the
comma-separated pair consisting of 'VocabularySize' and an integer scalar in the range
[2, inf]. The VocabularySize value corresponds to K in the K-means clustering
(Statistics and Machine Learning Toolbox) algorithm used to quantize features into the
visual vocabulary.

StrongestFeatures — Fraction of strongest features
0.8 (default) | [0,1]

Fraction of strongest features, specified as the comma-separated pair consisting of
'StrongestFeatures' and a value in the range [0,1]. The value represents the fraction
of strongest features to use from each label in the imds input.

 bagOfFeatures

2-199

Verbose — Enable progress display to screen
true (default) | false

Enable progress display to screen, specified as the comma-separated pair consisting of
'Verbose' and the logical true or false.

PointSelection — Selection method for picking point locations
'Grid' (default) | 'Detector'

Selection method for picking point locations for SURF feature extraction, specified as the
comma-separated pair consisting of 'PointSelection' and the character vector 'Grid'
or 'Detector'. There are two stages for feature extraction. First, you select a method
for picking the point locations, (SURF 'Detector' or 'Grid'), with the
PointSelection property. The second stage extracts the features. The feature
extraction uses a SURF extractor for both point selection methods.

When you set PointSelection to 'Detector', the feature points are selected using a
speeded up robust feature (SURF) detector. Otherwise, the points are picked on a
predefined grid with spacing defined by 'GridStep'. This property applies only when you
are not specifying a custom extractor with the CustomExtractor property.

GridStep — Grid step size
[8 8] (default) | 1-by-2 [x y] vector

Grid step size in pixels, specified as the comma-separated pair consisting of 'GridStep'
and an 1-by-2 [x y] vector. This property applies only when you set PointSelection to
'Grid' and you are not specifying a custom extractor with the CustomExtractor
property. The steps in the x and y directions define the spacing of a uniform grid.
Intersections of the grid lines define locations for feature extraction.

BlockWidth — Patch size to extract upright SURF descriptor
[32 64 96 128] (default) | 1-by-N vector

Patch size to extract upright SURF descriptor, specified as the comma-separated pair
consisting of 'BlockWidth' and a 1-by-N vector of N block widths. This property applies
only when you are not specifying a custom extractor with the CustomExtractor
property. Each element of the vector corresponds to the size of a square block from which
the function extracts upright SURF descriptors. Use multiple square sizes to extract
multiscale features. All the square specified are used for each extraction points on the
grid. This property only applies when you set PointSelection to 'Grid'. The block
width corresponds to the scale of the feature. The minimum BlockWidth is 32 pixels.

2 Alphabetical List

2-200

Upright — Orientation of SURF feature vector
true (default) | logical scalar

Orientation of SURF feature vector, specified as the comma-separated pair consisting of
'Upright' and a logical scalar. This property applies only when you are not specifying a
custom extractor with the CustomExtractor property. Set this property to true when
you do not need to estimate the orientation of the SURF feature vectors. Set it to false
when you need the image descriptors to capture rotation information.

Object Functions
encode Create histogram of visual word occurrences

Examples

Create a Bag of Visual Words

Load two image sets.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imgSets = imageSet(setDir,'recursive');

Pick the first two images from each image set to create training sets.

trainingSets = partition(imgSets,2);

Create the bag of features. This process can take a few minutes.

bag = bagOfFeatures(trainingSets,'Verbose',false);

 bagOfFeatures

2-201

Compute histogram of visual word occurrences for one of the images. Store the histogram
as feature vector.

img = read(imgSets(1),1);
featureVector = encode(bag,img);

Create a Bag of Features with a Custom Feature Extractor

Load an image set.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Specify a custom feature extractor.

extractor = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractor)

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeaturesExtractor.

* Extracting features from 12 images...done. Extracted 230400 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 184320
* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 26/100 iterations (~0.51 seconds/iteration)...converged in 26 iterations.

* Finished creating Bag-Of-Features

bag =
 bagOfFeatures with properties:

 CustomExtractor: @exampleBagOfFeaturesExtractor

2 Alphabetical List

2-202

 VocabularySize: 500
 StrongestFeatures: 0.8000

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
imageCategoryClassifier | imageDatastore | trainImageCategoryClassifier

Topics
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”
“Create a Custom Feature Extractor”

Introduced in R2014b

 bagOfFeatures

2-203

encode
Create histogram of visual word occurrences

Syntax
featureVector = encode(bag,I)
[featureVector,words] = encode(bag,I)

featureVector= encode(bag,imds)
[featureVector,words] = encode(bag,imds)

[___] = encode(___ ,Name,Value)

Description
featureVector = encode(bag,I) returns a feature vector that represents a
histogram of visual word occurrences contained in the input image, I. The input bag
contains the bagOfFeatures object.

[featureVector,words] = encode(bag,I) optionally returns the visual words as a
visualWords object. The visualWords object stores the visual words that occur in I
and stores the locations of those words.

featureVector= encode(bag,imds) returns a feature vector that represents a
histogram of visual word occurrences contained in imds. The input bag contains the
bagOfFeatures object.

[featureVector,words] = encode(bag,imds) optionally returns an array of
visualWords occurrences in imds. The visualWords object stores the visual words
that occur in I and stores the locations of those words.

[___] = encode(___ ,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example,
encode('SparseOutput',false)

This method supports parallel computing using multiple MATLAB workers. Enable
parallel computing from the “Computer Vision Toolbox Preferences” dialog box. To open

2 Alphabetical List

2-204

Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Then select Computer Vision System Toolbox.

Examples

Encode an Image into a Feature Vector

Load a set of image.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Pick the first two images from each label.

trainingSet = splitEachLabel(imds,2);

Create bag of features.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 24/100 iterations (~0.23 seconds/iteration)...converged in 24 iterations.

* Finished creating Bag-Of-Features

Encode one of the images into a feature vector.

 encode

2-205

img = readimage(trainingSet,1);
featureVector = encode(bag,img);

Input Arguments
bag — Bag of features
bagOfFeatures object

Bag of features, specified as a bagOfFeatures object.

I — Input image
grayscale image | truecolor image

Input image, I, specified as a grayscale or truecolor image.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object.

Name-Value Pair Arguments
Example: 'SparseOutput',false

Normalization — Type of normalization
'L2' (default) | 'none'

Type of normalization applied to the feature vector, specified as the comma-separated
pair consisting of 'Normalization' and the character vector'L2' or 'none'.

SparseOutput — Output sparsity
false (default) | true

Output sparsity, specified as the comma-separated pair consisting of 'SparseOutput' and
as true or false. Set this property to true to return the visual word histograms in a
sparse matrix. Setting this property to true reduces memory consumption for large
visual vocabularies where the visual word histograms contain many zero elements.

Verbose — Enable progress display to screen
true (default) | false

2 Alphabetical List

2-206

Enable progress display to screen, specified as the comma-separated pair consisting of
'Verbose' and the logical true or false.

Output Arguments
featureVector — Histogram of visual word occurrences
1-by-bag.VocabularySize | M-by-bag.VocabularySize

Histogram of visual word occurrences, specified as M-by-bag.VocabularySize vector,
where M is the total number of images in imds, numel(imds.Files).

words — Visual words object
visualWords object

Visual words object, returned as a visual words object or an array of visual words objects.
The visualWords object stores the visual words that occur in the images and stores the
locations of those words.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
bagOfFeatures

Introduced in R2014b

 encode

2-207

imageCategoryClassifier class

Predict image category

Syntax
imageCategoryClassifier

Description
imageCategoryClassifier is returned by the trainImageCategoryClassifier
function. It contains a linear support vector machine (SVM) classifier trained to recognize
an image category.

You must have a Statistics and Machine Learning Toolbox license to use this classifier.

This classifier supports parallel computing using multiple MATLAB workers. Enable
parallel computing using the “Computer Vision Toolbox Preferences” dialog. To open the
Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Select Computer Vision System Toolbox.

Properties
Labels — Category labels
cell array

Category labels, specified as a cell array.

NumCategories — Number of trained categories
integer

Number of trained categories, stored as an integer value.

2 Alphabetical List

2-208

Methods
predict Predict image category
evaluate Evaluate image classifier on collection of image sets

Examples

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Split the data set into a training and test data. Pick 30% of images from each set for the
training data and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500

 imageCategoryClassifier class

2-209

* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.24 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED
KNOWN | books cups

books | 0.75 0.25
cups | 0.25 0.75

* Average Accuracy is 0.75.

confMatrix = 2×2

2 Alphabetical List

2-210

 0.7500 0.2500
 0.2500 0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

Apply the newly trained classifier to categorize new images.

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Display the classification label.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
 {'cups'}

References
Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with
Bag of Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1 (1-22),
1-2.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

 imageCategoryClassifier class

2-211

For more information, see “Parallel Computing Toolbox Support”.

See Also
bagOfFeatures | fitcecoc | imageDatastore | trainImageCategoryClassifier

Topics
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”

Introduced in R2014b

2 Alphabetical List

2-212

predict
Class: imageCategoryClassifier

Predict image category

Syntax
[labelIdx,score] = predict(categoryClassifier,I)
[labelIdx,score] = predict(categoryClassifier,imds)
[labelIdx,score] = predict(___ ,'Verbose',true)

Description
[labelIdx,score] = predict(categoryClassifier,I) returns the predicted
label index and score for the input image.

This supports parallel computing using multiple MATLAB workers. Enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog. To open Computer
Vision Toolbox preferences, on the Home tab, in the Environment section, click
Preferences. Select Computer Vision System Toolbox.

[labelIdx,score] = predict(categoryClassifier,imds) returns the predicted
label index and score for the images specified in imds.

[labelIdx,score] = predict(___ ,'Verbose',true) also enables progress
display to the screen. Set to false to turn it off.

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D
grayscale image.

 predict

2-213

categoryClassifier — Image category classifier
imageCategoryClassifier object

Image category classifier, specified as an imageCategoryClassifier object.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object.

Output Arguments
labelIdx — Predicted label index
M-by-1 vector | scalar

Predicted label index, returned as either an M-by-1 vector for M images or a scalar value
for a single image. The labelIdx output value corresponds to the index of an image set
used to train the bag of features. The prediction index corresponds to the class with the
lowest average binary loss of the ECOC SVM classifier.

score — Prediction score
1-by-N vector | M-by-N matrix

Prediction score, specified as a 1-by-N vector or an M-by-N matrix. N represents the
number of classes. M represents the number of images in the imageSet input object,
imgSet. The score provides a negated average binary loss per class. Each class is a
support vector machine (SVM) multiclass classifier that uses the error-correcting output
codes (ECOC) approach.

Examples

Predict Category for Image

Load two image category sets.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

2 Alphabetical List

2-214

Separate the two sets into training and test data. Pick 30% of images from each set for
the training data and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create a bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.24 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Predict category label for one of the images in test set.

 predict

2-215

img = readimage(testSet,1);
[labelIdx, score] = predict(categoryClassifier,img);
categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
 {'books'}

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

2 Alphabetical List

2-216

evaluate
Class: imageCategoryClassifier

Evaluate image classifier on collection of image sets

Syntax
confMat = evaluate(classifier,imds)
[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate(
classifier,imds)
[___] = evaluate(___ ,'Verbose',true)

Description
confMat = evaluate(classifier,imds) returns a normalized confusion matrix,
confMat.

[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate(
classifier,imds) additionally returns the corresponding label indexes and score.

[___] = evaluate(___ ,'Verbose',true) also enables progress display to the
screen. Set to false to turn it off.

Input Arguments
imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object.

classifier — Image category classifier
imageCategoryClassifier object

Image category classifier, specified as an imageCategoryClassifier object.

 evaluate

2-217

imgSet — Image set
imageSet object

Image set, specified as an imageSet object.

Output Arguments
confMat — Confusion matrix
matrix

Confusion matrix, returned as a matrix. The row indices correspond to known labels and
the columns correspond to the predicted labels.

knownLabelIdx — Label index for image set
M-by-1 vector | scalar

Label index for image set, returned as an M-by-1 vector for M images. The
knownLabelIdx output value corresponds to the index of an image set used to train the
bag of features.

predictedLabelIdx — Predicted label index
M-by-1 vector

Predicted label index, returned as an M-by-1 vector for M images. The
predictedLabelIdx output value corresponds to the index of an image set used to train
the bag of features. The predicted index corresponds to the class with the largest value in
the score output.

score — Prediction score
M-by-N matrix

Prediction score, specified as an M-by-N matrix. N represents the number of classes. M
represents the number of images in the imageSet input object, imgSet. The score
provides a negated average binary loss per class. Each class is a support vector machine
(SVM) multiclass classifier that uses the error-correcting output codes (ECOC) approach.

Examples

2 Alphabetical List

2-218

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Split the data set into a training and test data. Pick 30% of images from each set for the
training data and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.24 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--
* Category 1: books

 evaluate

2-219

* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED
KNOWN | books cups

books | 0.75 0.25
cups | 0.25 0.75

* Average Accuracy is 0.75.

confMatrix = 2×2

 0.7500 0.2500
 0.2500 0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

Apply the newly trained classifier to categorize new images.

2 Alphabetical List

2-220

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Display the classification label.

categoryClassifier.Labels(labelIdx)

ans = 1x1 cell array
 {'cups'}

 evaluate

2-221

intrinsicsEstimationErrors class
Object for storing standard errors of estimated camera intrinsics and distortion
coefficients

Syntax
intrinsicsEstimationErrors

Description
intrinsicsEstimationErrors contains the standard errors of estimated camera
intrinsics and distortion coefficients. You can access the intrinsics and distortion standard
errors using the object properties.

Properties
SkewError

Standard error of camera axes skew estimate

FocalLengthError

Standard error of focal length estimate

PrincipalPointError

Standard error of principal point estimate

RadialDistortionError

Standard error of radial distortion estimate

TangentialDistortionError

Standard error of tangential distortion estimate

2 Alphabetical List

2-222

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraCalibrationErrors |
extrinsicsEstimationErrors | intrinsicsEstimationErrors |
stereoCalibrationErrors

Topics
“Single Camera Calibrator App”

Introduced in R2013b

 intrinsicsEstimationErrors class

2-223

extrinsicsEstimationErrors class

Object for storing standard errors of estimated camera extrinsics

Syntax
extrinsicsEstimationErrors

Description
extrinsicsEstimationErrors contains the standard errors of estimated camera
extrinsics. You can access the extrinsics standard errors using the object properties.

Properties
RotationVectorsError

Standard error of camera rotations estimate

TranslationVectorsError

Standard error of camera translations estimate

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraCalibrationErrors |
intrinsicsEstimationErrors | stereoCalibrationErrors

Topics
“Single Camera Calibrator App”

Introduced in R2013b

2 Alphabetical List

2-224

BRISKPoints
Object for storing BRISK interest points

Description
This object provides the ability to pass data between the detectBRISKFeatures and
extractFeatures functions. You can also use it to manipulate and plot the data
returned by these functions. You can use the object to fill the points interactively in
situations where you might want to mix a non-BRISK interest point detector with a BRISK
descriptor.

Creation

Syntax
points = BRISKPoints(Location)
points = BRISKPoints(Location,Name,Value)

Description
points = BRISKPoints(Location) constructs a BRISKPoints object from an M-by-2
array of [x y] point coordinates, Location.

points = BRISKPoints(Location,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, points =
BRISKPoints('Metric',0.0)

Input Arguments
Location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

 BRISKPoints

2-225

Properties
Count — Number of points
0 (default) | integer

Number of points held by the BRISK object, specified as a numeric value.

Location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

Scale — Scale
12.0 (default) | scalar

Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value. The BRISK algorithm uses a
determinant of an approximated Hessian.

Orientation — Orientation
0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is
measured counterclockwise from the X-axis with the origin specified by the Location
property. Do not set this property manually. Use the call to extractFeatures to fill in
this value. The extractFeatures function modifies the default value of 0.0. Using
BRISK interest points to extract a non-BRISK descriptor, (e.g. SURF, FREAK, MSER, etc.),
can alter Orientation values. The Orientation is mainly useful for visualization
purposes.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics

2 Alphabetical List

2-226

size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect BRISK Features in an Image

Read an image and detect the BRISK interest points.

I = imread('cameraman.tif');
points = detectBRISKFeatures(I);
location = [100:228;100:228]';
points = BRISKPoints(location);

Select and plot the 10 strongest interest points.

 strongest = points.selectStrongest(10);
 imshow(I); hold on;
 plot(strongest);

 BRISKPoints

2-227

Display the [x y] coordinates.

 strongest.Location

ans = 10x2 single matrix

 100 100
 101 101
 102 102
 103 103
 104 104
 105 105
 106 106
 107 107
 108 108
 109 109

2 Alphabetical List

2-228

Tips
Although BRISKPoints can hold many points, it is a scalar object. Therefore,
numel(BRISKPoints) always returns 1. This value can differ from
length(BRISKPoints), which returns the true number of points held by the object.

References
[1] Leutenegger, S., M. Chli, and R. Siegwart. BRISK: Binary Robust Invariant Scalable

Keypoints, Proceedings of the IEEE International Conference on Computer Vision
(ICCV) 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for
points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the
“Introduction to Code Generation with Feature Matching and Registration” example.

See Also
KAZEPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures |
detectSURFFeatures | extractFeatures | matchFeatures

Introduced in R2014a

 BRISKPoints

2-229

imageSet class

Define collection of images

Syntax
imgSet = imageSet(imageLocation)
imgSetVector = imageSet(imgFolder,'recursive')

Construction
imgSet = imageSet(imageLocation) returns an object for storing an image data set
or a collection of image data sets. You can use this object to manage your image data. The
object contains image descriptions, locations of images, and the number of images in your
collection.

imgSetVector = imageSet(imgFolder,'recursive') returns a vector of image
sets found through a recursive search starting from imgFolder. The imgSetVector
output is a 1-by-NumFolders vector, where NumFolders is the number of folders that
contain at least one image.

Input Arguments
imageLocation — Image file location
character vector | cell array

Image file location, specified as a character vector or a cell array. The vector must specify
the folder name that contains the images. The image files name extensions must be
supported by imread. The cell array must contain image locations.

Example 2.1. Image file location

{'imagePath1','imagePath2', ..., 'imagePathX'}, where each imagePath represents the
path to an each image.

2 Alphabetical List

2-230

imgFolder — Start recursive image search folder
character vector

Start recursive image search folder, specified as a character vector. The function searches
the folder structure recursively, starting from imgFolder.

Properties
Description — Information about the image set
character vector

Information about the image set, specified as a character vector. When you create an
image set by recursively searching folders or by specifying a single folder location, the
Description property is set to the folder name. When you specify individual image files,
the Description property is not set. You can set the property manually.
Data Types: char

Count — Number of images in image set
integer

Number of images in image set.
Data Types: double | single

ImageLocation — Image locations
cell array of character vectors

Image locations, given as a cell array of character vectors.
Data Types: cell

Methods

partition Divide image set into subsets
read Read image at specified index
select Select subset of images from image set

 imageSet class

2-231

Common to All System Objects
release Allow System object property value changes

Examples

Create an Image Set From a Folder of Images

Read the folder of images.

imgFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
imgSet = imageSet(imgFolder);

Display the first image in the image set collection.

imshow(read(imgSet,1));

2 Alphabetical List

2-232

Create an Array of Image Sets from Multiple Folders

Identify the path to the image sets.

imgFolder = fullfile(matlabroot, 'toolbox','vision',...
 'visiondata','imageSets');

Recursively scan the entire image set folder.

imgSets = imageSet(imgFolder,'recursive')

imgSets =
 1x2 imageSet array with properties:

 Description
 ImageLocation
 Count

 imageSet class

2-233

Display the names of the scanned folders.

{imgSets.Description}

ans = 1x2 cell array
 {'books'} {'cups'}

Display 2nd image from the 'cups' folder.

imshow(read(imgSets(2),2));

2 Alphabetical List

2-234

 imageSet class

2-235

Create an Image Set by Specifying Individual Images

Specify individual images.

As an alternative to the method below, you can pick the files manually using imgetfile:
imgFiles = imgetfile('MultiSelect',true);

imgFiles = { fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','image001.jpg'),...
 fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','image002.jpg') };

Create image set.

imgSet = imageSet(imgFiles);

See Also
bagOfFeatures | imageCategoryClassifier | imageSet | imgetfile |
trainImageCategoryClassifier

Topics
“Image Category Classification Using Bag of Features”

Introduced in R2014b

2 Alphabetical List

2-236

partition
Class: imageSet

Divide image set into subsets

Syntax
[set1,set2,...,setN] = partition(imgSet,groupSizes)
[set1,set2,...,setN] = partition(imgSet,groupPercentages)
[set1,set2,...,setN] = partition(___ ,method)

Description
[set1,set2,...,setN] = partition(imgSet,groupSizes) partitions the input
image set, imgSet, into the collection of subsets specified in groupSizes.

[set1,set2,...,setN] = partition(imgSet,groupPercentages) returns the
partitioned image sets in terms of percentages.

[set1,set2,...,setN] = partition(___ ,method) additionally specifies a
method, 'sequential' or 'randomized'.

Input Arguments
imgSet — Image set
array of imageSet objects

Image set, specified as an array of imageSet objects.

groupSizes — Group size
scalar

Group size of images, specified as a scalar. The number of output arguments must be
between 1 and length(groupSizes) + 1.

 partition

2-237

Example 2.2. Example

If you set groupSizes to [20 60], the method returns 20 images in set1, 60 images in
set2, and the remainder of images in set3.

groupPercentages — Group size percentage
scalar

Group size of images by percentage.

Example 2.3. Example

If you set groupPercentages to [0.1 0.5], the method returns 10% of images in set1,
50% in set2, and the remainder in set3.

method — Image selection method
'sequential' (default) | 'randomized'

Image selection method, specified as either method or 'randomized'. When you set
method to 'randomized' the images are randomly selected to form the new sets. When
you set method to 'sequential' the images are selected sequentially.

Examples

Partition Image Set

Create an image set.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet = imageSet(imgFolder);

Divide the set into two groups: one with five images and the other with the
remainder of the images from imgSet.

[setA1, setA2] = partition(imgSet,5);

Randomly partition the set into three groups: one with 20% of the images, the
second group with 30%, and the third group with 50%.

[setB1, setB2, setB3] = partition(imgSet, [0.2, 0.3],'randomized');

2 Alphabetical List

2-238

read
Class: imageSet

Read image at specified index

Syntax
image = read(imgSet,idx)

Description
image = read(imgSet,idx) returns an image from the imgSet image set, located at
the index idx.

Input Arguments
imgSet — Image set
array of imageSet objects

Image set, specified as an array of imageSet objects.

idx — Image location index
scalar

Image location index, specified as a scalar value.

Examples

 read

2-239

Display Image from an Image Set

Create an image set.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet = imageSet(imgFolder);

Display the fourth image from the set.

imshow(read(imgSet, 4));

2 Alphabetical List

2-240

select
Class: imageSet

Select subset of images from image set

Syntax
imgSetOut = select(imgSet,idx)

Description
imgSetOut = select(imgSet,idx) returns a new image set, imgSetOut, using the
selection of images specified by the index idx.

Input Arguments
imgSet — Image set
array of imageSet objects

Image set, specified as an array of imageSet objects.

idx — Image location index
scalar | vector of linear indices | vector of logical indices

Image location index, specified as a scalar, vector of linear indices, or a vector of logical
indices. The function uses the idx index to select the subset of images.

Examples

 select

2-241

Select Images Specified by an Index

Read images from a folder.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet = imageSet(imgFolder);

Select images 2 and 4 from the image set.

imgSetOut = select(imgSet, [2, 4]);

Select every other image from the image set.

imgSetOut2 = select(imgSet, 1:2:imgSet.Count);

2 Alphabetical List

2-242

invertedImageIndex class
Search index that maps visual words to images

Syntax
imageIndex = invertedImageIndex(bag)
imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf)
imageIndex = invertedImageIndex(___ ,Name,Value)

Construction
imageIndex = invertedImageIndex(bag) returns a search index object that you can
use with the retrieveImages function to search for an image. The object stores the
visual word-to-image mapping based on the input bag, a bagOfFeatures object.

imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf)
optionally specifies whether or not to save the feature location data in imageIndex.

imageIndex = invertedImageIndex(___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments, using any of the preceding
syntaxes.

Input Arguments
bag — Bag of visual words
bagOfFeatures object

Bag of visual words, specified as a bagOfFeatures object.

SaveFeatureLocations — Save feature locations
true (default) | false

Save feature locations, specified as a logical scalar. When you set this property to true,
the image feature locations are saved in the imageIndex output object. Use location data

 invertedImageIndex class

2-243

to verify the spatial or geometric image search results. If you do not require feature
locations, set this property to false to reduce memory consumption.

Properties
ImageLocation — Indexed image locations
cell array

Indexed image locations, stored as a cell array.

ImageWords — Visual words
1-by-M vector of visualWords objects

Visual words, stored as a 1-by-M vector of visualWords objects for each indexed image.
The visualWords object contains the WordIndex, Location, VocabularySize, and
Count properties for each indexed image.

WordFrequency — Word occurrence
M-by-1 vector

Word occurrence, specified as an M-by-1 vector. The vector contains the percentage of
images in which each visual word occurs. These percentages are analogous to document
frequency in text retrieval applications. The WordFrequency property contains the
percentage of images in which each visual word occurs. It is often helpful to suppress the
most common words to reduce the search set when looking for the most relevant images.
Also helpful, is to suppress rare words as they probably come from outliers in the image
set.

You can control how much the top and bottom end of the visual word distribution affects
the search results by tuning the WordFrequencyRange property. A good way to set this
value is to plot the sorted WordFrequency values.

BagOfFeatures — Bag of visual words
bagOfFeatures object

Bag of visual words, specified as the bagOfFeatures object used in the index.

MatchThreshold — Percentage of similar words required between query and
potential image match
0.01 (default) | numeric value in the range [0 1]

2 Alphabetical List

2-244

Percentage of similar words required between a query and a potential image match,
specified as a numeric value in the range [0, 1]. To obtain more search results, lower this
threshold.

WordFrequencyRange — Word frequency range
[0.01 0.9] (default) | two-element vector

Word frequency range, specified as a two-element vector of a lower and upper
percentage, [lower upper]. Use the word frequency range to ignore common words (the
upper percentage range) or rare words (the lower percentage range) within the image
index. These words often occur as repeated patterns or outliers and can reduce search
accuracy. You can control how much the top and bottom end of the visual word
distribution affects the search results by tuning the WordFrequencyRange property. A
good way to set this value is to plot the sorted WordFrequency values.

Methods
addImages Add new images to image index
removeImages Remove images from image index

Examples

Search ROI for Object

Define a set of images to search.

imageFiles = ...
 {'elephant.jpg', 'cameraman.tif', ...
 'peppers.png', 'saturn.png',...
 'pears.png', 'stapleRemover.jpg', ...
 'football.jpg', 'mandi.tif',...
 'kids.tif', 'liftingbody.png', ...
 'office_5.jpg', 'gantrycrane.png',...
 'moon.tif', 'circuit.tif', ...
 'tape.png', 'coins.png'};

imgSet = imageSet(imageFiles);

 invertedImageIndex class

2-245

Learn the visual vocabulary.

bag = bagOfFeatures(imgSet,'PointSelection','Detector',...
 'VocabularySize',1000);

Creating Bag-Of-Features.

* Image category 1: <undefined>
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 16 images in image set 1...done. Extracted 3680 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest 2944 features from each of the other image categories.

* Using K-Means clustering to create a 1000 word visual vocabulary.
* Number of features : 2944
* Number of clusters (K) : 1000

* Initializing cluster centers...100.00%.
* Clustering...completed 24/100 iterations (~0.06 seconds/iteration)...converged in 24 iterations.

* Finished creating Bag-Of-Features

Create an image search index and add images.

imageIndex = invertedImageIndex(bag);

addImages(imageIndex, imgSet);

Encoding images using Bag-Of-Features.

* Image category 1: <undefined>
* Encoding 16 images from image set 1...done.

* Finished encoding images.

Specify a query image and an ROI to search for the target object, elephant.

queryImage = imread('clutteredDesk.jpg');
queryROI = [130 175 330 365];

2 Alphabetical List

2-246

figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor','yellow')

You can also use the imrect function to select an ROI interactively. For example,
queryROI = getPosition(imrect).

Find images that contain the object.

imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)

 invertedImageIndex class

2-247

imageIDs = 15×1

 1
 11
 2
 6
 8
 12
 3
 14
 13
 16
 ⋮

bestMatch = imageIDs(1);

figure
imshow(imageIndex.ImageLocation{bestMatch})

2 Alphabetical List

2-248

References
Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching in
videos. ICCV (2003) pg 1470-1477.

Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large
vocabularies and fast spatial matching. CVPR (2007).

 invertedImageIndex class

2-249

See Also
bagOfFeatures | evaluateImageRetrieval | imageSet | indexImages |
retrieveImages

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

2 Alphabetical List

2-250

addImages
Class: invertedImageIndex

Add new images to image index

Syntax
addImages(imageIndex,imds)
addImages(imageIndex,imds,'Verbose',true)

Description
addImages(imageIndex,imds) adds the images in imds into the imageIndex object.

addImages(imageIndex,imds,'Verbose',true) also displays progress information.
'Verbose' to false to turn display off.

This object supports parallel computing using multiple MATLAB workers. Enable parallel
computing from the “Computer Vision Toolbox Preferences” dialog box. To open
Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Then select Computer Vision Toolbox .

Input Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object.

imds — Images
ImageDatastore object

Images, specified as an ImageDatastore object. imds contains new images to add to an
existing index. Duplicate images are not ignored.

 addImages

2-251

Examples

Add Image to Image Index

Define a set of images to search

imageFiles = ...
 {'elephant.jpg', 'cameraman.tif', ...
 'peppers.png', 'saturn.png',...
 'pears.png', 'stapleRemover.jpg', ...
 'football.jpg', 'mandi.tif',...
 'kids.tif', 'liftingbody.png', ...
 'office_5.jpg', 'gantrycrane.png',...
 'moon.tif', 'circuit.tif', ...
 'tape.png', 'coins.png'};

imds = imageDatastore(imageFiles);

Learn the visual vocabulary.

bag = bagOfFeatures(imds,'PointSelection','Detector',...
 'VocabularySize',1000,'Verbose',false);

Create an image search index.

imageIndex = invertedImageIndex(bag);

Add images.

addImages(imageIndex,imds);

Encoding images using Bag-Of-Features.

* Encoding 16 images...done.

2 Alphabetical List

2-252

removeImages
Class: invertedImageIndex

Remove images from image index

Syntax
removeImages(imageIndex,indices)

Description
removeImages(imageIndex,indices) removes the images from the imageIndex
object that correspond to the indices input.

Input Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object.

indices — Image indices
vector

Image indices, specified as a row or column vector. The indices correspond to the images
within imageIndex.Location.

Examples

Remove Indexed Image

Create image set.

 removeImages

2-253

dataDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(dataDir);

Index the image set.

imageIndex = indexImages(imds)

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 6 images...done. Extracted 1708 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest 1366 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 1366
* Number of clusters (K) : 1366

* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.07 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 6 images...done.
Finished creating the image index.

imageIndex =
 invertedImageIndex with properties:

 ImageLocation: {6x1 cell}

2 Alphabetical List

2-254

 ImageWords: [6x1 vision.internal.visualWords]
 WordFrequency: [1x1366 double]
 BagOfFeatures: [1x1 bagOfFeatures]
 MatchThreshold: 0.0100
 WordFrequencyRange: [0.0100 0.9000]

imageIndex.ImageLocation

ans = 6x1 cell array
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\bigMug.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\handMade.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}

Remove first and third image.

removeImages(imageIndex,[1 3]);
imageIndex.ImageLocation

ans = 4x1 cell array
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}

 removeImages

2-255

cameraCalibrationErrors
Object for storing standard errors of estimated camera parameters

Description
cameraCalibrationErrors contains the standard errors of estimated camera
parameters. The estimateCameraParameters function returns the
cameraCalibrationErrors object. You can access the intrinsics and extrinsics
standard errors using the object properties. You can display the standard errors using the
object’s displayErrors method.

Properties
IntrinsicsErrors — Stardard intrinsics error
intrinsicsEstimationErrors object

Standard error of the estimated intrinsics for a camera, specified as a
intrinsicsEstimationErrors object.

ExtrinsicsErrors — Stardard extrinsics error
extrinsicsEstimationErrors object

Standard error of the estimate rotations and translations for a camera relative to the
calibration pattern, specified as a extrinsicsEstimationErrors object.

Object Functions
displayErrors Display standard errors of camera parameter estimates

Examples
Estimate and Display Camera Calibration Standard Errors

Create a set of calibration images.

2 Alphabetical List

2-256

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','mono'));

Detect the calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the corners of the squares. The units of the square are
in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
[params,~,errors] = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Display the standard errors.

displayErrors(errors,params);

 Standard Errors of Estimated Camera Parameters
 --

Intrinsics

Focal length (pixels): [714.1886 +/- 3.3219 710.3785 +/- 4.0579]
Principal point (pixels):[563.6481 +/- 5.3967 355.7252 +/- 3.3036]
Radial distortion: [-0.3536 +/- 0.0091 0.1730 +/- 0.0488]

Extrinsics

Rotation vectors:
 [-0.6096 +/- 0.0054 -0.1789 +/- 0.0073 -0.3835 +/- 0.0024]
 [-0.7283 +/- 0.0050 -0.0996 +/- 0.0072 0.1964 +/- 0.0027]
 [-0.6722 +/- 0.0051 -0.1444 +/- 0.0074 -0.1329 +/- 0.0026]
 [-0.5836 +/- 0.0056 -0.2901 +/- 0.0074 -0.5622 +/- 0.0025]
 [-0.3157 +/- 0.0065 -0.1441 +/- 0.0075 -0.1067 +/- 0.0011]
 [-0.7581 +/- 0.0052 0.1947 +/- 0.0072 0.4324 +/- 0.0030]
 [-0.7515 +/- 0.0051 0.0767 +/- 0.0072 0.2070 +/- 0.0029]
 [-0.6223 +/- 0.0053 0.0231 +/- 0.0073 0.3663 +/- 0.0024]
 [0.3443 +/- 0.0063 -0.2226 +/- 0.0073 -0.0437 +/- 0.0014]

 cameraCalibrationErrors

2-257

Translation vectors (mm):
 [-146.0517 +/- 6.0391 -26.8685 +/- 3.7318 797.9026 +/- 3.9002]
 [-209.4358 +/- 6.9637 -59.4565 +/- 4.3578 921.8198 +/- 4.6295]
 [-129.3825 +/- 7.0907 -44.1030 +/- 4.3751 937.6831 +/- 4.4913]
 [-151.0049 +/- 6.6905 -27.3253 +/- 4.1339 884.2788 +/- 4.3925]
 [-174.9500 +/- 6.7056 -24.3499 +/- 4.1606 886.4961 +/- 4.6686]
 [-134.3097 +/- 7.8887 -103.4981 +/- 4.8925 1042.4553 +/- 4.8184]
 [-173.9846 +/- 7.6891 -73.1691 +/- 4.7812 1017.2385 +/- 4.8126]
 [-202.9448 +/- 7.4327 -87.9091 +/- 4.6482 983.6957 +/- 4.9072]
 [-319.8862 +/- 6.3213 -119.8898 +/- 4.0922 829.4581 +/- 4.9591]

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
cameraParameters | extrinsicsEstimationErrors |
intrinsicsEstimationErrors | stereoCalibrationErrors | stereoParameters

Functions
detectCheckerboardPoints | estimateCameraParameters |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors |
undistortImage | undistortPoints

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Single Camera Calibrator App”

Introduced in R2014b

2 Alphabetical List

2-258

stereoCalibrationErrors class

Object for storing standard errors of estimated stereo parameters

Syntax
stereoCalibrationErrors

Description
stereoCalibrationErrors contains the standard errors of estimated stereo
parameters. The estimateCameraParameters function returns the
stereoCalibrationErrors object. You can access the standard errors for stereo
calibration using the object’s properties. You can display the standard errors using the
object displayErrors method.

Properties
Camera1IntrinsicsErrors

Standard errors of camera 1 estimated intrinsics and distortion coefficients, specified as
an intrinsicsEstimationErrors object.

Camera1ExtrinsicsErrors

Standard errors of camera 1 estimated extrinsics parameters, specified as an
extrinsicsEstimationErrors object.

Camera2IntrinsicsErrors

Standard errors of camera 2 estimated intrinsics and distortion coefficients, specified as
an intrinsicsEstimationErrors object.

 stereoCalibrationErrors class

2-259

RotationOfCamera2Error

Standard errors of rotated vector of camera 2 relative to camera 1, specified as a 3-
element vector.

TranslationOfCamera2Error

Standard errors of translation of camera 2 relative to camera 1, specified as a 3-element
vector.

Methods
displayErrors Display standard errors of camera parameter estimation

Examples

Estimate and Display Stereo Calibration Standard Errors

Specify calibration images.

imageDir = fullfile(toolboxdir('vision'), 'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

[imagePoints, boardSize] = detectCheckerboardPoints(...
 leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Here both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];

2 Alphabetical List

2-260

[params, ~, errors] = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Display standard errors.

displayErrors(errors,params);

 Standard Errors of Estimated Stereo Camera Parameters

Camera 1 Intrinsics

Focal length (pixels): [1038.0286 +/- 0.6533 1037.9145 +/- 0.6389]
Principal point (pixels):[656.0841 +/- 0.3408 485.5485 +/- 0.2639]
Radial distortion: [-0.3617 +/- 0.0008 0.1866 +/- 0.0026]

Camera 1 Extrinsics

Rotation vectors:
 [0.1680 +/- 0.0007 -0.0271 +/- 0.0006 3.1125 +/- 0.0001]
 [0.1995 +/- 0.0006 -0.0523 +/- 0.0005 -3.0991 +/- 0.0000]
 [0.4187 +/- 0.0005 -0.1061 +/- 0.0004 -3.1113 +/- 0.0001]
 [0.5239 +/- 0.0005 -0.0604 +/- 0.0004 -3.0552 +/- 0.0001]
 [0.6807 +/- 0.0006 -0.0306 +/- 0.0005 -3.0331 +/- 0.0001]
 [0.3513 +/- 0.0007 -0.0993 +/- 0.0006 -3.0334 +/- 0.0001]
 [0.0212 +/- 0.0007 -0.1179 +/- 0.0007 -3.0833 +/- 0.0000]
 [-0.2765 +/- 0.0008 -0.0847 +/- 0.0007 -3.0943 +/- 0.0001]
 [-0.4407 +/- 0.0007 -0.1119 +/- 0.0006 -3.0652 +/- 0.0001]
 [-0.2537 +/- 0.0008 -0.1334 +/- 0.0007 -3.1039 +/- 0.0001]

Translation vectors (mm):
 [708.4192 +/- 0.4914 227.0500 +/- 0.4002 1492.8672 +/- 1.0127]
 [368.4408 +/- 0.5228 191.7200 +/- 0.4094 1589.9146 +/- 0.9987]
 [226.3710 +/- 0.5173 191.1429 +/- 0.4030 1578.4779 +/- 0.9576]
 [49.5377 +/- 0.5183 196.7495 +/- 0.4030 1580.5404 +/- 0.9493]
 [-172.4001 +/- 0.7003 150.9910 +/- 0.5406 2119.3253 +/- 1.2532]
 [10.7777 +/- 0.6784 176.8785 +/- 0.5276 2066.8343 +/- 1.2907]
 [295.4840 +/- 0.6616 167.8675 +/- 0.5158 2010.7713 +/- 1.2738]
 [614.2338 +/- 0.6457 166.2016 +/- 0.5153 1968.1798 +/- 1.2722]
 [767.0156 +/- 0.6106 165.5372 +/- 0.4991 1868.3334 +/- 1.2395]
 [953.8133 +/- 0.7336 -14.7981 +/- 0.6039 2255.6170 +/- 1.5107]

Camera 2 Intrinsics

Focal length (pixels): [1042.4817 +/- 0.6644 1042.2692 +/- 0.6534]

 stereoCalibrationErrors class

2-261

Principal point (pixels):[640.5972 +/- 0.3305 479.0652 +/- 0.2633]
Radial distortion: [-0.3614 +/- 0.0007 0.1822 +/- 0.0022]

Position And Orientation of Camera 2 Relative to Camera 1

Rotation of camera 2: [-0.0037 +/- 0.0002 0.0050 +/- 0.0004 -0.0002 +/- 0.0000]
Translation of camera 2 (mm): [-119.8720 +/- 0.0401 -0.4005 +/- 0.0414 -0.0258 +/- 0.1750]

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
cameraCalibrationErrors | cameraParameters | extrinsicsEstimationErrors
| intrinsicsEstimationErrors | stereoParameters

Functions
detectCheckerboardPoints | estimateCameraParameters |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors |
undistortImage | undistortPoints

Topics
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2014b

2 Alphabetical List

2-262

displayErrors
Class: stereoCalibrationErrors

Display standard errors of camera parameter estimation

Syntax
displayErrors(estimationErrors,stereoParams)

Description
displayErrors(estimationErrors,stereoParams) displays stereo parameters and
corresponding standard errors to the screen. The estimationErrors input must be a
stereoCalibrationErrors object. The stereoParams input must be a
stereoParameters object.

 displayErrors

2-263

MSERRegions
Object for storing MSER regions

Description
This object describes MSER regions and corresponding ellipses that have the same
second moments as the regions. It passes data between the detectMSERFeatures and
extractFeatures functions. The object can also be used to manipulate and plot the
data returned by these functions.

Creation

Syntax
regions = MSERRegions(pixellist)

Description
regions = MSERRegions(pixellist) constructs an MSER regions object, regions
regions from the pixel list,pixellist.

Input Arguments
pixellist — Point coordinates for detected MSER regions
M-by-1 cell array

Point coordinates for detected MSER regions, specified as a M-by-1 cell array. Each cell
contains a P-by-2 array of [x y] coordinates for the detected MSER regions, where P
varies based on the number of pixels in a region.

2 Alphabetical List

2-264

Properties
Location — Locations of ellipses
M-by-2 array (default)

This property is read-only.

Locations of ellipses, stored as an M-by-2 array of [x y] coordinates. The ellipses that have
the same second moments as the MSER regions.

Axes — Major and minor axis
two-element vector (default)

This property is read-only.

Major and minor axis, stored as a two-element vector, [majorAxis minorAxis]. This vector
specifies the major and minor axis of the ellipse that have the same second moments as
the MSER regions.

Orientation — Ellipse orientation
scalar in the range -pi/2 to +pi/2

This property is read-only.

Ellipse orientation, stored as a value in the range from -pi/2 to +pi/2 radians. This value
represents the orientation of the ellipse as measured from the X-axis to the major axis of
the ellipse. You can use this property for visualization purposes.

Count — Number of stored regions
0 (default) | integer

Number of stored regions, specified as an integer.

Object Functions
isempty Determine if points object is empty
length Number of stored points
size Return the size of a points object
plot Plot MSER regions

 MSERRegions

2-265

Examples

Detect MSER Features in an Image

Load an image.

I = imread('cameraman.tif');

Detect and store regions.

regions = detectMSERFeatures(I);

Display the centroids and axes of detected regions.

imshow(I); hold on;
plot(regions);

2 Alphabetical List

2-266

Display MSER Feature Regions from the MSERRegions Object

Detect and display the first 10 regions contained in the MSERRegions object.

Detect MSER features.

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);

Display the first 10 regions in the MSERRegions object.

imshow(I); hold on;
plot(regions(1:10),'showPixelList', true);

 MSERRegions

2-267

Combine MSER Region Detector with SURF Descriptors

Extract and display SURF descriptors at locations identified by MSER detector.

Read image.

I = imread('cameraman.tif');

Detect MSER features.

regionsObj = detectMSERFeatures(I);

Extract and display SURF descriptors.

[features, validPtsObj] = extractFeatures(I, regionsObj);
imshow(I); hold on;
plot(validPtsObj,'showOrientation',true);

2 Alphabetical List

2-268

Tips
Although MSERRegions may hold many regions, it is a scalar object. Therefore,
numel(MSERRegions) always returns 1. This value may differ from
length(MSERRegions), which returns the true number of regions held by the object.

References
[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions",

Lecture Notes in Computer Science. 10th European Conference on Computer
Vision, Marseille, France: 2008, no. 5303, pp. 183–196.

[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from
maximally stable extremal regions. "Proceedings of British Machine Vision
Conference, pages 384-396, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, you must specify both the pixellist cell array and the length
of each array, as the second input. The object outputs, regions.PixelList as an
array. The region sizes are defined in regions.Lengths.

See Also
BRISKPoints | KAZEPoints | ORBPoints | SURFPoints | cornerPoints |
detectMSERFeatures | detectSURFFeatures | edge | extractFeatures |
matchFeatures

Topics
“Find MSER Regions in an Image” on page 3-280

 MSERRegions

2-269

“Detect SURF Interest Points in a Grayscale Image” on page 3-296
“Automatically Detect and Recognize Text in Natural Images”

Introduced in R2012a

2 Alphabetical List

2-270

cornerPoints
Object for storing corner points

Description
This object stores information about feature points detected from a 2-D grayscale image.

Creation

Syntax
points = cornerPoints(location)
points = cornerPoints(location,Name,Value)

Description
points = cornerPoints(location) constructs a cornerPoints object from an M-
by-2 array [x y] of location coordinates.

points = cornerPoints(location,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, points =
cornerPoints('Metric',0.0)

Input Arguments
location — Location coordinates
M-by-2 array

Location of points, specified as an M-by-2 array of [x y] coordinates.

 cornerPoints

2-271

Properties
Count — Number of points
0 (default) | integer

Number of points held by the corner points object, specified as a numeric value.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value. The algorithm uses a
determinant of an approximated Hessian.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points
gather Retrieve cornerPoints from the GPU

Examples

Plot Strongest Features from Detected Feature Points

Read an image.

I = imread('cameraman.tif');

Detect feature points.

points = detectHarrisFeatures(I);

Display the ten strongest points.

strongest = selectStrongest(points,10);
imshow(I)

2 Alphabetical List

2-272

hold on
plot(strongest)

Display the (x,y) coordinates of the strongest points.

strongest.Location

ans = 10x2 single matrix

 112.4516 208.4412
 108.6510 228.1681
 136.6969 114.7962
 181.4160 205.9876
 135.5823 123.4529
 100.4951 174.3253
 146.7581 94.7393
 135.2899 92.6485
 129.8439 110.0350
 130.5716 91.0424

 cornerPoints

2-273

Create Corner Points Object and Display Points

Create a checkerboard image.

I = checkerboard(50,2,2);

Load the locations of corner points.

location = [51 51 51 100 100 100 151 151 151; ...
 50 100 150 50 101 150 50 100 150]';

Save the points in a cornerPoints object.

points = cornerPoints(location);

Display the points on the checkerboard.

imshow(I)
hold on
plot(points)

2 Alphabetical List

2-274

Tips
Although cornerPoints may hold many points, it is a scalar object. Therefore,
numel(cornerPoints) always returns 1. This value may differ from
length(cornerPoints), which returns the true number of points held by the object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for
points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the
“Introduction to Code Generation with Feature Matching and Registration” example.

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
binaryFeatures | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | extractFeatures |
extractHOGFeatures | matchFeatures

Introduced in R2012a

 cornerPoints

2-275

SURFPoints
Object for storing SURF interest points

Description
This object provides the ability to pass data between the detectSURFFeatures and
extractFeatures functions. It can also be used to manipulate and plot the data
returned by these functions. You can use the object to fill the points interactively. You can
use this approach in situations where you might want to mix a non-SURF interest point
detector with a SURF descriptor.

Creation

Syntax
points = SURFPoints(location)
points = SURFPoints(location,Name,Value)

Description
points = SURFPoints(location) constructs a SURFPoints object from an M-by-2
array of [x y] point coordinates.

points = SURFPoints(location,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, points =
SURFPoints('Metric',0.0)

Input Arguments
location — Point coordinates
M-by-2 array of [x y] point coordinates.

2 Alphabetical List

2-276

Point coordinates, specified as an M-by-2 array of form [x y] coordinates. M denotes the
number of points.

Properties
Count — Number of points
0 (default) | integer

Number of points held by the object, specified as a numeric value.

location — Point locations
M-by-2 array (default)

Point locations, specified as an M-by-2 array of [x y] point coordinates.

Scale — Scale
12.0 (default) | scalar

Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

Metric — Strength of detected feature
0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value.

Orientation — Orientation
0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is
measured counter-clockwise from the X-axis with the origin specified by the Location
property. Do not set this property manually. Rely instead, on the call to
extractFeatures to fill in this value. The extractFeatures function modifies the
default value of 0.0.The Orientation is mainly useful for visualization purposes.

SignOfLaplacian — Sign of Laplacian
0 (default) | -1 | 1

Sign of the Laplacian determined during the detection process, specified as -1, 0, or 1.
You can use this parameter to accelerate the feature matching process.

Blobs with identical metric values but different signs of Laplacian can differ by their
intensity values. For example, a white blob on a blackground versus a black blob on a

 SURFPoints

2-277

white background. You can use this parameter to quickly eliminate blobs that do not
match.

For non-SURF detectors, this property is not relevant. For example, for corner features,
you can simply use the default value of 0.

Object Functions
plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

Examples

Detect SURF Features

Read in image.

 I = imread('cameraman.tif');

Detect SURF features.

 points = detectSURFFeatures(I);

Display location and scale for the 10 strongest points.

 strongest = points.selectStrongest(10);
 imshow(I); hold on;
 plot(strongest);

2 Alphabetical List

2-278

Display [x y] coordinates for the 10 strongest points on command line.

 strongest.Location

ans = 10x2 single matrix

 139.7482 95.9542
 107.4502 232.0347
 116.6112 138.2446
 105.5152 172.1816
 113.6975 48.7220
 104.4210 75.7348
 111.3914 154.4597
 106.2879 175.2709
 131.1298 98.3900
 124.2933 64.4942

 SURFPoints

2-279

Detect SURF Features and Display the Last 5 Points

Read in image.

 I = imread('cameraman.tif');

Detect SURF feature.

 points = detectSURFFeatures(I);

Display the last 5 points.

 imshow(I); hold on;
 plot(points(end-4:end));

2 Alphabetical List

2-280

Tips
Although SURFPoints may hold many points, it is a scalar object. Therefore,
numel(surfPoints) always returns 1. This value may differ from length(surfPoints),
which returns the true number of points held by the object.

References
[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.”

Computer Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346–359,
2008.

 SURFPoints

2-281

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To index locations with this object, use the syntax: points.Location(idx,:), for
points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the
“Introduction to Code Generation with Feature Matching and Registration” example.

See Also
BRISKPoints | MSERRegions | ORBPoints | cornerPoints | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | extractFeatures | matchFeatures

Topics
“Detect SURF Interest Points in a Grayscale Image” on page 3-296
“Display MSER Feature Regions from the MSERRegions Object” on page 2-267
“Find MSER Regions in an Image” on page 3-280
“Detect MSER Features in an Image” on page 2-266

Introduced in R2011b

2 Alphabetical List

2-282

ORBPoints
Object for storing ORB keypoints

Description
An ORBPoints object stores the Oriented FAST and rotated BRIEF (ORB) keypoints in an
image. You can specify the keypoints and store them as an ORBPoints object. You can
also use the detectORBFeatures function to detect the ORB keypoints in an image. The
detectORBFeatures function stores the detected ORB keypoints as an ORBPoints
object. Use “Object Functions” on page 2-285 to plot, select, and manipulate the detected
ORB keypoints.

Creation

Syntax
points = ORBPoints
points = ORBPoints(location)
points = ORBPoints(location,Name,Value)

Description
points = ORBPoints creates an ORBPoints object with default property values.

points = ORBPoints(location) creates an ORBPoints object from a set of location
coordinates specified by location. The location input sets the Location property.

points = ORBPoints(location,Name,Value) sets properties of the object using one
or more name-value pair arguments. Enclose each property name in quotes. For example,
ORBPoints(location,'Count',15) creates an ORBPoints object with Count
property set to 15.

 ORBPoints

2-283

Properties
Location — Location of keypoints
[] (default) | M-by-2 matrix

This property is read-only.

Location of keypoints, specified as an M-by-2 matrix. Each row is of the form [x y] and
represents the location of a keypoint. M is the number of keypoints. You cannot set this
property as a name-value pair. Use the location input argument.

Metric — Strength of keypoints
[] (default) | scalar | M-element vector.

This property is read-only.

Strength of keypoints, specified as one of these values:

• A scalar — Detected keypoints have the same strength. In this case, the object assigns
the same Metric value to all keypoints.

• An M-element vector — Detected keypoints have different strength values. In this
case, the object assigns different Metric value to each keypoint. M is the number of
keypoints.

Example: ORBPoints(location,'Metric',0.5)
Data Types: single

Count — Number of keypoints
0 (default) | nonnegative integer

This property is read-only.

Number of keypoints held by the object, specified as a nonnegative integer.

Scale — Scale factor
[] (default) | scalar | M-element vector

This property is read-only.

Scale factor, specified as one of these values:

2 Alphabetical List

2-284

• A scalar — All keypoints are detected at the same level of decomposition. In this case,
the object assigns the same Scale value to all keypoints.

• An M-element vector — The keypoints are detected at different levels of
decomposition. In this case, the object assigns different Scale value to each keypoint.
M is the number of keypoints.

The scale factor specifies the level of decomposition at which a keypoint is detected.
Example: ORBPoints(location,'Scale',1.2)
Data Types: single

Orientation — Angle of keypoints in radians
[] (default) | scalar | M-element vector

This property is read-only.

Angle of keypoints in radians, specified as one of these values:

• A scalar — Detected keypoints are of the same orientation. In this case, the object
assigns the same Orientation value to all keypoints.

• An M-element vector — Detected keypoints are of different orientation. In this case,
the object assigns different Orientation value to each keypoint. M is the number of
keypoints.

The angle made by a keypoint is defined with reference to the horizontal axis of the
image. The coordinate of the keypoint is set as the origin of the axis.
Example: ORBPoints(location,'Orientation',0.7854)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Object Functions
isempty Determine if points object is empty
length Number of stored points
plot Plot points
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

 ORBPoints

2-285

Examples

Create and Modify Properties of ORBPoints

Read an image into the workspace.

I = imread('licensePlates.jpg');

Convert the image into a grayscale image.

I = rgb2gray(I);

Specify the location of keypoints in the image.

location = [400 398;485 343;274 323;274 367;241 313;302 213];

Create an ORBPoints object and display its properties.

points = ORBPoints(location)

points =
 6×1 ORBPoints array with properties:

 Location: [6×2 single]
 Metric: [6×1 single]
 Count: 6
 Scale: [6×1 single]
 Orientation: [6×1 single]

Inspect the Scale and Orientation properties of the ORBPoints object.

points.Scale

ans = 6×1 single column vector

 1
 1
 1
 1
 1
 1

2 Alphabetical List

2-286

points.Orientation

ans = 6×1 single column vector

 0
 0
 0
 0
 0
 0

Specify the scale value for each keypoint.

scale = [2.1 2.5 2.5 4 2.3 3.9];

Specify the angle values for the keypoints as 0.7854 radians.

angle = 0.7854;

Create an ORBPoints object with the keypoints and the updated scale and angle values.
The output is an ORBPoints object containing keypoints with the modified Scale and
Orientation properties.

points = ORBPoints(location,'Scale',scale,'Orientation',angle);

Inspect the updated Scale values.

points.Scale

ans = 6×1 single column vector

 2.1000
 2.5000
 2.5000
 4.0000
 2.3000
 3.9000

Inspect the updated Orientation values. Since the Orientation value is a scalar, the
object assigns same value to all keypoints.

points.Orientation

 ORBPoints

2-287

ans = 6×1 single column vector

 0.7854
 0.7854
 0.7854
 0.7854
 0.7854
 0.7854

Display the image and plot the ORB keypoints on the image.

figure
imshow(I)
hold on
plot(points)

2 Alphabetical List

2-288

Detect and Store ORB Keypoints

Read an image into the workspace.

I = imread('cameraman.tif');

Use the detectORBFeatures function to detect ORB keypoints in the image. The
function returns the detected ORB keypoints as an ORBPoints object.

points = detectORBFeatures(I);

 ORBPoints

2-289

Use the selectUniform object function to select 10 ORB keypoints. The output of the
selectUniform object function is an ORBPoints object.

newPoints = selectUniform(points,10,size(I))

newPoints =
 10×1 ORBPoints array with properties:

 Location: [10×2 single]
 Metric: [10×1 single]
 Count: 10
 Scale: [10×1 single]
 Orientation: [10×1 single]

Display the location and scale of the selected keypoints on the image.

figure
imshow(I)
hold on
plot(newPoints)

2 Alphabetical List

2-290

Display the (x, y) coordinates of the selected keypoints.

x = newPoints.Location(:,1);
y = newPoints.Location(:,2);
[x y]

ans = 10×2 single matrix

 147 62
 111 63
 143 67
 127 89
 47 124
 34 154
 183 205
 113 206
 111 207
 148 66

 ORBPoints

2-291

Display the orientation of the selected keypoints.

newPoints.Orientation

ans = 10×1 single column vector

 5.4682
 0.7888
 5.3084
 6.2443
 2.8221
 3.8440
 6.1212
 6.0344
 4.8840
 5.5535

Tips
Although ORBPoints can hold many points, it is a scalar object. Therefore,
numel(ORBPoints) always returns 1. This value can differ from length(ORBPoints),
which returns the true number of points held by the object.

References
[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to

SIFT or SURF." In Proceedings of the 2011 International Conference on Computer
Vision, pp. 2564–2571. Barcelona, Spain: IEEE, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

2 Alphabetical List

2-292

• Use in a MATLAB Function block is not supported.

See Also
BRISKPoints | KAZEPoints | MSERRegions | SURFPoints | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectMinEigenFeatures | detectORBFeatures | extractFeatures |
matchFeatures

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2019a

 ORBPoints

2-293

vision.AlphaBlender
Package: vision

Combine images, overlay images, or highlight selected pixels

Description
The AlphaBlender System object combines two images, overlays one image over
another, or highlights selected pixels.

To combine two images, overlay one image over another, or highlight selected pixels:

1 Create the vision.AlphaBlender object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
alphablend = vision.AlphaBlender
alphablend = vision.AlphaBlender(Name,Value)

Description
alphablend = vision.AlphaBlender creates an alpha blender System object,
alphablend, which combines two images, overlays one image over another, or highlights
selected pixels.

alphablend = vision.AlphaBlender(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, alphablend
= vision.AlphaBlender('Operation','Blend')

2 Alphabetical List

2-294

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Operation — Operation
'Blend' | 'Binary mask' | 'Highlight selected pixels'

Operation, specified as 'Blend', 'Binary mask', or 'Highlight selected
pixels'.

Operation Description
'Blend' Linearly combine the pixels of one image

with the another image.
'Binary mask' Overwrite the pixel values of one image

with the pixel values of another image.
'Highlight selected pixels' Uses the mask binary image input to

determine which pixels are set to the
maximum value supported by their data
type.

OpacitySource — Source of opacity factor
Property (default) | 'Blend'

Source of opacity factor, specified as 'Property' or 'Input port'. This property
applies when you set the Operation property to Blend.

Opacity — Pixel scale value
0.75 (default) | scalar | matrix

Pixel scale value, specified as a scalar or matrix. The object scales each pixel before
combining the images. This property applies when you set the OpacitySource property
to Property.

 vision.AlphaBlender

2-295

Tunable: Yes

MaskSource — Binary mask source
'Property' (default) | 'Input port'

Binary mask source, specified as 'Property' or 'Input port'. This property applies
when you set the Operation property to Binary mask

Mask — Overwrite scalar
1 (default) | 0 | binary scalar | matrix of binary scalars

Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0s and 1s. This
property applies when you set the MaskSource property to Property.

Tunable: Yes

LocationSource — Source for upper-left location
'Property' (default) | 'Input port'

Source of location of the upper-left corner of second input image

Source for the upper-left corner location of the second input image, specified as
Property or Input port.

Location — Location
[1 1] | two-element vector

Location of the upper-left corner of the second input image relative to the location of the
first input image, specified as a two-element vector in the format [x y]. This property
applies when you set the LocationSource property to Property.

See “Coordinate Systems” for a discussion on pixel coordinates and spatial coordinates,
which are the two main coordinate systems used in the Computer Vision Toolbox.

Tunable: Yes

Fixed-Point Properties

RoundingMethod — Rounding method
'Floor' (default) | 'Convergent' | 'Floor' | ...

Rounding method, specified as 'Ceiling','Convergent', 'Floor', 'Nearest',
'Round', 'Simplest', 'Zero', or 'Floor'

2 Alphabetical List

2-296

OverflowAction — Overflow action
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as 'Wrap' or 'Saturate'.

OpacityDataType — Opacity word and fraction lengths
'Same word length as input' (default) | 'Custom'

Opacity word and fraction lengths for fixed-point operations, specified as 'Same word
length as input' or 'Custom'.

CustomOpacityDataType — Opacity word and fraction lengths
numerictype([],16) (default) | unscaled numerictype object

Opacity word and fraction lengths factor for fixed-point operations, specified as an
unscaled numerictype object with a Signedness of Auto. This property applies when
you set the OpacityDataType property to Custom

ProductDataType — Product word and fraction lengths
'Custom' (default) | 'Same as first input'

Product word and fraction lengths, specified as 'Custom' or 'Same as first input'.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object with a
'Signedness' of 'Auto'. This property applies when you set the 'ProductDataType'
property to 'Custom'

AccumulatorDataType — Accumulator word and fraction lengths
'Same as product' (default) | 'Custom'

Accumulator word and fraction lengths, specified as 'Same as product', 'Same as
first input', or 'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object with a
'Signedness' of 'Auto'.

 vision.AlphaBlender

2-297

OutputDataType — Output word and fraction lengths
'Same as product' (default) | 'Custom'

Output word and fraction lengths, specified as 'Same as first input' or 'Custom'.

CustomOutputDataType — Output word and fraction lengths
numerictype([],32,10) (default) | scaled numerictype object

Output word and fraction lengths, specified as a scaled numerictype object with a
'Signedness' of 'Auto'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
ab = alphablend(I1,I2)
ab = alphablend(I1,I2,opacity)
ab = alphablend(I1,I2,mask)
ab = alphablend(I1,mask)
ab = alphablend(I1,I2, ___ ,location)

Description
ab = alphablend(I1,I2) returns a alpha blender object that blends images I1 and
I2.

ab = alphablend(I1,I2,opacity) uses the opacity input to combine pixel values
of I1 and I2. To use the opacity input, you must set the Operation property to 'Blend'
and the OpacitySource property to 'Input port'

2 Alphabetical List

2-298

ab = alphablend(I1,I2,mask) uses the mask input to overlay I1 over I2. To use the
mask input with an overlay, you must set the Operation property to 'Binary mask'
and the MaskSource property to 'Input port'.

ab = alphablend(I1,mask) uses the mask input to determine which pixels in I1 are
set to the maximum value supported by their data type. To use the mask input with an
overlay, you must set the Operation property to 'Highlight selected pixels' and
the MaskSource property to 'Input port'.

ab = alphablend(I1,I2, ___ ,location) additionally sets the upper-left corner
location for I2. To use the location input, you must set the LocationSource
property to 'Input port'.

Input Arguments
I1 — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

opacity — Scale
scalar | matrix

Pixel scale value, specified as a scalar or matrix. The object scales each pixel before
combining the images.

mask — Overwrite scalar
binary scalar | matrix of binary scalars

Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0s and 1s.

location — Location
two-element vector

 vision.AlphaBlender

2-299

Location of the upper-left corner of the second input image relative to the location of the
first input image, specified as a two-element vector in the format [x y].

Tunable: Yes

Output Arguments
alphablend — Blended output image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Output blended image, returned as a combined image, overlayed image, or an image with
selected pixels highlighted.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Blend Two Images

Display the two images.

I1 = im2single(imread('blobs.png'));
I2 = im2single(imread('circles.png'));
subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
imshow(I2);

2 Alphabetical List

2-300

Blend the two images and display the result.

halphablend = vision.AlphaBlender;
J = step(halphablend,I1,I2);
figure;
imshow(J);

 vision.AlphaBlender

2-301

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertText

2 Alphabetical List

2-302

Introduced in R2012a

 vision.AlphaBlender

2-303

vision.BinaryFileReader
Package: vision

Read video data from binary files

Description
The BinaryFileReader object reads video data from binary files.

To read a binary file:

1 Create the vision.BinaryFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
bFileReader = vision.BinaryFileReader
bFileReader = vision.BinaryFileReader(Name,Value)
bFileReader = vision.BinaryFileReader(file,Name,Value)

Description
bFileReader = vision.BinaryFileReader returns a binary file reader object,
bFileReader, that reads binary video data from the specified file in I420 Four
Character Code (FOURCC) video format.

bFileReader = vision.BinaryFileReader(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example,
bFileReader = vision.BinaryFileReader('Filename','vipmen.bin')

2 Alphabetical List

2-304

bFileReader = vision.BinaryFileReader(file,Name,Value) returns a binary
file reader System object, bFileReader, with the Filename property set to file and
other specified properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Filename — File name
vipmen.bin (default) | character vector

File name, specified as a character vector. The full path for the file needs to be specified
only if the file is not on theMATLAB path.

VideoFormat — Video file format
'Four character codes' (default) | 'Custom'

Video file format, specified as 'Four character codes' or 'Custom'.

FourCharacterCode — Four Character Code video format
binary file format

Four Character Code video format, specified as one of the available video formats. For
more information on four character codes, see https://www.fourcc.org. This property
applies when you set the VideoFormat property to 'Four character codes'.

BitstreamFormat — Format of data
'Planar' (default) | 'Packed'

Format of data, specified as 'Planar' or 'Packed'.This property applies when you set
the VideoFormat property to Custom.

OutputSize — Size of output
M-by-N matrix

 vision.BinaryFileReader

2-305

https://www.fourcc.org

Size of output, specified as an M-by-N matrix. This property applies when you set the
BitstreamFormat property to 'Packed'.

VideoComponentCount — Number of video components in video stream
3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as 1, 2, 3 or 4. This number
corresponds to the number of video component outputs. This property applies when you
set the VideoFormat property to 'Custom'.

VideoComponentBits — Bit size of video components
[8 8 8] (default) | vector

Bit size of video components, specified as an integer vector of length N, where N is the
value of the VideoComponentCount property. This property applies when you set the
VideoFormat property to 'Custom'.

VideoComponentSizes — Size of video components
[120 160; 60 80; 60 80] (default) | N-by-2 array

Size of video components, specified as an N-by-2 array, where N is the value of the
VideoComponentCount property. Each row of the matrix corresponds to the size of that
video component, with the first element denoting the number of rows and the second
element denoting the number of columns. This property applies when you set the
VideoFormat property to 'Custom' and the BitstreamFormat property to 'Planar'.

VideoComponentOrder — Order of video components
[1 2 3] (default) | 1-by-N vector

Order of video components, specified as a 1-by-N vector. This property must be set to a
vector of length N, where N is set according to how you set the BitstreamFormat
property. When you set the BitStreamFormat property to 'Planar', you must set N
equal to the value of the VideoComponentCount property. Otherwise, you can set N
equal to or greater than the value of the VideoComponentCount property. This property
applies when you set the VideoFormat property to 'Custom'.

InterlacedVideo — Interlaced video status
false (default) | true

Interlaced video status, specified as true or false. Set this property to true if the video
stream represents interlaced video data. This property applies when you set the
VideoFormat property to 'Custom'.

2 Alphabetical List

2-306

LineOrder — Fill binary file format
'Top line first' (default) | 'Bottom line first'

Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If
you set this property to 'Top line first', the first row of the video frame gets filled
first. If you set this property to 'Bottom line first', the last row of the video frame
gets filled first.

SignedData — Signed data
false (default) | true

Signed data, specified as true or false. Set this property to true for signed input data.
This property applies when you set the VideoFormat property to 'Custom'

ByteOrder — Byte order
'Little endian' (default) | 'Big endian'

Byte order, specified as as 'Little endian' or 'Big endian'. This property applies
when you set the VideoFormat property to 'Custom'.

PlayCount — Play count
1 (default) | positive integer

Play count for the number of times to play the file, specified as a positive integer.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[Y,Cb,Cr] = bFileReader()
Y = bFileReader()
[Y,Cb,Cr,Alpha] = bFileReader()

 vision.BinaryFileReader

2-307

[___ ,EOF] = bFileReader()

Description
[Y,Cb,Cr] = bFileReader() reads the luminance, Y and chrominance, Cb and Cr
components of a video stream from the specified binary file when you set the
VideoFormat property to 'Four character codes'. Alternatively, it reads the values
when you set the VideoFormat property to 'Custom' and the VideoComponentCount
property to 2.

Y = bFileReader() reads the video component Y from the binary file when you set the
VideoFormat property to 'Custom' and the VideoComponentCount property to 1.

[Y,Cb,Cr,Alpha] = bFileReader() additionally reads the Alpha when you set the
VideoFormat property to 'Custom' and the VideoComponentCount property to 4.

[___ ,EOF] = bFileReader() also returns the end-of-file indicator, EOF. EOF is set to
true when the output contains the last video frame in the file.

Output Arguments
Y — Luminance value
M-by-N matrix

Luminance value, returned as an M-by-N matrix.

Cb — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Cr — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Alpha — Transparency
scalar

Transparency value, returned as a scalar in the range [0,1].

2 Alphabetical List

2-308

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.BinaryFileReader
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Read Binary Video File and Play Back on Screen

Create a binary file reader and video player object.

hbfr = vision.BinaryFileReader();
hvp = vision.VideoPlayer;

Use the while loop to play the default video.

while ~isDone(hbfr)
y = hbfr();
hvp(y);
end

 vision.BinaryFileReader

2-309

Close the input file and the video display.

release(hbfr);
release(hvp);

2 Alphabetical List

2-310

See Also
vision.BinaryFileWriter | vision.VideoFileReader

Introduced in R2012a

 vision.BinaryFileReader

2-311

vision.BinaryFileWriter
Package: vision

Write binary video data to files

Description
The BinaryFileWriter object writes binary video data to files.

To write binary data to a file:

1 Create the vision.BinaryFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
bFileWriter = vision.BinaryFileWriter
bFileWriter = vision.BinaryFileWriter(Name,Value)

Description
bFileWriter = vision.BinaryFileWriter returns a binary writer object that writes
binary video data to an output file, output.bin in the I420 Four Character Code format.

bFileWriter = vision.BinaryFileWriter(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example,
bFileWriter = vision.BinaryFileWriter('Filename','output.bin')

2 Alphabetical List

2-312

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Filename — File name
output.bin (default) | character vector

File name, specified as a character vector.

VideoFormat — Video file format
'Four character codes' (default) | 'Custom'

Video file format, specified as 'Four character codes' or 'Custom'.

FourCharacterCode — Four Character Code video format
binary file format

Four Character Code video format, specified as one of the available video formats. For
more information on four character codes, see https://www.fourcc.org. This property
applies when you set the VideoFormat property to 'Four character codes'.

BitstreamFormat — Format of data
'Planar' (default) | 'Packed'

Format of data, specified as 'Planar' or 'Packed'.This property applies when you set
the VideoFormat property to Custom.

VideoComponentCount — Number of video components in video stream
3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as 1, 2, 3 or 4. This number
corresponds to the number of video component outputs. This property applies when you
set the VideoFormat property to 'Custom'.

 vision.BinaryFileWriter

2-313

https://www.fourcc.org

VideoComponentBitsSource — Size of video components format
'Auto' (default) | Property'

Size of video components format, specified as 'Auto' or 'Property'. If this property is
set to 'Auto', each component will have a VideoComponentBits property. This
property applies when you set the VideoFormat property to 'Custom'.

VideoComponentBits — Bit size of video components
[8 8 8] (default) | vector

Bit size of video components, specified as an integer vector of length N, where N is the
value of the VideoComponentCount property. This property applies when you set the
VideoFormat property to 'Custom'.

VideoComponentOrder — Order of video components
[1 2 3] (default) | 1-by-N vector

Order of video components, specified as a 1-by-N vector. This property must be set to a
vector of length N, where N is set according to how you set the BitstreamFormat
property. When you set the BitStreamFormat property to 'Planar', you must set N
equal to the value of the VideoComponentCount property. Otherwise, you can set N
equal to or greater than the value of the VideoComponentCount property. This property
applies when you set the VideoFormat property to 'Custom'.

InterlacedVideo — Interlaced video status
false (default) | true

Interlaced video status, specified as true or false. Set this property to true if the video
stream represents interlaced video data. This property applies when you set the
VideoFormat property to 'Custom'.

LineOrder — Fill binary file format
'Top line first' (default) | 'Bottom line first'

Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If
you set this property to 'Top line first', the first row of the video frame gets filled
first. If you set this property to 'Bottom line first', the last row of the video frame
gets filled first.

SignedData — Signed data
false (default) | true

2 Alphabetical List

2-314

Signed data, specified as true or false. Set this property to true for signed input data.
This property applies when you set the VideoFormat property to 'Custom'

ByteOrder — Byte order
'Little endian' (default) | 'Big endian'

Byte order, specified as as 'Little endian' or 'Big endian'. This property applies
when you set the VideoFormat property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
bFileWriter(Y,Cb,Cr)
bFileWriter(Y)
bFileWriter(Y,Cb)
bFileWriter(Y,Cb,Cr)
bFileWriter(Y,Cb,Cr,Alpha)

Description
bFileWriter(Y,Cb,Cr) writes one frame of video to the specified output file. Y , Cb, Cr
represent the luma (Y) and chroma (Cb and Cr) components of a video stream. This option
applies when you set the VideoFormat property to 'Four character codes'.

bFileWriter(Y) writes video component Y to the output file when the VideoFormat
property is set to 'Custom' and the VideoComponentCount property is set to 1.

bFileWriter(Y,Cb) writes video components Y and Cb to the output file when the
VideoFormat property is 'Custom' and the VideoComponentCount property is set to
2.

 vision.BinaryFileWriter

2-315

bFileWriter(Y,Cb,Cr) writes video components Y , Cb and Cr to the output file when
the VideoFormat property is set to 'Custom' and the VideoComponentCount property
is set to 3.

bFileWriter(Y,Cb,Cr,Alpha) writes video components Y , Cb, Cr and Alpha to the
output file when the VideoFormat property is set to 'Custom', and the
VideoComponentCount property is set to 4.

Input Arguments
Y — Luminance value
M-by-N matrix

Luminance value, returned as an M-by-N matrix.

Cb — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Cr — Chrominance value
M-by-N matrix

Chrominance value, returned as an M-by-N matrix.

Alpha — Transparency
scalar

Transparency value, returned as a scalar in the range [0,1].

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

2 Alphabetical List

2-316

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Write Video Data to a Binary File

Set the output file name and create binary file reader and writer objects.

 filename = fullfile(tempdir,'output.bin');
 bFileReader = vision.BinaryFileReader;
 bFileWriter = vision.BinaryFileWriter(filename);

Write to the file.

 while ~isDone(bFileReader)
 [y,cb,cr] = bFileReader();
 bFileWriter(y,cb,cr);
 end

Close the files.

 release(bFileReader);
 release(bFileWriter);

See Also
vision.BinaryFileReader | vision.VideoFileReader

Introduced in R2012a

 vision.BinaryFileWriter

2-317

vision.BlobAnalysis
Package: vision

Properties of connected regions

Description
To compute statistics for connected regions in a binary image

To track a set of points:

1 Create the vision.BlobAnalysis object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
Hblob = vision.BlobAnalysis
Hblob = vision.BlobAnalysis(Name,Value)

Description
Hblob = vision.BlobAnalysis returns a blob analysis object, H, used to compute
statistics for connected regions in a binary image.

Hblob = vision.BlobAnalysis(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example, Hblob =
vision.BlobAnalysis('AreaOutputPort',true)

2 Alphabetical List

2-318

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

AreaOutputPort — Return blob area
true (default) | false

Return blob area, specified as true or false.

CentroidOutputPort — Return coordinates of blob centroids
true (default) | false

Return coordinates of blob centroids, specified as true or false.

BoundingBoxOutputPort — Return coordinates of bounding boxes
true (default) | false

Return coordinates of bounding boxes, specified as true or false.

MajorAxisLengthOutputPort — Return vector whose values represent lengths
of ellipses' major axes
false (default) | true

Return vector whose values represent lengths of ellipses' major axes, specified as true or
false. Set this property to true to output a vector whose values represent the lengths of
the major axes of the ellipses that have the same normalized second central moments as
the labeled regions. This property applies when you set the OutputDataType property to
double or single.

MinorAxisLengthOutputPort — Return vector whose values represent lengths
of ellipses' minor axes
false (default) | true

Return vector whose values represent lengths of ellipses' minor axes, specified as true or
false. Set this property to true to output a vector whose values represent the lengths of

 vision.BlobAnalysis

2-319

the minor axes of the ellipses that have the same normalized second central moments as
the labeled regions. This property is available when the OutputDataType property is
double or single.

OrientationOutputPort — Return vector whose values represent angles
between ellipses' major axes and x-axis
false (default) | true

Return vector whose values represent angles between ellipses' major axes and x-axis,
specified as true or false. Set this property to true to output a vector whose values
represent the angles between the major axes of the ellipses and the x-axis. This property
applies when you set the OutputDataType property to double or single.

EccentricityOutputPort — Return vector whose values represent ellipses'
eccentricities
false (default) | true

Return vector whose values represent ellipses' eccentricities, specified as true or false.
Set this property to true to output a vector whose values represent the eccentricities of
the ellipses that have the same second moments as the region. This property applies
when you set the OutputDataType property to double or single.

EquivalentDiameterSquaredOutputPort — Return vector whose values
represent equivalent diameters squared
false (default) | true

Return vector whose values represent equivalent diameters squared, specified as true or
false. Set this property to true to output a vector whose values represent the
equivalent diameters squared.

ExtentOutputPort — Return vector whose values represent results of dividing
blob areas by bounding box areas
false (default) | true

Return vector whose values represent results of dividing blob areas by bounding box
areas, specified as true or false.

PerimeterOutputPort — Return vector whose values represent estimates of
blob perimeter lengths
false (default) | true

2 Alphabetical List

2-320

Return vector whose values represent estimates of blob perimeter lengths, specified as
true or false.

OutputDataType — Output data type of statistics
double (default) | single | Fixed point

Output data type of statistics, specified as double,single, or Fixed point. Area and
bounding box outputs are always an int32 data type. Major axis length, Minor
axis length, Orientation and Eccentricity do not apply when you set this
property to Fixed point.

Connectivity — Connected pixels
8 (default) | 4

Connected pixels, specified as 4 or 8.

LabelMatrixOutputPort — Maximum number of labeled regions in each input
image
50 (default) | positive scalar integer.

Maximum number of labeled regions in each input image, specified as a positive scalar
integer. The maximum number of blobs the object outputs depends on both the value of
this property, and on the size of the input image. The number of blobs the object outputs
may be limited by the input image size.

MinimumBlobArea — Minimum blob area in pixels
0 (default) | positive scalar integer.

Minimum blob area in pixels, specified as positive scalar integer.

Tunable: Yes

MaximumBlobArea — Maximum blob area in pixels
intmax('uint32') (default) | integer

Maximum blob area in pixels, specified as an integer.

Tunable: Yes

ExcludeBorderBlobs — Exclude blobs that contain at least one image border
pixel
false (default) | true

 vision.BlobAnalysis

2-321

Exclude blobs that contain at least one image border pixel, specified as true or false.

MaximumCount — Maximum number of labeled regions in each input image
50 (default) | positive scalar integer

Maximum number of labeled regions in each input image, specified as a positive scalar
integer. The maximum number of blobs the object outputs depends on both the value of
this property, and on the size of the input image. The number of blobs the object outputs
may be limited by the input image size

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

2 Alphabetical List

2-322

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[area,centrioid,bbox] = Hblob(bw)
[___ ,majoraxis] = Hblob(bw)
[___ ,minoraxis] = Hblob(bw)
[bw ___ ,orientation] = Hblob(bw)
[___ ,eccentricity] = Hblob(bw)
[___ ,EQDIASQ] = Hblob(bw)
[___ ,EXTENT] = Hblob(bw)
[___ ,perimeter] = Hblob(bw)
[___ ,label] = Hblob(bw)

Description
[area,centrioid,bbox] = Hblob(bw)returns the area, centroid, and the bounding
box of the blobs when the AreaOutputPort, CentroidOutputPort and
BoundingBoxOutputPort properties are set to true. These are the only properties that
are set to true by default. If you set any additional properties to true, the corresponding
outputs follow the area,centrioid, and bbox outputs.

[___ ,majoraxis] = Hblob(bw) computes the major axis length majoraxis of the
blobs found in input binary image bw when you set the MajorAxisLengthOutputPort
property to true.

 vision.BlobAnalysis

2-323

[___ ,minoraxis] = Hblob(bw) computes the minor axis length minoraxis of the
blobs found in input binary image BW when you set the MinorAxisLengthOutputPort
property to true.

[bw ___ ,orientation] = Hblob(bw) computes the orientation of the blobs found
in input binary image bw when you set the OrientationOutputPort property to true.

[___ ,eccentricity] = Hblob(bw) computes the eccentricity of the blobs found
in input binary image bw when you set the EccentricityOutputPort property to true.

[___ ,EQDIASQ] = Hblob(bw) computes the equivalent diameter squared EQDIASQ of
the blobs found in input binary image bw when you set the
EquivalentDiameterSquaredOutputPort property to true.

[___ ,EXTENT] = Hblob(bw) computes the EXTENT of the blobs found in input binary
image bw when the ExtentOutputPort property is set to true.

[___ ,perimeter] = Hblob(bw) computes the perimeter of the blobs found in input
binary image bw when you set the PerimeterOutputPort property to true.

[___ ,label] = Hblob(bw) returns a label matrix label of the blobs found in input
binary image bw when you set the LabelMatrixOutputPort property to true.

Input Arguments
bw — Binary image
vector | matrix

Binary image, specified as a vector or matrix.

Output Arguments
area — Number of pixels in labeled regions
vector

Number of pixels in labeled regions, specified as a vector

centroid — Centroid coordinates
M-by-2 matrix.

Centroid coordinates, specified as an M-by-2 matrix. M is the number of blobs.

2 Alphabetical List

2-324

bbox — Bounding box coordinates
M-by-4 matrix

M-by-4 matrix in the format [x y width height], where M represents the number of blobs
and [x,y] represents the upper-left corner of the bounding box.

majoraxis — Lengths of major axes of ellipses
vector

Lengths of major axes of ellipses, specified as a vector.

minoraxis — Lengths of minor axes of ellipses
vector

Lengths of minor axes of ellipses, specified as a vector.

orientation — Angles between the major axes of the ellipses and the x-axis
vector

Angles between the major axes of the ellipses and the x-axis, specified as a vector.

eccentricity — Eccentricities of the ellipses
vector

Eccentricities of the ellipses, specified as a vector

EQDIASQ — Equivalent diameter squared
vector

Equivalent diameter squared, specified as a vector.

extent — Ratio between area and bounding box
vector

Ratio between area and bounding box, specified as a vector. The vector contains the
results of dividing the areas of the blobs by the area of their bounding boxes

perimeter — Estimate of the perimeter length
vector

Estimate of the perimeter length, specified as a vector. The vector contains an estimate of
the perimeter length, in pixels, for each blob.

 vision.BlobAnalysis

2-325

label — Label matrix
matrix

Label matrix, specified as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Find Centroid of Blob

Create the blob analysis object.

hBlob = vision.BlobAnalysis('AreaOutputPort',false,'BoundingBoxOutputPort',false);

Create the blob.

img = logical([0 0 0 0 0 0; ...
 0 1 1 1 1 0; ...
 0 1 1 1 1 0; ...
 0 1 1 1 1 0; ...
 0 0 0 0 0 0]);

Find the coordinates for the centroid.

centroid = hBlob(img);

2 Alphabetical List

2-326

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
graythresh | multithresh

Introduced in R2012a

 vision.BlobAnalysis

2-327

vision.BlockMatcher
Package: vision

Estimate motion between images or video frames

Description
To estimate motion between images or video frames.

1 Create the vision.BlockMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
blkMatcher = vision.BlockMatcher
blkMatcher = vision.BlockMatcher(Name,Value)

Description
blkMatcher = vision.BlockMatcher returns an object, blkMatcher, that estimates
motion between two images or two video frames. The object performs this estimation
using a block matching method by moving a block of pixels over a search region.

blkMatcher = vision.BlockMatcher(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, blkMatcher
= vision.BlockMatcher('ReferenceFrameSource','Input port')

2 Alphabetical List

2-328

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ReferenceFrameSource — Reference frame source
'Input port' (default) | 'Property'

Reference frame source, specified as 'Input port' or 'Property'. When you set the
ReferenceFrameSource property to 'Input port', a reference frame input must be
specified to the step method of the block matcher object.

ReferenceFrameDelay — Number of frames between reference and current
frames
1 (default) | scalar integer

Number of frames between reference and current frames, specified as a scalar integer
greater than or equal to zero. This property applies when you set the
ReferenceFrameSource property to 'Property'.

SearchMethod — Best match search method
'Exhaustive' (default) | 'Three-step'

Best match search method, specified as 'Exhaustive' or 'Three-step'. Specify how
to locate the block of pixels in frame k+1 that best matches the block of pixels in frame k.
If you set this property to 'Exhaustive', the block matcher object selects the location of
the block of pixels in frame k+1. The block matcher does so by moving the block over the
search region one pixel at a time, which is computationally expensive.

If you set this property to 'Three-step', the block matcher object searches for the
block of pixels in frame k+1 that best matches the block of pixels in frame k using a
steadily decreasing step size. The object begins with a step size approximately equal to
half the maximum search range. In each step, the object compares the central point of the
search region to eight search points located on the boundaries of the region and moves
the central point to the search point whose values is the closest to that of the central

 vision.BlockMatcher

2-329

point. The object then reduces the step size by half, and begins the process again. This
option is less computationally expensive, though sometimes it does not find the optimal
solution.

BlockSize — Input image subdivision overlap
[17 17] (default) | two-element vector

Input image subdivision overlap, specified in pixels as a two-element vector.

MaximumDisplacement — Maximum displacement search
[7 7] (default) | two-element vector

Maximum displacement search, specified as a two-element vector. Specify the maximum
number of pixels that any center pixel in a block of pixels can move, from image to image
or from frame to frame. The block matcher object uses this property to determine the size
of the search region.

MatchCriteria — Match criteria between blocks
'Mean square error (MSE)' (default) | 'Mean absolute difference (MAD')

Match criteria between blocks, specified as 'Mean square error (MSE)' or 'Mean
absolute difference (MAD').

OutputValue — Motion output form
'Magnitude-squared' (default) | 'Horizontal and vertical components in
complex form'

Motion output form, specified as 'Magnitude-squared' or 'Horizontal and
vertical components in complex form'.

Overlap — Input image subdivision overlap
[0 0] (default) | two-element vector

Input image subdivision overlap, specified in pixels as a two-element vector.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

2 Alphabetical List

2-330

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

 vision.BlockMatcher

2-331

Syntax
V = blkMatcher(I)
C = blkMatcher(I)
Y = blkMatcher(I,iref)

Description
V = blkMatcher(I) computes the motion of input image I from one video frame to
another, and returns V as a matrix of velocity magnitudes.

C = blkMatcher(I) computes the motion of input image I from one video frame to
another, and returns C as a complex matrix of horizontal and vertical components, when
you set the OutputValue property to Horizontal and vertical components in
complex form.

Y = blkMatcher(I,iref) computes the motion between input image I and reference
image iref when you set the ReferenceFrameSource property to Input port.

Input Arguments
I — Input data
scalar | vector | matrix

Input data, specified as a scalar, vector, or matrix of intensity values.

iref — Input reference data
scalar | vector | matrix

Input reference data, specified as a scalar, vector, or matrix of intensity values.

Output Arguments
V — Velocity magnitudes
matrix

Velocity magnitudes, returned as a matrix.

C — Horizontal and vertical components
matrix

2 Alphabetical List

2-332

Horizontal and vertical components, returned as a complex matrix.

Y — Motion between inputs
matrix

Motion between image and reference image, returned as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Estimate Motion Using BlockMatcher

Read and convert RGB image to grayscale.

img1 = im2double(rgb2gray(imread('onion.png')));

Create a block matcher and alpha blender object.

hbm = vision.BlockMatcher('ReferenceFrameSource',...
 'Input port','BlockSize',[35 35]);
hbm.OutputValue = 'Horizontal and vertical components in complex form';
halphablend = vision.AlphaBlender;

Offset the first image by [5 5] pixels to create a second image.

img2 = imtranslate(img1,[5,5]);

 vision.BlockMatcher

2-333

Compute motion for the two images.

motion = hbm(img1,img2);

Blend the two images.

img12 = halphablend(img2,img1);

Use a quiver plot to show the direction of motion on the images.

[X,Y] = meshgrid(1:35:size(img1,2),1:35:size(img1,1));
imshow(img12)
hold on
quiver(X(:),Y(:),real(motion(:)),imag(motion(:)),0)
hold off

See Also
opticalFlow | opticalFlowFarneback | opticalFlowHS | opticalFlowLK |
opticalFlowLKDoG

Introduced in R2012a

2 Alphabetical List

2-334

vision.CascadeObjectDetector
Package: vision

Detect objects using the Viola-Jones algorithm

Description
The cascade object detector uses the Viola-Jones algorithm to detect people’s faces,
noses, eyes, mouth, or upper body. You can also use the Image Labeler to train a custom
classifier to use with this System object. For details on how the function works, see “Train
a Cascade Object Detector”.

To detect facial features or upper body in an image:

1 Create the vision.CascadeObjectDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
detector = vision.CascadeObjectDetector
detector = vision.CascadeObjectDetector(model)
detector = vision.CascadeObjectDetector(XMLFILE)
detector = vision.CascadeObjectDetector(Name,Value)

Description
detector = vision.CascadeObjectDetector creates a detector to detect objects
using the Viola-Jones algorithm.

 vision.CascadeObjectDetector

2-335

detector = vision.CascadeObjectDetector(model) creates a detector
configured to detect objects defined by the input character vector, model.

detector = vision.CascadeObjectDetector(XMLFILE) creates a detector and
configures it to use the custom classification model specified with the XMLFILE input.

detector = vision.CascadeObjectDetector(Name,Value) sets properties using
one or more name-value pairs. Enclose each property name in quotes. For example,
detector =
vision.CascadeObjectDetector('ClassificationModel','UpperBody')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ClassificationModel — Trained cascade classification model
'FrontalFaceCART' (default) | character string

Trained cascade classification model, specified as a character vector. The
ClassificationModel property controls the type of object to detect. By default, the
detector is configured to detect faces.

You can set this character vector to an XML file containing a custom classification model,
or to one of the valid model character vectors listed below. You can train a custom
classification model using the trainCascadeObjectDetector function. The function
can train the model using Haar-like features, histograms of oriented gradients (HOG), or
local binary patterns (LBP). For details on how to use the function, see “Train a Cascade
Object Detector”.

2 Alphabetical List

2-336

Classification Model Image Size Used
to Train Model

Model Description

'FrontalFaceCART'
(Default)

[20 20] Detects faces that are upright and forward
facing. This model is composed of weak
classifiers, based on the classification and
regression tree analysis (CART). These
classifiers use Haar features to encode facial
features. CART-based classifiers provide the
ability to model higher-order dependencies
between facial features. [1]

'FrontalFaceLBP' [24 24] Detects faces that are upright and forward
facing. This model is composed of weak
classifiers, based on a decision stump. These
classifiers use local binary patterns (LBP) to
encode facial features. LBP features can
provide robustness against variation in
illumination. [2]

'UpperBody' [18 22] Detects the upper-body region, which is
defined as the head and shoulders area. This
model uses Haar features to encode the
details of the head and shoulder region.
Because it uses more features around the
head, this model is more robust against pose
changes, e.g. head rotations/tilts. [3]

'EyePairBig'
'EyePairSmall'

[11 45]
[5 22]

Detects a pair of eyes. The 'EyePairSmall'
model is trained using a smaller image. This
enables the model to detect smaller eyes than
the 'EyePairBig' model can detect.[4]

'LeftEye'
'RightEye'

[12 18] Detects the left and right eye separately.
These models are composed of weak
classifiers, based on a decision stump. These
classifiers use Haar features to encode
details.[4]

 vision.CascadeObjectDetector

2-337

Classification Model Image Size Used
to Train Model

Model Description

'LeftEyeCART'
'RightEyeCART'

[20 20] Detects the left and right eye separately. The
weak classifiers that make up these models
are CART-trees. Compared to decision
stumps, CART-tree-based classifiers are
better able to model higher-order
dependencies. [5]

'ProfileFace' [20 20] Detects upright face profiles. This model is
composed of weak classifiers, based on a
decision stump. These classifiers use Haar
features to encode face details.

'Mouth' [15 25] Detects the mouth. This model is composed of
weak classifiers, based on a decision stump,
which use Haar features to encode mouth
details.[4]

'Nose' [15 18] This model is composed of weak classifiers,
based on a decision stump, which use Haar
features to encode nose details.[4]

MinSize — Size of smallest detectable object
[] (default) | two-element vector

Size of smallest detectable object, specified as a two-element vector [height width]. Set
this property in pixels for the minimum size region containing an object. The value must
be greater than or equal to the image size used to train the model. Use this property to
reduce computation time when you know the minimum object size prior to processing the
image. When you do not specify a value for this property, the detector sets it to the size of
the image used to train the classification model.

For details explaining the relationship between setting the size of the detectable object
and the ScaleFactor property, see “Algorithms” on page 2-344 section.

Tunable: Yes

MaxSize — Size of largest detectable object
[] (default) | two-element vector

Size of largest detectable object, specified as a two-element vector [height width]. Specify
the size in pixels of the largest object to detect. Use this property to reduce computation

2 Alphabetical List

2-338

time when you know the maximum object size prior to processing the image. When you do
not specify a value for this property, the detector sets it to size(I).

For details explaining the relationship between setting the size of the detectable object
and the ScaleFactor property, see the “Algorithms” on page 2-344 section.

ScaleFactor — Scaling for multiscale object detection
1.1 (default) | scalar

Scaling for multiscale object detection, specified as a value greater than 1.0001. The
scale factor incrementally scales the detection resolution between MinSize and
MaxSize. You can set the scale factor to an ideal value using:
size(I)/(size(I)-0.5)

The detector scales the search region at increments between MinSize and MaxSize
using the following relationship:

search region = round((Training Size)*(ScaleFactorN))

N is the current increment, an integer greater than zero, and Training Size is the image
size used to train the classification model.

Tunable: Yes

MergeThreshold — Detection threshold
4 (default) | integer

Detection threshold, specified as an integer. The threshold defines the criteria needed to
declare a final detection in an area where there are multiple detections around an object.
Groups of colocated detections that meet the threshold are merged to produce one
bounding box around the target object. Increasing this threshold may help suppress false
detections by requiring that the target object be detected multiple times during the
multiscale detection phase. When you set this property to 0, all detections are returned
without performing thresholding or merging operation. This property is tunable.

UseROI — Use region of interest
false (default) | false

Use region of interest, specified as false or false. Set this property to true to detect
objects within a rectangular region of interest within the input image.

 vision.CascadeObjectDetector

2-339

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
bbox = detector(I)
bbox = detector(I,roi)

Description
bbox = detector(I) returns an M-by-4 matrix, bbox, that defines M bounding boxes
containing the detected objects. The detector performs multiscale object detection on the
input image, I.

bbox = detector(I,roi) detects objects within the rectangular search region
specified by roi. Set the 'UseROI' property to true to use this syntax.

Input Arguments
I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

model — Classification model
'FrontalFaceCART' (default) | character string

Classification model, specified as a character vector. The model input describes the type
of object to detect. There are several valid model character vectors, such as
'FrontalFaceCART', 'UpperBody', and 'ProfileFace'. See the
ClassificationModel property description for a full list of available models.

2 Alphabetical List

2-340

XMLFILE — Custom classification model
XML file

Custom classification model, specified as an XML file. The XMLFILE can be created using
the trainCascadeObjectDetector function or OpenCV (Open Source Computer
Vision) training functionality. You must specify a full or relative path to the XMLFILE, if it
is not on the MATLAB path.

roi — Rectangular region of interest
four-element vector (default)

Rectangular region of interest within image I, specified as a four-element vector, [x y
width height].

Output Arguments
bbox — Detections
M-by-4 matrix (default)

Detections, returned as an M-by-4 element matrix. Each row of the output matrix contains
a four-element vector, [x y width height], that specifies in pixels, the upper-left corner and
size of a bounding box.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 vision.CascadeObjectDetector

2-341

Detect Faces in an Image Using the Frontal Face Classification Model

Create a face detector object.

faceDetector = vision.CascadeObjectDetector;

Read the input image.

I = imread('visionteam.jpg');

Detect faces.

bboxes = faceDetector(I);

Annotate detected faces.

IFaces = insertObjectAnnotation(I,'rectangle',bboxes,'Face');
figure
imshow(IFaces)
title('Detected faces');

2 Alphabetical List

2-342

Detect Upper Body in Image Using Upper Body Classification Model

Create a body detector object and set properties.

bodyDetector = vision.CascadeObjectDetector('UpperBody');
bodyDetector.MinSize = [60 60];
bodyDetector.MergeThreshold = 10;

Read input image and detect upper body.

I2 = imread('visionteam.jpg');
bboxBody = bodyDetector(I2);

Annotate detected upper bodies.

IBody = insertObjectAnnotation(I2,'rectangle',bboxBody,'Upper Body');
figure
imshow(IBody)
title('Detected upper bodies');

 vision.CascadeObjectDetector

2-343

Algorithms
Classification Model Training
Each model is trained to detect a specific type of object. The classification models are
trained by extracting features from a set of known images. These extracted features are
then fed into a learning algorithm to train the classification model. Computer Vision
Toolbox software uses the Viola-Jones cascade object detector. This detector uses HOG[7],
LBP[8], and Haar-like [6] features and a cascade of classifiers trained using boosting.

The image size used to train the classifiers defines the smallest region containing the
object. Training image sizes vary according to the application, type of target object, and
available positive images. You must set the MinSize property to a value greater than or
equal to the image size used to train the model.

Cascade of Classifiers
This object uses a cascade of classifiers to efficiently process image regions for the
presence of a target object. Each stage in the cascade applies increasingly more complex
binary classifiers, which allows the algorithm to rapidly reject regions that do not contain
the target. If the desired object is not found at any stage in the cascade, the detector
immediately rejects the region and processing is terminated. By terminating, the object
avoids invoking computation-intensive classifiers further down the cascade.

Multiscale Object Detection
The detector incrementally scales the input image to locate target objects. At each scale
increment, a sliding window, whose size is the same as the training image size, scans the

2 Alphabetical List

2-344

scaled image to locate objects. The ScaleFactor property determines the amount of
scaling between successive increments.

The search region size is related to the ScaleFactor in the following way:

search region = round((ObjectTrainingSize)*(ScaleFactorN))

N is the current increment, an integer greater than zero, and ObjectTrainingSize is the
image size used to train the classification model.

The search window traverses the image for each scaled increment.

Relationship Between MinSize, MaxSize, and ScaleFactor
Understanding the relationship between the size of the object to detect and the scale
factor will help you set the properties accordingly. The MinSize and MaxSize properties
limit the size range of the object to detect. Ideally, these properties are modified to reduce
computation time when you know the approximate object size prior to processing the
image. They are not designed to provide precise filtering of results, based on object size.
The behavior of these properties is affected by the ScaleFactor. The scale factor
determines the quantization of the search window sizes.

search region = round((Training Size)*(ScaleFactorN))

 vision.CascadeObjectDetector

2-345

The actual range of returned object sizes may not be exactly what you select for the
MinSize and MaxSize properties. For example,
For a ScaleFactor value of 1.1 with a 24x24 training size, for 5 increments, the search
region calculation would be:

>> search region = round(24*1.1.^(1:5))

>> 26 29 32 35 39

If you were to set MaxSize to 34, due to the search region quantization, the actual
maximum object size used by the algorithm would be 32.

Merge Detection Threshold
For each increment in scale, the search window traverses over the image producing
multiple detections around the target object. The multiple detections are merged into one
bounding box per target object. You can use the MergeThreshold property to control the
number of detections required before combining or rejecting the detections. The size of
the final bounding box is an average of the sizes of the bounding boxes for the individual
detections and lies between MinSize and MaxSize.

2 Alphabetical List

2-346

 vision.CascadeObjectDetector

2-347

References
[1] Lienhart R., Kuranov A., and V. Pisarevsky "Empirical Analysis of Detection Cascades

of Boosted Classifiers for Rapid Object Detection." Proceedings of the 25th DAGM
Symposium on Pattern Recognition. Magdeburg, Germany, 2003.

[2] Ojala Timo, Pietikäinen Matti, and Mäenpää Topi, "Multiresolution Gray-Scale and
Rotation Invariant Texture Classification with Local Binary Patterns" . In IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2002. Volume 24,
Issue 7, pp. 971-987.

[3] Kruppa H., Castrillon-Santana M., and B. Schiele. "Fast and Robust Face Finding via
Local Context" . Proceedings of the Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance, 2003, pp.
157–164.

[4] Castrillón Marco, Déniz Oscar, Guerra Cayetano, and Hernández Mario, " ENCARA2:
Real-time detection of multiple faces at different resolutions in video streams" . In
Journal of Visual Communication and Image Representation, 2007 (18) 2: pp.
130-140.

[5] Yu Shiqi " Eye Detection." Shiqi Yu’s Homepage. http://yushiqi.cn/research/
eyedetection.

[6] Viola, Paul and Michael J. Jones, " Rapid Object Detection using a Boosted Cascade of
Simple Features" , Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511–518.

[7] Dalal, N., and B. Triggs, " Histograms of Oriented Gradients for Human Detection" .
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
Volume 1, (2005), pp. 886–893.

[8] Ojala, T., M. Pietikainen, and T. Maenpaa, " Multiresolution Gray-scale and Rotation
Invariant Texture Classification With Local Binary Patterns" . IEEE Transactions
on Pattern Analysis and Machine Intelligence. Volume 24, No. 7 July 2002, pp.
971–987.

2 Alphabetical List

2-348

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• XMLFILE must be a compile-time constant.

See Also
Image Labeler | insertShape | integralImage | trainCascadeObjectDetector |
vision.PeopleDetector

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”
“Get Started with the Image Labeler”
“Train a Cascade Object Detector”
“Multiple Object Tracking”

External Websites
Detect and Track Multiple Faces in a Live Video Stream

Introduced in R2012a

 vision.CascadeObjectDetector

2-349

https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces

vision.Deinterlacer
Package: vision

Remove motion artifacts by deinterlacing input video signal

Description
To remove motion artifacts by deinterlacing input video signal.

To track a set of points:

1 Create the vision.Deinterlacer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
Hdeinterlacer = vision.Deinterlacer
Hdeinterlacer = vision.Deinterlacer(Name,Value)

Description
Hdeinterlacer = vision.Deinterlacer returns a deinterlacing System object,
Hdeinterlacer, that removes motion artifacts from images composed of weaved top
and bottom fields of an interlaced signal.

Hdeinterlacer = vision.Deinterlacer(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, varObj =
vision.Deinterlacer('Method','Line repetition')

2 Alphabetical List

2-350

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Method — Method used to deinterlace input video
'Line repetition' (default) | 'Linear interpolation' | 'Vertical temporal
median filtering'

Method used to deinterlace input video, specified as 'Line repetition', 'Linear
interpolation' , 'Vertical temporal median filtering'.

TransposedInput — Indicate if input data is in row-major order
false (default) | true

Indicate if input data is in row-major order, specified as true or false. Set this property
to true if the input buffer contains data elements from the first row first, then the second
row second, and so on.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

 vision.Deinterlacer

2-351

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
value = Hdeinterlacer(input)

Description
value = Hdeinterlacer(input)deinterlaces the input according to the algorithm set
in the Method property

2 Alphabetical List

2-352

Input Arguments
input — Input data
top and bottom fields of interlaced video

Input data, specified as a combination of top and bottom fields of interlaced video.

Output Arguments
value — Frames of deinterlaced video
top and bottom fields of interlaced video

Frames of deinterlaced video, returned as the same data type as the input

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Remove Motion Artifacts From Image

Create a deinterlacer object.

hdinterlacer = vision.Deinterlacer;

Read an image with motion artifacts.

 vision.Deinterlacer

2-353

I = imread('vipinterlace.png');

Apply the deinterlacer to the image.

clearimage = hdinterlacer(I);

Display the results.

imshow(I);
title('Original Image');

2 Alphabetical List

2-354

figure, imshow(clearimage);
title('Image after deinterlacing');

 vision.Deinterlacer

2-355

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Deinterlacing

Introduced in R2012a

2 Alphabetical List

2-356

vision.ForegroundDetector
Package: vision

Foreground detection using Gaussian mixture models

Description
The ForegroundDetector compares a color or grayscale video frame to a background
model to determine whether individual pixels are part of the background or the
foreground. It then computes a foreground mask. By using background subtraction, you
can detect foreground objects in an image taken from a stationary camera.

To detect foreground in an image :

1 Create the vision.ForegroundDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
detector = vision.ForegroundDetector
detector = vision.ForegroundDetector(Name,Value)

Description
detector = vision.ForegroundDetector computes and returns a foreground mask
using the Gaussian mixture model (GMM).

detector = vision.ForegroundDetector(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example,
detector = vision.ForegroundDetector('LearningRate',0.005)

 vision.ForegroundDetector

2-357

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

AdaptLearningRate — Adapt learning rate
'true' (default) | 'false'

Adapt learning rate, specified as 'true' or 'false'. This property enables the object to
adapt the learning rate during the period specified by the NumTrainingFrames property.
When you set this property to true, the object sets the LearningRate property to 1/
(current frame number). When you set this property to false, the LearningRate
property must be set at each time step.

NumTrainingFrames — Number of initial video frames for training background
model
150 (default) | integer

Number of initial video frames for training background model, specified as an integer.
When you set the AdaptLearningRate to false, this property will not be available.

LearningRate — Learning rate for parameter updates
0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning
rate to adapt model parameters. This property controls how quickly the model adapts to
changing conditions. Set this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the
AdaptLearningRate to true and after the training period specified by
NumTrainingFrames is over.

Tunable: Yes

MinimumBackgroundRatio — Threshold to determine background model
0.7 (default) | numeric scalar

2 Alphabetical List

2-358

Threshold to determine background model, specified as a numeric scalar. Set this
property to represent the minimum possibility for pixels to be considered background
values. Multimodal backgrounds cannot be handled if this value is too small.

NumGaussians — Number of Gaussian modes in the mixture model
5 (default) | positive integer

Number of Gaussian modes in the mixture model, specified as a positive integer. Typically,
you would set this value to 3, 4 or 5. Set the value to 3 or greater to be able to model
multiple background modes.

InitialVariance — Initial mixture model variance
'Auto' (default) | numeric scalar

Initial mixture model variance, specified as a numeric scalar or the 'Auto' character
vector.

Image Data Type Initial Variance
double/single (30/255)^2
uint8 30^2

This property applies to all color channels for color inputs.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
foregroundMask = detector(I)
foregroundMask = detector(I,learningRate)

 vision.ForegroundDetector

2-359

Description
foregroundMask = detector(I) computes the foreground mask for input image I,
and returns a logical mask. Values of 1 in the mask correspond to foreground pixels.

foregroundMask = detector(I,learningRate) computes the foreground mask
using the LearningRate.

Input Arguments
I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

learningRate — Learning rate for parameter updates
0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning
rate to adapt model parameters. This property controls how quickly the model adapts to
changing conditions. Set this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the
AdaptLearningRate to true and after the training period specified by
NumTrainingFrames is over.

Tunable: Yes

Output Arguments
foregroundMask — Foreground mask
binary mask

Foreground mask computed using a Gaussian mixture model, returned as a binary mask.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

2 Alphabetical List

2-360

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Detect Moving Cars In Video

Create a video source object to read file.

videoSource = vision.VideoFileReader('viptraffic.avi',...
 'ImageColorSpace','Intensity','VideoOutputDataType','uint8');

Create a detector object and set the number of training frames to 5 (because it is a short
video.) Set initial standard deviation.

detector = vision.ForegroundDetector(...
 'NumTrainingFrames', 5, ...
 'InitialVariance', 30*30);

Perform blob analysis.

blob = vision.BlobAnalysis(...
 'CentroidOutputPort', false, 'AreaOutputPort', false, ...
 'BoundingBoxOutputPort', true, ...
 'MinimumBlobAreaSource', 'Property', 'MinimumBlobArea', 250);

Insert a border.

shapeInserter = vision.ShapeInserter('BorderColor','White');

Play results. Draw bounding boxes around cars.

videoPlayer = vision.VideoPlayer();
while ~isDone(videoSource)
 frame = videoSource();
 fgMask = detector(frame);

 vision.ForegroundDetector

2-361

 bbox = blob(fgMask);
 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end

Release objects.

release(videoPlayer);
release(videoSource);

2 Alphabetical List

2-362

References
[1] Kaewtrakulpong, P. and R. Bowden. An Improved Adaptive Background Mixture Model

for Realtime Tracking with Shadow Detection. In Proc. 2nd European Workshop
on Advanced Video Based Surveillance Systems, AVBS01, VIDEO BASED
SURVEILLANCE SYSTEMS: Computer Vision and Distributed Processing
(September 2001)

[2] Stauffer, C. and W.E.L. Grimson. Adaptive Background Mixture Models for Real-Time
Tracking, Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, Vol. 2 (06 August 1999), pp. 2246-252 Vol. 2.

 vision.ForegroundDetector

2-363

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates platform-dependent library for MATLAB host target.
• Generates portable C code for non MATLAB host target.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Topics
“Multiple Object Tracking”

Introduced in R2011a

2 Alphabetical List

2-364

vision.GammaCorrector
Package: vision

Apply or remove gamma correction from images or video streams

Description
To apply gamma correction to input images or a video stream:

1 Create the vision.GammaCorrector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
gammaCorr = vision.GammaCorrector
gammaCorr = vision.GammaCorrector(Name,Value)
gammaCorr = vision.GammaCorrector(gamma,Name,Value)

Description
gammaCorr = vision.GammaCorrector returns a gamma corrector object,
gammaCorr. You can use the gamma corrector to apply or remove gamma correction from
images or video streams.

gammaCorr = vision.GammaCorrector(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, gammaCorr
= vision.GammaCorrector('Correction','Gamma')

gammaCorr = vision.GammaCorrector(gamma,Name,Value) additionally sets the
Gamma property.

 vision.GammaCorrector

2-365

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Correction — Specify gamma correction or linearization
'Gamma' (default) | 'De-gamma'

Specify gamma correction or linearization, specified as 'Gamma' or 'De-gamma'.

Gamma — Gamma value of output or input
2.2 (default) | numeric scalar

Gamma value of output or input, specified as numeric scalar greater than or equal to 1.
When you set the Correction property to Gamma, this property gives the desired gamma
value of the output video stream. When you set the Correction property to De-gamma,
this property indicates the gamma value of the input video stream.

LinearSegment — Enable gamma curve to have linear portion near origin
true (default) | false

Enable gamma curve to have linear portion near origin, specified as true or false.

BreakPoint — I-axis value of the end of gamma correction linear segment
0.018 (default) | numeric scalar

I-axis value of the end of gamma correction linear segment, specified as a numeric scalar
value in the range (0,1). This property applies when you set the LinearSegment
property to true.

2 Alphabetical List

2-366

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
y = gammaCorr(input)

Description
y = gammaCorr(input) applies or removes gamma correction from input I, and
returns the gamma corrected or linearized output y.

Input Arguments
input — Input
M-by-N matrix of intensity values | M-by-N-P color video

Input, specified as an M-by-N matrix of intensity values or M-by-N-P color video, where P
is the number of color planes.

Output Arguments
y — Corrected input
same as input (default)

Output, returned as an M-by-N matrix of intensity values or M-by-N-P color video, where
P is the number of color planes.

 vision.GammaCorrector

2-367

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Improve Image Contrast Using Gamma Correction

Create a gamma corrector object with the gamma property set to 2.0.

hgamma = vision.GammaCorrector(2.0,'Correction','De-gamma');

Read an image.

img = imread('pears.png');

Apply gamma correction.

imgCor = hgamma(img);

Show the original and corrected images.

imshow(img); title('Original Image');

2 Alphabetical List

2-368

figure,
imshow(imgCor);
title('Enhanced Image after De-gamma Correction');

 vision.GammaCorrector

2-369

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

2 Alphabetical List

2-370

See Also
gamma

Introduced in R2012a

 vision.GammaCorrector

2-371

vision.HistogramBasedTracker
Package: vision

Histogram-based object tracking

Description
The histogram-based tracker incorporates the continuously adaptive mean shift
(CAMShift) algorithm for object tracking. It uses the histogram of pixel values to identify
the tracked object.

To track an object:

1 Create the vision.HistogramBasedTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
hbtracker = vision.HistogramBasedTracker
hbtracker = vision.HistogramBasedTracker(Name,Value)

Description
hbtracker = vision.HistogramBasedTracker returns a tracker that tracks an
object by using the CAMShift algorithm. It uses the histogram of pixel values to identify
the tracked object. To initialize the tracking process, you must use the
initializeObject function to specify an exemplar image of the object.

2 Alphabetical List

2-372

hbtracker = vision.HistogramBasedTracker(Name,Value) sets properties using
one or more name-value pairs. Enclose each property name in quotes. For example,
hbtracker = vision.HistogramBasedTracker('ObjectHistogram',[])

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ObjectHistogram — Normalized pixel value histogram
[] (default) | N-element vector.

Normalized pixel value histogram, specified as an N-element vector. This vector specifies
the normalized histogram of the object's pixel values. Histogram values must be
normalized to a value between 0 and 1. You can use the initializeObject method to
set the property.

Tunable: Yes

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
bbox = hbtracker(I)

 vision.HistogramBasedTracker

2-373

[bbox,orientation] = hbtracker(I)
[bbox,orientation,score] = hbtracker(I)

Description
bbox = hbtracker(I) returns a bounding box, of the tracked object. Before using the
tracker, you must identify the object to track, and set the initial search window. Use the
initializeObject function to do this.

[bbox,orientation] = hbtracker(I) additionally returns the angle between the x-
axis and the major axis of the ellipse that has the same second-order moments as the
object. The returned angle is between –pi/2 and pi/2.

[bbox,orientation,score] = hbtracker(I) additionally returns the confidence
score for the returned bounding box that contains the tracked object.

Input Arguments
I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

Output Arguments
bbox — Bounding box
[x y width height]

Bounding box, returned as a four-element vector in the format, [x y width height].

orientation — Orientation
angle

Orientation, returned as an angle between –pi/2 and pi/2. The angle is measured from the
x-axis and the major axis of the ellipse that has the same second-order moments as the
object.

score — Score
scalar

2 Alphabetical List

2-374

Score, returned as a scalar in the range [0 1]. A value of 1 corresponds to the maximum
confidence. 1.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.HistogramBasedTracker
initializeObject Set object to track
initializeSearchWindow Set object to track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Track a Face

Track and display a face in each frame of an input video.

Create System objects for reading and displaying video and for drawing a bounding box of
the object.

videoFileReader = vision.VideoFileReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
 'CustomBorderColor',[1 0 0]);

Read the first video frame, which contains the object. Convert the image to HSV color
space. Then define and display the object region.

 vision.HistogramBasedTracker

2-375

objectFrame = videoFileReader();
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);

figure
imshow(objectImage)
title('Red box shows object region')

(Optionally, you can select the object region using your mouse. The object must occupy
the majority of the region. Use the following command.)

figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);

Track and display the object in each video frame. The while loop reads each image frame,
converts the image to HSV color space, then tracks the object in the hue channel where it
is distinct from the background. Finally, the example draws a box around the object and
displays the results.

while ~isDone(videoFileReader)
 frame = videoFileReader();
 hsv = rgb2hsv(frame);
 bbox = tracker(hsv(:,:,1));

2 Alphabetical List

2-376

 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end

Release the video reader and player.

release(videoPlayer);
release(videoFileReader);

 vision.HistogramBasedTracker

2-377

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

2 Alphabetical List

2-378

See Also
imrect | rgb2hsv | size

Introduced in R2012a

 vision.HistogramBasedTracker

2-379

integralKernel class
Define filter for use with integral images

Description
This object describes box filters for use with integral images.

Construction
intKernel = integralKernel(bbox,weights) defines an upright box filter using an
M-by-4 matrix of bounding boxes and their corresponding weights.

intKernel = integralKernel(bbox,weights,orientation) the specified
orientation.

Input Arguments
bbox — Bounding boxes
4-element vector | M-by-4 matrix

Bounding boxes, specified as either a 4-element [x,y,width, height] vector or an M-by-4
matrix of individual bounding boxes. The bounding box defines the filter. The (x,y)
coordinates represent the top-most corner of the kernel. The (width, height) elements
represent the width and height accordingly. Specifying the bounding boxes as an M-by-4
matrix is particularly useful for constructing Haar-like features composed of multiple
rectangles.

Sums are computed over regions defined by bbox. The bounding boxes can overlap. See
“Define an 11-by-11 Average Filter” on page 2-383 for an example of how to specify a box
filter.

weights — Weights
M-length vector

Weights, specified as an M-length vector of weights corresponding to the bounding boxes.

2 Alphabetical List

2-380

For example, a conventional filter with the coefficients:

and two regions:
region 1: x=1, y=1, width = 4, height = 2
region 2: x=1, y=3, width = 4, height = 2
can be specified as

boxH = integralKernel([1 1 4 2; 1 3 4 2], [1, -1])

orientation — Filter orientation
'upright' | 'rotated'

Filter orientation, specified as the character vector 'upright' or 'rotated'. When you
set the orientation to 'rotated', the (x,y) components refer to the location of the top-left
corner of the bounding box. The (width,height) components refer to a 45-degree line from
the top-left corner of the bounding box.

Properties
These properties are read-only.

BoundingBoxes — Bounding boxes
4-element vector | M-by-4 matrix

Bounding boxes, stored as either a 4-element [x,y,width, height] vector or an M-by-4
matrix of individual bounding boxes.

Weights — Weights
vector

Weights, stored as a vector containing a weight for each bounding box. The weights are
used to define the coefficients of the filter.

Coefficients — Filter coefficients
numeric

 integralKernel class

2-381

Filter coefficients, stored as a numeric value.

Center — Filter center
[x,y] coordinates

Filter center, stored as [x,y] coordinates. The filter center represents the center of the
bounding rectangle. It is calculated by halving the dimensions of the rectangle. For even
dimensional rectangles, the center is placed at subpixel locations. Hence, it is rounded up
to the next integer.

For example, for this filter, the center is at [3,3].

These coordinates are in the kernel space, where the top-left corner is (1,1). To place the
center in a different location, provide the appropriate bounding box specification. For this
filter, the best workflow would be to construct the upright kernel and then call the rot45
method to provide the rotated version.

Size — Filter size
2-element vector

Filter size, stored as a 2-element vector. The size of the kernel is computed to be the
dimensions of the rectangle that bounds the kernel. For a single bounding box vector

2 Alphabetical List

2-382

[x,y,width, height], the kernel is bounded within a rectangle of dimensions [(width
+height) (width+height)-1].

For cascaded rectangles, the lowest corner of the bottom-most rectangle defines the size.
For example, a filter with a bounding box specification of [3 1 3 3], with weights set to 1,
produces a 6-by-5 filter with this kernel:

Orientation — Filter orientation
'upright' (default) | 'rotated'

Filter orientation, stored as the character vector 'upright' or 'rotated'.

Methods
transpose Transpose filter
rot45 Rotates upright kernel clockwise by 45 degrees

Examples

 integralKernel class

2-383

Define an 11-by-11 Average Filter

 avgH = integralKernel([1 1 11 11], 1/11^2);

Define a Filter to Approximate a Gaussian Second Order Partial Derivative in Y
Direction

ydH = integralKernel([1,1,5,9;1,4,5,3], [1, -3]);

You can also define this filter as integralKernel([1,1,5,3;1,4,5,3;1,7,5,3], [1, -2, 1]);|.
This filter definition is less efficient because it requires three bounding boxes.

Visualize the filter.

ydH.Coefficients

ans = 9×5

 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

Create a Haar-like Wavelet to Detect 45-Degree Edges

Create the filter.

K = integralKernel([3,1,3,3;6 4 3 3], [1 -1], 'rotated');

Visualize the filter and mark the center.

 imshow(K.Coefficients, [], 'InitialMagnification', 'fit');
 hold on;

2 Alphabetical List

2-384

 plot(K.Center(2),K.Center(1), 'r*');
 impixelregion;

 integralKernel class

2-385

Blur an Image Using an Average Filter

Read and display the input image.

 I = imread('pout.tif');
 imshow(I);

2 Alphabetical List

2-386

Compute the integral image.

 intImage = integralImage(I);

Apply a 7-by-7 average filter.

 avgH = integralKernel([1 1 7 7], 1/49);
 J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.

 J = uint8(J);
 figure
 imshow(J);

 integralKernel class

2-387

More About
Computing an Integral Image and Using it for Filtering with Box Filters

The integralImage function together with the integralKernel object and
integralFilter function complete the workflow for box filtering based on integral
images. You can use this workflow for filtering with box filters.

• Use the integralImage function to compute the integral images
• Use the integralFilter function for filtering
• Use the integralKernel object to define box filters

2 Alphabetical List

2-388

The integralKernel object allows you to transpose the filter. You can use this to aim a
directional filter. For example, you can turn a horizontal edge detector into vertical edge
detector.

References
Viola, Paul, and Michael J. Jones. “Rapid Object Detection using a Boosted Cascade of
Simple Features”. Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Vol. 1, 2001, pp. 511–518.

See Also
SURFPoints | detectMSERFeatures | detectSURFFeatures | integralFilter |
integralImage

Topics
“Compute an Integral Image” on page 3-537
“Find Vertical and Horizontal Edges in Image”

Introduced in R2012a

 integralKernel class

2-389

transpose
Class: integralKernel

Transpose filter

Syntax
transposedKernel = transpose(intKernel)

Description
transposedKernel = transpose(intKernel) transposes the integral kernel. You
can use this operation to change the direction of an oriented filter.

Example

Construct Haar-like Wavelet Filters
Horizontal filter

horiH = integralKernel([1 1 4 3; 1 4 4 3], [-1, 1]);

Using the dot and apostrophe create a vertical filter.

vertH = horiH.';

Using the transpose method.

verticalH = transpose(horiH);

2 Alphabetical List

2-390

rot45
Rotates upright kernel clockwise by 45 degrees

Syntax
rotKernel = rot45(intKernel)

Description
rotKernel = rot45(intKernel) rotates upright kernel clockwise by 45 degrees.

Example

Construct and Rotate a Haar-like Wavelet Filter
Create a horizontal filter.

H = integralKernel([1 1 4 3; 1 4 4 3], [-1, 1]);

Rotate the filter 45 degrees.

rotH = rot45(H);

 rot45

2-391

vision.KalmanFilter
Correction of measurement, state, and state estimation error covariance

Description
The Kalman filter object is designed for tracking. You can use it to predict a physical
object's future location, to reduce noise in the detected location, or to help associate
multiple physical objects with their corresponding tracks. A Kalman filter object can be
configured for each physical object for multiple object tracking. To use the Kalman filter,
the object must be moving at constant velocity or constant acceleration.

Creation
The Kalman filter algorithm involves two steps, prediction and correction (also known as
the update step). The first step uses previous states to predict the current state. The
second step uses the current measurement, such as object location, to correct the state.
The Kalman filter implements a discrete time, linear State-Space System.

Note To make configuring a Kalman filter easier, you can use the
configureKalmanFilter object to configure a Kalman filter. It sets up the filter for
tracking a physical object in a Cartesian coordinate system, moving with constant velocity
or constant acceleration. The statistics are the same along all dimensions. If you need to
configure a Kalman filter with different assumptions, do not use the function, use this
object directly.

In the state space system, the state transition model, A, and the measurement model, H,
are set as follows:

Variable Value
A [1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1]
H [1 0 0 0; 0 0 1 0]

2 Alphabetical List

2-392

Syntax
kalmanFilter = vision.KalmanFilter
kalmanFilter = vision.KalmanFilter(StateTransitionModel,
MeasurementModel)
kalmanFilter = vision.KalmanFilter(StateTransitionModel,
MeasurementModel,ControlModel,Name,Value)

Description
kalmanFilter = vision.KalmanFilter returns a kalman filter for a discrete time,
constant velocity system.

kalmanFilter = vision.KalmanFilter(StateTransitionModel,
MeasurementModel) additionally configures the control model, B.

kalmanFilter = vision.KalmanFilter(StateTransitionModel,
MeasurementModel,ControlModel,Name,Value) configures the Kalman filter object
properties, specified as one or more Name,Value pair arguments. Unspecified properties
have default values.

Properties
StateTransitionModel — Model describing state transition between time steps
(A)
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | M-by-M matrix

Model describing state transition between time steps (A), specified as an M-by-M matrix.
After the object is constructed, this property cannot be changed. This property relates to
the A variable in the state-space model.

MeasurementModel — Model describing state to measurement transformation (H)
[1 0 0 0; 0 0 1 0] (default) | N-by-M matrix

Model describing state to measurement transformation (H) , specified as an N-by-M
matrix. After the object is constructed, this property cannot be changed. This property
relates to the H variable in the state-space model.

ControlModel — Model describing control input to state transformation (B)
[] (default) | M-by-L matrix

 vision.KalmanFilter

2-393

Model describing control input to state transformation (B) , specified as an M-by-L matrix.
After the object is constructed, this property cannot be changed. This property relates to
the B variable in thestate-space model.

State — State (x)
[0] (default) | scalar | M-element vector.

State (x), specified as a scalar or an M-element vector. If you specify State as a scalar, it
will be extended to an M-element vector. This property relates to the x variable in the
state-space model.

StateCovariance — State estimation error covariance (P)
[1] (default) | scalar | M-by-M matrix

State estimation error covariance (P), specified as a scalar or an M-by-M matrix. If you
specify StateCovariance as a scalar it will be extended to an M-by-M diagonal matrix.
This property relates to the P variable in the state-space system.

ProcessNoise — Process noise covariance (Q)
[1] (default) | scalar | M-by-M matrix

Process noise covariance (Q) , specified as a scalar or an M-by-M matrix. If you specify
ProcessNoise as a scalar it will be extended to an M-by-M diagonal matrix. This
property relates to the Q variable in the state-space model.

MeasurementNoise — Measurement noise covariance (R)
[1] (default) | scalar | N-by-N matrix

Measurement noise covariance (R) , specified as a scalar or an N-by-N matrix. If you
specify MeasurementNoise as a scalar it will be extended to an N-by-N diagonal matrix.
This property relates to the R variable in the state-space model.

Object Functions
Use the predict and correct functions based on detection results. Use the distance
function to find the best matches.

• When the tracked object is detected, use the predict and correct functions with
the Kalman filter object and the detection measurement. Call the functions in the
following order:

2 Alphabetical List

2-394

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

• When the tracked object is not detected, call the predict function, but not the
correct function. When the tracked object is missing or occluded, no measurement is
available. Set the functions up with the following logic:

[...] = predict(kalmanFilter);
If measurement exists
 [...] = correct(kalmanFilter,measurement);
end

• If the tracked object becomes available after missing for the past t-1 contiguous time
steps, you can call the predict function t times. This syntax is particularly useful to
process asynchronous video.. For example,

for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)

correct Correction of measurement, state, and state estimation error covariance
predict Prediction of measurement
distance Confidence value of measurement

Examples

Track Location of An Object

Track the location of a physical object moving in one direction.

Generate synthetic data which mimics the 1-D location of a physical object moving at a
constant speed.

detectedLocations = num2cell(2*randn(1,40) + (1:40));

Simulate missing detections by setting some elements to empty.

detectedLocations{1} = [];
 for idx = 16: 25
 detectedLocations{idx} = [];
 end

 vision.KalmanFilter

2-395

Create a figure to show the location of detections and the results of using the Kalman
filter for tracking.

figure;
hold on;
ylabel('Location');
ylim([0,50]);
xlabel('Time');
xlim([0,length(detectedLocations)]);

Create a 1-D, constant speed Kalman filter when the physical object is first detected.
Predict the location of the object based on previous states. If the object is detected at the
current time step, use its location to correct the states.

2 Alphabetical List

2-396

kalman = [];
for idx = 1: length(detectedLocations)
 location = detectedLocations{idx};
 if isempty(kalman)
 if ~isempty(location)

 stateModel = [1 1;0 1];
 measurementModel = [1 0];
 kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'MeasurementNoise',4);
 kalman.State = [location, 0];
 end
 else
 trackedLocation = predict(kalman);
 if ~isempty(location)
 plot(idx, location,'k+');
 d = distance(kalman,location);
 title(sprintf('Distance:%f', d));
 trackedLocation = correct(kalman,location);
 else
 title('Missing detection');
 end
 pause(0.2);
 plot(idx,trackedLocation,'ro');
 end
 end
legend('Detected locations','Predicted/corrected locations');

 vision.KalmanFilter

2-397

Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean
Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian
noise with standard deviation of 0.1.

x = 1;
len = 100;
z = x + 0.1 * randn(1,len);

2 Alphabetical List

2-398

Remove noise from the signal by using a Kalman filter. The state is expected to be
constant, and the measurement is the same as state.

stateTransitionModel = 1;
measurementModel = 1;
obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'ProcessNoise',1e-5,'MeasurementNoise',1e-2);

z_corr = zeros(1,len);
for idx = 1: len
 predict(obj);
 z_corr(idx) = correct(obj,z(idx));
end

Plot results.

figure, plot(x * ones(1,len),'g-');
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');

 vision.KalmanFilter

2-399

Algorithms

State Space Model
This object implements a discrete time, linear state-space system, described by the
following equations.

State equation: x(k) = Ax(k− 1) + Bu(k− 1) + w(k− 1)

2 Alphabetical List

2-400

Measurement
equation:

z(k) = Hx(k) + v(k)

Variable Definition

Variabl
e

Description Dimension

k Time. Scalar
x State. Gaussian vector with covariance P.

[x N(x, P)]
M-element vector

P State estimation error covariance. M-by-M matrix
A State transition model. M-by-M matrix
B Control model. M-by-L matrix
u Control input. L-element vector
w Process noise; Gaussian vector with zero mean and

covariance Q. [w N(0, Q)]
M-element vector

Q Process noise covariance. M-by-M matrix
z Measurement. For example, location of detected

object.
N-element vector

H Measurement model. N-by-M matrix
v Measurement noise; Gaussian vector with zero

mean and covariance R. [v N(0, R)]
N-element vector

R Measurement noise covariance. N-by-N matrix

References
[1] Welch, Greg, and Gary Bishop, An Introduction to the Kalman Filter, TR 95–041.

University of North Carolina at Chapel Hill, Department of Computer Science.

[2] Blackman, S. Multiple-Target Tracking with Radar Applications. Artech House, Inc.,
pp. 93, 1986.

 vision.KalmanFilter

2-401

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
assignDetectionsToTracks | configureKalmanFilter

Introduced in R2012b

2 Alphabetical List

2-402

vision.LocalMaximaFinder
Package: vision

Find local maxima in matrices

Description
To find local maxima in matrices.

1 Create the vision.LocalMaximaFinder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
LMaxFinder = vision.LocalMaximaFinder
LMaxFinder = vision.LocalMaximaFinder(maxnum,neighborsize)
LMaxFinder = vision.LocalMaximaFinder(Name,Value)

Description
LMaxFinder = vision.LocalMaximaFinder returns a local maxima finder System
object, H, that finds local maxima in input matrices.

LMaxFinder = vision.LocalMaximaFinder(maxnum,neighborsize) returns a
local maxima finder object with the MaximumNumLocalMaxima property set to maxnum,
NeighborhoodSize property set to neighborsize, and other specified properties set
to the specified values.

 vision.LocalMaximaFinder

2-403

LMaxFinder = vision.LocalMaximaFinder(Name,Value) sets properties using one
or more name-value pairs. Enclose each property name in quotes. For example,
LMaxFinder = vision.LocalMaximaFinder('ThresholdSource','Property')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

MaximumNumLocalMaxima — Maximum number of maxima
2 (default) | positive scalar integer

Maximum number of maxima to find, specified as a positive scalar integer.

NeighborhoodSize — Neighborhood size for zero-ing out values
[5 7] (default) | two-element vector

Neighborhood size for zero-ing out values, specified as a two-element vector

ThresholdSource — Source of threshold
'Property' (default) | 'Input port'

Source of threshold, specified as 'Property' or 'Input port'.

Threshold — Value that all maxima should match or exceed
10 (default) | build-in numeric data type

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in
numeric data type. This property applies when you set the ThresholdSource property
to 'Property'.

Tunable: Yes

HoughMatrixInput — Indicator of Hough transform matrix input
false (default) | true

2 Alphabetical List

2-404

Indicator of Hough transform matrix input, specified as true or false. The block applies
additional processing, specific to Hough transform on the right and left boundaries of the
input matrix. Set this property to true if the input is antisymmetric about the rho axis

and the theta value ranges from
-

p

2 to
p

2 radians, which correspond to a Hough matrix.

IndexDataType — Data type of index values
uint32 (default) | double | single | uint8 | uint16

Data type of index values, specified as double, single , uint8, uint16, or uint32.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
idx = LMaxFinder(I)
idx = LMaxFinder(I,threshold)

Description
idx = LMaxFinder(I) returns [x y] coordinates of the local maxima in an M-by-2
matrix, idx. M represents the number of local maximas found. The maximum value of M
may not exceed the value set in the MaximumNumLocalMaxima property.

idx = LMaxFinder(I,threshold) finds the local maxima in the input image I, using
the threshold value threshold, when you set the ThresholdSource property to
'Input port'.

 vision.LocalMaximaFinder

2-405

Input Arguments
I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

threshold — Threshold
scalar

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in
numeric data type.

Output Arguments
idx — Local maxima
M-by-2 matrix

Local maxima, returned as an M-by-2 matrix of one-based [x y] coordinates, where M
represents the number of local maximas found.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.LocalMaximaFinder
initialize Initialize video frame and points to track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

2 Alphabetical List

2-406

Examples

Find Local Maxima of an Input

Create an example input.

I = [0 0 0 0 0 0 0 0 0 0 0 0; ...
 0 0 0 1 1 2 3 2 1 1 0 0; ...
 0 0 0 1 2 3 4 3 2 1 0 0; ...
 0 0 0 1 3 5 7 5 3 1 0 0; ...
 0 0 0 1 2 3 4 3 2 1 0 0; ...
 0 0 0 1 1 2 3 2 1 1 0 0; ...
 0 0 0 0 0 0 0 0 0 0 0 0];

Create a local maxima finder object.

 hLocalMax = vision.LocalMaximaFinder('MaximumNumLocalMaxima',1, ...
 'NeighborhoodSize',[3,3], ...
 'Threshold',1);

Find local maxima.

location = hLocalMax(I)

location = 1x2 uint32 row vector

 7 4

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 vision.LocalMaximaFinder

2-407

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
hough | vision.Maximum

Introduced in R2012b

2 Alphabetical List

2-408

vision.Maximum
Package: vision

Find maximum values in input or sequence of inputs

Description
Find maximum values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Maximum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
maxObj = vision.Maximum
maxObj = vision.Maximum(Name,Value)

Description
maxObj = vision.Maximum returns an object, maxObj, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

maxObj = vision.Maximum(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, maxObj =
vision.Maximum('RunningMaximum',false)

 vision.Maximum

2-409

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ValueOutputPort — Output maximum value
true (default) | false

Output maximum value, specified as true or false. Set this property to true to output
the maximum value of the input. This property applies when you set the
RunningMaximum property to false.

RunningMaximum — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set
this property to true, the object computes the maximum value over a sequence of inputs.
When you set this property to false, the object computes the maximum value over the
current input.

IndexOutputPort — Output the index of the maximum value
true (default) | false

Output the index of the maximum value, specified as true or false. This property
applies only when you set the RunningMaximum property to false.

ResetInputPort — Additional input to enable resetting of running maximum
false (default) | true

Additional input to enable resetting of running maximum, specified as true or false.
When you set this property to true, a reset input must be specified to reset the running
maximum. This property applies only when you set the RunningMaximum property to
true.

ResetCondition — Condition that triggers resetting of running maximum
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

2 Alphabetical List

2-410

Condition that triggers resetting of running maximum, specified as as 'Rising edge',
'Falling edge', 'Either edge', or 'Non-zero'. This property applies only when
you set the ResetInputPort property to true.

IndexBase — Numbering base for index of maximum value
'One' (default) | 'Zero'

Numbering base for index of maximum value, specified as 'One' or 'Zero'. This
property applies only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningMaximum property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies
when you set the Dimension property to 'All' and the RunningMaximum property to
false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary
mask'. This property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This
property applies only when you set the ROIForm property to 'Rectangles'.

 vision.Maximum

2-411

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for
all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual
statistics for each ROI' or 'Single statistic for all ROIs'. This property
applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or
'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This
applies when you set the ROIForm property to 'Label matrix'.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

2 Alphabetical List

2-412

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[value,index] = maxObj(input)
index = maxObj(input)

[___] = maxObj(I,ROI)
[___ ,flag] = maxObj(I,ROI)

[___] = maxObj(I,label,labelNumbers)
[___ ,flag] = maxObj(I,label,labelNumbers)

Description
[value,index] = maxObj(input) returns the maximum value and index of the input.

 vision.Maximum

2-413

index = maxObj(input) returns the one-based index of the maximum value when you
set the IndexOutputPort property to true and the ValueOutputPort property to
false. The RunningMaximum property must be set to false.

[___] = maxObj(I,ROI) returns the maximum value in the input image within the
given region of interest.

[___ ,flag] = maxObj(I,ROI)additionally returns a flag to indicate whether the
given ROI is within the bounds of the image.

[___] = maxObj(I,label,labelNumbers) returns the maximum of the input image
for a region the labels specified in the labelNumbers vector. The regions are defined and
labeled in the label matrix.

[___ ,flag] = maxObj(I,label,labelNumbers) additionally returns a flag to
indicate whether the input label numbers are valid.

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is
available when you set the the ROIProcessing property to true and the ROIForm
property to 'Lines', 'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

2 Alphabetical List

2-414

Output Arguments
value — Maximum value
same as input

Maximum value, returned as the same data type as the input

index — Index to maximum value
one-based index

Index to maximum value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Find Index to Maximum Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

 vision.Maximum

2-415

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the maximum.

hMax = vision.Maximum

hMax =
 vision.Maximum with properties:

 ValueOutputPort: true
 RunningMaximum: false
 IndexOutputPort: true
 Dimension: 'All'
 ROIProcessing: false

 Show all properties

[m, ind] = hMax(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Mean | vision.Minimum

Introduced in R2012a

2 Alphabetical List

2-416

vision.Mean
Package: vision

Find mean values in input or sequence of inputs

Description
Find the mean values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Mean object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
minObj = vision.Mean
minObj = vision.Mean(Name,Value)

Description
minObj = vision.Mean returns an object, minObj, that computes the value and index
of the maximum elements in an input or a sequence of inputs.

minObj = vision.Mean(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, minObj =
vision.Maximum('RunningMean',false)

 vision.Mean

2-417

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

RunningMean — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set
this property to true, the object computes the mean value over a sequence of inputs.
When you set this property to false, the object computes the mean value over the
current input.

ResetInputPort — Additional input to enable resetting of running mean
false (default) | true

Additional input to enable resetting of running mean, specified as true or false. When
you set this property to true, a reset input must be specified to reset the running mean.
This property applies only when you set the RunningMean property to true.

ResetCondition — Condition that triggers resetting of running mean
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running mean, specified as as 'Rising edge',
'Falling edge', 'Either edge', or 'Non-zero'. This property applies only when
you set the ResetInputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningMean property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

2 Alphabetical List

2-418

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies
when you set the Dimension property to 'All' and the RunningMean property to
false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary
mask'. This property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This
property applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for
all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual
statistics for each ROI' or 'Single statistic for all ROIs'. This property
applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or
'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This
applies when you set the ROIForm property to 'Label matrix'.

 vision.Mean

2-419

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

2 Alphabetical List

2-420

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[value,index] = minObj(input)
index = minObj(input)

[___] = minObj(I,ROI)
[___ ,flag] = minObj(I,ROI)

[___] = minObj(I,label,labelNumbers)
[___ ,flag] = minObj(I,label,labelNumbers)

Description
[value,index] = minObj(input) returns the mean value and index of the input.

index = minObj(input) returns the one-based index of the mean value when you set
the IndexOutputPort property to true and the ValueOutputPort property to false.
The RunningMean property must be set to false.

[___] = minObj(I,ROI) returns the mean value in the input image within the given
region of interest.

[___ ,flag] = minObj(I,ROI)additionally returns a flag to indicate whether the
given ROI is within the bounds of the image.

[___] = minObj(I,label,labelNumbers) returns the mean of the input image for a
region the labels specified in the labelNumbers vector. The regions are defined and
labeled in the label matrix.

[___ ,flag] = minObj(I,label,labelNumbers) additionally returns a flag to
indicate whether the input label numbers are valid.

 vision.Mean

2-421

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is
available when you set the the ROIProcessing property to true and the ROIForm
property to 'Lines', 'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

Output Arguments
value — Mean value
same as input

Mean value, returned as the same data type as the input

index — Index to mean value
one-based index

Index to mean value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

2 Alphabetical List

2-422

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Determine the Mean in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the mean.

hMean = vision.Mean;
mean = hMean(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 vision.Mean

2-423

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Minimum

Introduced in R2012a

2 Alphabetical List

2-424

vision.Median
Package: vision

Find median values in input or sequence of inputs

Description
Find the median values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Median object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
medObj = vision.Median
medObj = vision.Median(Name,Value)

Description
medObj = vision.Median returns an object, medObj, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

medObj = vision.Median(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, medObj =
vision.Median('Dimension','Column')

 vision.Median

2-425

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SortMethod — Sort method
'Quick sort' | 'Insertion sort'

Sort method for calculating the median value, specified as 'Quick sort' or
'Insertion sort'.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningMean property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

2 Alphabetical List

2-426

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[value,index] = medObj(input)

Description
[value,index] = medObj(input) returns the median value and index of the input.

 vision.Median

2-427

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

Output Arguments
value — Median value
same as input

Median value, returned as the same data type as the input

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Determine Median Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

2 Alphabetical List

2-428

img = im2single(rgb2gray(img));

Find the median.

hmed = vision.Median;
medValue = hmed(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Minimum

Introduced in R2012a

 vision.Median

2-429

vision.Minimum
Package: vision

Find minimum values in input or sequence of inputs

Description
Find the minimum values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Minimum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
minObj = vision.Minimum
minObj = vision.Minimum(Name,Value)

Description
minObj = vision.Minimum returns an object, minObj, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

minObj = vision.Minimum(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, minObj =
vision.Maximum('RunningMinimum',false)

2 Alphabetical List

2-430

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ValueOutputPort — Output Minimum value
true (default) | false

Output minimum value, specified as true or false. Set this property to true to output
the Minimum value of the input. This property applies when you set the
RunningMinimum property to false.

RunningMinimum — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set
this property to true, the object computes the minimum value over a sequence of inputs.
When you set this property to false, the object computes the minimum value over the
current input.

IndexOutputPort — Output the index of the minimum value
true (default) | false

Output the index of the minimum value, specified as true or false. This property
applies only when you set the RunningMinimum property to false.

ResetInputPort — Additional input to enable resetting of running minimum
false (default) | true

Additional input to enable resetting of running minimum, specified as true or false.
When you set this property to true, a reset input must be specified to reset the running
minimum. This property applies only when you set the RunningMinimum property to
true.

ResetCondition — Condition that triggers resetting of running minimum
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

 vision.Minimum

2-431

Condition that triggers resetting of running minimum, specified as as 'Rising edge',
'Falling edge', 'Either edge', or 'Non-zero'. This property applies only when
you set the ResetInputPort property to true.

IndexBase — Numbering base for index of minimum value
'One' (default) | 'Zero'

Numbering base for index of minimum value, specified as 'One' or 'Zero'. This
property applies only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningMinimum property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies
when you set the Dimension property to 'All' and the RunningMinimum property to
false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary
mask'. This property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This
property applies only when you set the ROIForm property to 'Rectangles'.

2 Alphabetical List

2-432

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for
all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual
statistics for each ROI' or 'Single statistic for all ROIs'. This property
applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or
'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This
applies when you set the ROIForm property to 'Label matrix'.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

 vision.Minimum

2-433

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[value,index] = minObj(input)
index = minObj(input)

[___] = minObj(I,ROI)
[___ ,flag] = minObj(I,ROI)

[___] = minObj(I,label,labelNumbers)
[___ ,flag] = minObj(I,label,labelNumbers)

Description
[value,index] = minObj(input) returns the minimum value and index of the input.

2 Alphabetical List

2-434

index = minObj(input) returns the one-based index of the minimum value when you
set the IndexOutputPort property to true and the ValueOutputPort property to
false. The RunningMinimum property must be set to false.

[___] = minObj(I,ROI) returns the minimum value in the input image within the
given region of interest.

[___ ,flag] = minObj(I,ROI)additionally returns a flag to indicate whether the
given ROI is within the bounds of the image.

[___] = minObj(I,label,labelNumbers) returns the minimum of the input image
for a region the labels specified in the labelNumbers vector. The regions are defined and
labeled in the label matrix.

[___ ,flag] = minObj(I,label,labelNumbers) additionally returns a flag to
indicate whether the input label numbers are valid.

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is
available when you set the the ROIProcessing property to true and the ROIForm
property to 'Lines', 'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

 vision.Minimum

2-435

Output Arguments
value — Minimum value
same as input

Minimum value, returned as the same data type as the input

index — Index to minimum value
one-based index

Index to minimum value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Find Index to Minimum Value in Grayscale Image

Read a color image.

img = imread('peppers.png');

2 Alphabetical List

2-436

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the maximum.

hMin = vision.Minimum

hMin =
 vision.Minimum with properties:

 ValueOutputPort: true
 RunningMinimum: false
 IndexOutputPort: true
 Dimension: 'All'
 ROIProcessing: false

 Show all properties

[m, ind] = hMin(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Mean

Introduced in R2012a

 vision.Minimum

2-437

vision.VideoFileReader
Package: vision

Read video frames and audio samples from video file

Description
The VideoFileReader object reads video frames, images, and audio samples from a
video file. The object can also read image files.

Platforms File Formats
All Platforms AVI, including uncompressed, indexed,

grayscale, and Motion JPEG-encoded video
(.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft
DirectShow®

Windows 7 or later MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media
Foundation

2 Alphabetical List

2-438

Platforms File Formats
Macintosh Most formats supported by QuickTime

Player, including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Note: For OS X Yosemite (Version 10.10)
and later, MPEG-4/H.264 files written using
VideoWriter, play correctly, but display
an inexact frame rate.

Linux Any format supported by your installed
plug-ins for GStreamer 1.0 or higher, as
listed on https://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg
Theora (.ogg).

To read a file:

1 Create the vision.VideoFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
videoFReader = vision.VideoFileReader(Filename)
videoFReader = vision.VideoFileReader(___ ,Name,Value)

 vision.VideoFileReader

2-439

https://gstreamer.freedesktop.org/documentation/plugins.html
https://gstreamer.freedesktop.org/documentation/plugins.html

Description
videoFReader = vision.VideoFileReader(Filename) returns a video file reader
System object, videoFReader, that sequentially reads video frames or audio samples
from an input file, Filename.

videoFReader = vision.VideoFileReader(___ ,Name,Value)additionally sets
properties using one or more name-value pairs. Enclose each property name in quotes.
For example, videoFReader = vision.VideoFileReader('PlayCount',1)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Filename — File name
vipmen.avi (default) | character vector

File name, specified as a character vector. The full path for the file needs to be specified
only if the file is not on the MATLAB path.

PlayCount — Number of times to play file
1 (default) | positive integer | inf

Number of times to play file, specified as a positive integer.

AudioOutputPort — Output audio data
false (default) | true

Output audio data, specified as true or false. Use this property to control the audio
output only when the input file contains audio and video streams.

ImageColorSpace — Image format
RGB (default) | YCbCr 4:2:2 | intensity video

2 Alphabetical List

2-440

Image format, specified as RGB, YCbCr 4:2:2, or intensity video frames when the input
file contains video.

VideoOutputDataType — Output video data type
single (default)

Output video data type, specified as one of the data types listed and inherit. This
property applies when the input file contains video.
Data Types: double | int8 | int16 | int32 | uint8 | uint16

AudioOutputDataType — Output audio samples data type
int16 (default)

Output audio samples data type, specified as one of the data types listed and inherit.
This property applies when the input file contains audio.
Data Types: double | single | int16 | uint8

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
I = videoFReader()
[Y,Cb,Cr] = videoFReader()
[___ ,audio] = videoFReader()
[___ ,EOF] = videoFReader()

Description
I = videoFReader() returns the next video frame.

 vision.VideoFileReader

2-441

[Y,Cb,Cr] = videoFReader() returns the next frame of YCbCr 4:2:2 format video
in the color components Y, Cb, and Cr. This syntax requires that you set the
'ImageColorSpace' property to 'YCbCr 4:2:2'

[___ ,audio] = videoFReader() also returns one frame of audio samples, audio.
This syntax requires that you set the AudioOutputPort property to true.

[___ ,EOF] = videoFReader() also returns the end-of-file indicator, EOF. The object
sets EOF to true each time the output contains the last audio sample and/or video frame.

Output Arguments
I — Video frame
truecolor | 2-D grayscale image

Video frame, returned as a truecolor or 2-D grayscale image.

Y, Cb, Cr — YCbCr color channels
numeric matrices

YCbCr color channels of a YCbCr 4:2:2 format image, returned as numeric matrices.

audio — One frame of audio samples
.wav | .mp3 | .mp3 | .mp4 | .ogg | .flac | .au | .aiff | .aif | .aifc

One frame of audio samples, returned in one of the following formats.

Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows Image:

.jpg,.bmp
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1.mpg
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Motion JPEG 2000 (.mj2)
Windows Media Video (.wmv,.asf, .asx, .asx)
and any format supported by Microsoft DirectShow® 9.0 or higher.

2 Alphabetical List

2-442

Platform Supported File Name Extensions
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

Macintosh Video:
.avi
Motion JPEG 2000 (.mj2)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.
Audio:
Uncompressed .avi

Linux Motion JPEG 2000 (.mj2)
Any format supported by your installed plug-ins for GStreamer 0.1
or higher, as listed on http://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64-bit video and
audio codecs. If a compressed multimedia file fails to play, try saving the multimedia file
to a supported file format listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits are not supported by
vision.VideoFileReader. Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by
vision.VideoFileReader.

EOF — End-of-file
true | false

 vision.VideoFileReader

2-443

End-of-file indicator, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.VideoFileReader
info Information about specified video file
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Read and Play a Video File

Load the video using a video reader object.

videoFReader = vision.VideoFileReader('ecolicells.avi');

Create a video player object to play the video file.

videoPlayer = vision.VideoPlayer;

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying
each frame.

while ~isDone(videoFReader)
 videoFrame = videoFReader();
 videoPlayer(videoFrame);

2 Alphabetical List

2-444

 pause(0.1)
end

Release the objects.

release(videoPlayer);
release(videoFReader);

 vision.VideoFileReader

2-445

Tips
• Video Reading Performance on Windows Systems:To achieve better video reader

performance on Windows for MP4 and MOV files, MATLAB uses the system's graphics
hardware for decoding. However, in some cases using the graphics card for decoding
can result in poorer performance depending on the specific graphics hardware on the
system. If you notice slower video reader performance on your system, turn off the
hardware acceleration by typing:

 matlab.video.read.UseHardwareAcceleration('off')

Hardware acceleration can be reenabled by typing:

 matlab.video.read.UseHardwareAcceleration('on')

2 Alphabetical List

2-446

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
VideoReader | VideoWriter | implay | vision.VideoFileWriter |
vision.VideoPlayer

Introduced in R2012a

 vision.VideoFileReader

2-447

https://www.mathworks.com/support/sysreq.html

vision.VideoFileWriter
Package: vision

Write video frames and audio samples to video file

Description
The VideoFileWriter object writes video frames and audio samples to a video file. The
video and audio can be compressed. The available compression types depend on the
encoders installed on the platform.

Note This block supports code generation for platforms that have file I/O available. You
cannot use this block with Simulink Desktop Real-Time software, because that product
does not support file I/O.

This object performs best on platforms with Version 11 or later of Windows Media Player
software. This object supports only uncompressed RGB24 AVI files on Linux and Mac
platforms.

The generated code for this object relies on prebuilt library files. You can run this code
outside the MATLAB environment, or redeploy it, but be sure to account for these extra
library files when doing so. The packNGo function creates a single zip file containing all of
the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from an object, you may need to add
precompiled shared library files to your system path. See “MATLAB Coder” and “Simulink
Shared Library Dependencies” for details.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

2 Alphabetical List

2-448

Creation

Syntax
videoFWriter = vision.VideoFileWriter
videoFWriter = vision.VideoFileWriter(Filename)
videoFWriter = vision.VideoFileWriter(___ ,Name,Value)

Description
videoFWriter = vision.VideoFileWriter returns a video file writer System object,
videoFWriter. It writes video frames to an uncompressed 'output.avi' video file.
Every call to the step method writes a video frame.

videoFWriter = vision.VideoFileWriter(Filename) returns a video file writer
object, videoFWriter that writes video to a file, Filename. The file type can
be .avi, .mj2, .mp4, and .m4v specified by the FileFormat property.

videoFWriter = vision.VideoFileWriter(___ ,Name,Value) configures the
video file writer properties, specified as one or more name-value pair arguments.
Unspecified properties have default values.

Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: videoFWriter =
vision.VideoFileWriter('myFile.avi','FrameRate',...
videoFReader.info.VideoFrameRate);

Properties
Filename — Video output file name
output.avi (default) | character vector

Video output file name, specified as a character vector. The file extension you give for
Filename must match the FileFormat.

 vision.VideoFileWriter

2-449

FileFormat — Output file format
'AVI' (default) | 'MJ2000' | 'MPEG4'

Output file format, specified as one of the supported file formats shown in the table.

File Format Description File Extension Supported
Platform

'AVI' Audio-Video
Interleave file

.avi All platforms

'MJ2000' Motion JPEG 2000
file

.mj2 All platforms

'MPEG4' MPEG-4/H.264 Video .mp4 , .m4v Windows and Mac

AudioInputPort — Write audio data
false (default) | true

Write audio data, specified as false or true. Use this property to control whether the
object writes audio samples to the video file. Set this value to true to write audio data. To
write audio and video to a file, you must use the .avi format .

FrameRate — Video frame rate
30 (default) | positive numeric scalar

Video frame rate in frames per second, specified as a positive numeric scalar. For videos
which also contain audio data, the rate of the audio data will be determined as the rate of
the video multiplied by the number of audio samples passed in. For example, if you use a
frame rate of 30, and pass 1470 audio samples, the object sets the audio sample to
44100, (1470 30 44100¥ =).

AudioCompressor — Audio compression encoder
None (uncompressed) (default) | system compressors

Specify the type of compression algorithm to implement for audio data. This compression
reduces the size of the video file. Choose None (uncompressed) to save uncompressed
audio data to the video file. The other options reflect the available audio compression
algorithms installed on your system. This property applies only when writing AVI files on
Windows platforms.

VideoCompressor — Video compression encoder
None (uncompressed) (default) | system compressors

2 Alphabetical List

2-450

Specify the type of compression algorithm to use to compress the video data. This
compression reduces the size of the video file. Choose None (uncompressed) to save
uncompressed video data to the video file. The VideoCompressor property can also be
set to one of the compressors available on your system. To obtain a list of available video
compressors, you can use tab completion. Follow these steps:

1 Instantiate the object:

y = vision.VideoFileWriter
2 To launch the tab completion functionality, type the following up to the open quote.

y.VideoCompressor='

A list of compressors available on your system will appear after you press the Tab
key. For example:

This property applies only when writing AVI files on Windows platforms.

AudioDataType — Uncompressed audio data type
WAV (default)

Specify the compressed output audio data type. This property only applies when you write
uncompressed WAV files.

FileColorSpace — Color space for output file
RGB (default) | YCbCr 4:2:2

Color space for output AVI file, specified as RGB or YCbCr 4:2:2. This property applies
when you set the FileFormat property to AVI and only on Windows platforms.

Quality — Control size of output video file
75 (default) | integer

 vision.VideoFileWriter

2-451

Control size of output video file, specified as an integer in the range [0,100]. Increase this
value for greater video quality. However, doing so increases the file size. Decrease the
value to lower video quality with a smaller file size.

The Quality property only applies when you are writing MPEG4 video files (on Windows
or Mac) or when you are writing MJPEG-AVI video only files on a Mac or Linux.

CompressionFactor — Target ratio between number of bytes in input image and
compressed image
10 (default) | integer

Target ratio between number of bytes in input image and compressed image, specified as
an integer greater than 1. The CompressionFactor indicates the target ratio between
the number of bytes in the input image and the compressed image. The data is
compressed as much as possible, up to the specified target. This property applies only
when writing Lossy MJ2000 files.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
Filename = videoFWriter(videoFrame)
Filename = videoFWriter(videoFrame,audio)
Filename = videoFWriter(videoFrame,Y,Cb,Cr,audio)

Description
Filename = videoFWriter(videoFrame) writes one frame of video, videoFrame, to
the output file. The input video can be an M-by-N-by-3 truecolor RGB video frame, or an
M-by-N grayscale video frame..

2 Alphabetical List

2-452

Filename = videoFWriter(videoFrame,audio) writes one frame of the input video,
videoFrame, and one frame of audio samples, audio, to the output file. This applies
when you set the AudioInputPort property to true.

Filename = videoFWriter(videoFrame,Y,Cb,Cr,audio) writes one frame of
YCbCr 4:2:2 video, and one frame of audio samples, audio, to the output file. This applies
when you set the AudioInputPort to true and the FileColorSpace property to
'YCbCr 4:2:2'. The width of Cb and Cr color components must be half of the width of Y.

Input Arguments
videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, returned as a truecolor or 2-D grayscale image.

Y,Cb,Cr — YCbCr color format
'YCbCr 4:2:2'

YCbCr color format, returned in the YCbCr 4:2:2 format.

audio — One frame of audio samples
.wav | .mp3 | .mp3 | .mp4 | .ogg | .flac | .au | .aiff | .aif | .aifc

One frame of audio samples, returned in one of the following formats.

Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows Image:

.jpg,.bmp
Video:
MPEG (.mpeg)
MPEG-2 (.mp2)
MPEG-1.mpg
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Motion JPEG 2000 (.mj2)
Windows Media Video (.wmv,.asf, .asx, .asx)
and any format supported by Microsoft DirectShow® 9.0 or higher.

 vision.VideoFileWriter

2-453

Platform Supported File Name Extensions
Audio:
WAVE (.wav)
Windows Media Audio File (.wma)
Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)
Sun Audio (.au)
Apple (.snd)

Macintosh Video:
.avi
Motion JPEG 2000 (.mj2)
MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)
and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.
Audio:
Uncompressed .avi

Linux Motion JPEG 2000 (.mj2)
Any format supported by your installed plug-ins for GStreamer 0.1
or higher, as listed on http://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64-bit video and
audio codecs. If a compressed multimedia file fails to play, try saving the multimedia file
to a supported file format listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits is not supported by
vision.VideoFileReader. Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by
vision.VideoFileReader.

2 Alphabetical List

2-454

Output Arguments
Filename — Video output file name
'.avi' (default) | '.mj2' | '.mp4' | '.m4v'

Video output file name, specified as '.avi', '.mj2', '.mp4', and '.m4v'. The file
extension you give for Filename must match the FileFormat.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.VideoFileWriter
info Information about specified video file
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Write a Video to an AVI File

Load a video file and write the file to a writer object.

videoFReader = vision.VideoFileReader('viplanedeparture.mp4');
videoFWriter = vision.VideoFileWriter('myFile.avi', ...
 'FrameRate',videoFReader.info.VideoFrameRate);

Write the first 50 frames from original file into a newly created myFile.avi file.

 vision.VideoFileWriter

2-455

for i=1:50
 videoFrame = videoFReader();
 videoFWriter(videoFrame);
end

Close the input and output files.

release(videoFReader);
release(videoFWriter);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
VideoReader | VideoWriter | vision.VideoFileReader | vision.VideoPlayer

Introduced in R2012a

2 Alphabetical List

2-456

https://www.mathworks.com/support/sysreq.html

ocrText class
Object for storing OCR results

Description
ocrText contains recognized text and metadata collected during optical character
recognition (OCR). The ocr function returns the ocrText object. You can access the
information contained in the object with the ocrText properties. You can also locate text
that matches a specific pattern with the object’s locateText method.

Properties
Text — Text recognized by OCR
array of characters

Text recognized by OCR, specified as an array of characters. The text includes white
space and new line characters.

CharacterBoundingBoxes — Bounding box locations
M-by-4 matrix

Bounding box locations, stored as an M-by-4 matrix. Each row of the matrix contains a
four-element vector, [x y width height]. The [x y] elements correspond to the upper-left
corner of the bounding box. The [width height] elements correspond to the size of the
rectangular region in pixels. The bounding boxes enclose text found in an image using the
ocr function. Bounding boxes width and height that correspond to new line characters
are set to zero. Character modifiers found in languages, such as Hindi, Tamil, and
Bangalese, are also contained in a zero width and height bounding box.

CharacterConfidences — Character recognition confidence
array

Character recognition confidence, specified as an array. The confidence values are in the
range [0, 1]. A confidence value, set by the ocr function, should be interpreted as a
probability. The ocr function sets confidence values for spaces between words and sets

 ocrText class

2-457

new line characters to NaN. Spaces and new line characters are not explicitly recognized
during OCR. You can use the confidence values to identify the location of misclassified
text within the image by eliminating characters with low confidence.

Words — Recognized words
cell array

Recognized words, specified as a cell array.

WordBoundingBoxes — Bounding box location and size
M-by-4 matrix

Bounding box location and size, stored as an M-by-4 matrix. Each row of the matrix
contains a four-element vector, [x y width height], that specifies the upper left corner and
size of a rectangular region in pixels.

WordConfidences — Recognition confidence
array

Recognition confidence, specified as an array. The confidence values are in the range [0,
1]. A confidence value, set by the ocr function, should be interpreted as a probability. The
ocr function sets confidence values for spaces between words and sets new line
characters to NaN. Spaces and new line characters are not explicitly recognized during
OCR. You can use the confidence values to identify the location of misclassified text within
the image by eliminating words with low confidence.

Methods
locateText Locate text pattern

Examples

Find and Highlight Text in an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);

2 Alphabetical List

2-458

Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

Find Text Using Regular Expressions

 businessCard = imread('businessCard.png');
 ocrResults = ocr(businessCard);
 bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
 img = insertShape(businessCard, 'FilledRectangle', bboxes);
 figure; imshow(img);

 ocrText class

2-459

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• The Words property cannot be accessed in code generation. Use the Text property in

place of the Words property to access the OCR results.

2 Alphabetical List

2-460

See Also
insertShape | ocr | regexp | strfind

Introduced in R2014a

 ocrText class

2-461

locateText
Class: ocrText

Locate text pattern

Syntax
bboxes = locateText(ocrText,pattern)
bboxes = locateText(ocrText,pattern,Name, Value)

Description
bboxes = locateText(ocrText,pattern) returns the location and size of bounding
boxes stored in the ocrText object. The locateText method returns only the locations
of bounding boxes which correspond to text within an image that exactly match the input
pattern.

bboxes = locateText(ocrText,pattern,Name, Value) uses additional options
specified by one or more Name,Value arguments.

Input Arguments
ocrText — Object containing OCR results
ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the
recognized text, the location of the recognized text within the input image, and the
metrics indicating the confidence of the results. The confidence values range between 0
and 100 and represent a percent probability. When you specify an M-by-4 roi, the
function returns ocrText as an M-by-1 array of ocrText objects. Confidence values
range between 0 and 1. Interpret the confidence values as probabilities.

pattern — OCR character vector pattern
single character vector | cell array of character vectors

2 Alphabetical List

2-462

OCR character vector pattern, specified as a single character vector or a cell array of
character vectors. The method returns onlythe locations of bounding boxes which
correspond to text within an image that exactly match the input pattern.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

UseRegexp — Regular expression
false (default) | logical scalar

Regular expression, specified as a logical scalar. When you set this property to true, the
method treats the pattern as a regular expression. For more information about regular
expressions, see regexp.

IgnoreCase — Case sensitivity
false (default) | logical scalar

Case sensitivity, specified as a logical scalar. When you set this property to true, the
method performs case-insensitive text location.

Output Arguments
bbox — Text bounding boxes
method | M-by-4 matrix

Text bounding boxes, specified as an M-by-4 matrix. Each row of the matrix contains a
four-element vector, [x y width height]. The [x y] elements correspond to the upper-left
corner of the bounding box. The [width height] elements correspond to the size of the
rectangular region in pixels. The bounding boxes enclose text found in an image using the
ocr function. The ocr function stores OCR results in the ocrText object.

Examples

 locateText

2-463

Find and Highlight Text in an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

Find Text Using Regular Expressions

 businessCard = imread('businessCard.png');
 ocrResults = ocr(businessCard);
 bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
 img = insertShape(businessCard, 'FilledRectangle', bboxes);
 figure; imshow(img);

2 Alphabetical List

2-464

 locateText

2-465

pointCloud
Object for storing 3-D point cloud

Description
The pointCloud object creates point cloud data from a set of points in 3-D coordinate
system. The point cloud data is stored as an object with the properties listed in
“Properties” on page 2-467. Use “Object Functions” on page 2-469 to retrieve, select, and
remove desired points from the point cloud data.

Creation

Syntax
ptCloud = pointCloud(xyzPoints)
ptCloud = pointCloud(xyzPoints,Name,Value)

Description
ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates
specified by xyzPoints.

ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object
with properties specified as one or more Name,Value pair arguments. For example,
pointCloud(xyzPoints,'Color',[0 0 0]) sets the Color property of the point
xyzPoints as [0 0 0]. Enclose each property name in quotes. Any unspecified properties
have default values.

Input Arguments
xyzPoints — 3-D coordinate points
M-by-3 array | M-by-N-by-3 array

2 Alphabetical List

2-466

3-D coordinate points, specified as a M-by-3 or M-by-N-by-3 array. The 3-D coordinate
points specify the x, y, and z positions of a point in the 3-D coordinate space. This
argument sets the Location property.
Data Types: single | double

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties”
on page 2-467.

Properties
Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3
array. Each entry specifies the x, y, and z coordinates of a point in the 3-D coordinate
space. You cannot set this property as a name-value pair. Use the xyzPoints input
argument.
Data Types: single

Color — Point cloud color
[] (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the
color of points in point cloud. Each entry specifies the RGB color of a point in the point
cloud data. Therefore, you can specify the same color for all points or a different color for
each point.

• The specified RGB values must lie within the range [0, 1], when you specify the data
type for Color as single or double.

• The specified RGB values must lie within the range [0, 255], when you specify the data
type for Color as uint8.

 pointCloud

2-467

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing

RGB values for each point
bgr

M

M-by-3

x1 y1 z1
.

.

.

xm ym zm

M-by-N-by-3 array M-by-N-by-3 array
containing RGB values for
each point

M

N

point(m,n)

M-by-N-by-3

g

r

b

Data Types: uint8

Normal — Surface normals
[] (default) | M-by-3 array | M-by-N-by-3 array

Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify
the normal vector with respect to each point in the point cloud. Each entry in the surface
normals specifies the x, y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal

vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each

point.

Data Types: single | double

Intensity — Grayscale intensities
[] (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The
function maps each intensity value to a color value in the current colormap.

2 Alphabetical List

2-468

Coordinates Intensity
M-by-3 array M-by-1 vector, where each row contains a corresponding intensity

value.
M-by-N-by-3 array M-by-N matrix containing intensity value for each point.

Data Types: single | double

Count — Number of points
positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors Find nearest neighbors of a point in point cloud
findNeighborsInRadius Find neighbors within a radius of a point in the point cloud
findPointsInROI Find points within a region of interest in the point cloud

 pointCloud

2-469

removeInvalidPoints Remove invalid points from point cloud
select Select points in point cloud

Examples

Create a Point Cloud Object and Modify its Properties

Read the 3-D coordinate points into the workspace.

load('xyzPoints');

Create a point cloud object from the input point coordinates.

ptCloud = pointCloud(xyzPoints);

Inspect the properties of the point cloud object.

ptCloud

ptCloud =
 pointCloud with properties:

 Location: [5184×3 single]
 Color: []
 Normal: []
 Intensity: []
 Count: 5184
 XLimits: [-3 3.4338]
 YLimits: [-2 2]
 ZLimits: [0.0016 3.1437]

Display the point cloud by using pcshow.

pcshow(ptCloud)

2 Alphabetical List

2-470

Modify Color of Point Cloud Data

Create an RGB color array of size same as the size of the point cloud data. Set the point
colors to Red.

cmatrix = ones(size(ptCloud.Location)).*[1 0 0];

Create the point cloud object with the color property set to the RGB color array.

ptCloud = pointCloud(xyzPoints,'Color',cmatrix);
pcshow(ptCloud)

 pointCloud

2-471

Add Surface Normals to Point Cloud Data

Compute surface normals corresponding to the point cloud data using pcnormals.

normals = pcnormals(ptCloud);

Create point cloud object from input point coordinates. Add the computed surface
normals to point cloud object.

ptCloud = pointCloud(xyzPoints,'Normal',normals);

Display the point cloud and plot the surface normals.

pcshow(ptCloud)
x = ptCloud.Location(:,1);

2 Alphabetical List

2-472

y = ptCloud.Location(:,2);
z = ptCloud.Location(:,3);
u = normals(:,1);
v = normals(:,2);
w = normals(:,3);
hold on
quiver3(x,y,z,u,v,w);
hold off

 pointCloud

2-473

Tips
The pointCloud object is a handle object. If you want to create a separate copy of a
point cloud, you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point
cloud functions, use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)

2 Alphabetical List

2-474

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcdenoise | pcmerge | pcnormals | pcplayer | pcread | pcshow | pcwrite

Topics
“3-D Point Cloud Registration and Stitching”
“Coordinate Systems”

Introduced in R2015a

 pointCloud

2-475

findNearestNeighbors
Find nearest neighbors of a point in point cloud

Syntax
[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix)
[indices,dists] = findNearestNeighbors(___ ,Name,Value)

Description
[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the K-
nearest neighbors of a query point in the input point cloud. The input point cloud can be
an unorganized or organized point cloud data. The K-nearest neighbors of the query point
are computed by using the Kd-tree based search algorithm.

[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix)
returns the K-nearest neighbors of a query point in the input point cloud. The input point
cloud is an organized point cloud data generated by a depth camera. The K-nearest
neighbors of the query point are determined using fast approximate K-nearest neighbor
search algorithm. The function uses the camera projection matrix camMatrix to know
the relationship between adjacent points and hence, speeds up the nearest neighbor
search. However, the results have lower accuracy as compared to the Kd-tree based
approach.

Note

• This function only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the

given point cloud data.

2 Alphabetical List

2-476

[indices,dists] = findNearestNeighbors(___ ,Name,Value) specifies options
using one or more name-value arguments in addition to the input arguments in the
preceding syntaxes.

Examples

Find K-Nearest Neighbors in a Point Cloud

Load a set of 3-D coordinate points into the workspace.

load('xyzPoints.mat');

Create a point cloud object.

ptCloud = pointCloud(xyzPoints);

Specify a query point and the number of nearest neighbors to be identified.

point = [0,0,0];
K = 220;

Get the indices and the distances of K nearest neighboring points.

[indices,dists] = findNearestNeighbors(ptCloud,point,K);

Display the point cloud. Plot the query point and their nearest neighbors.

figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*r')
plot3(ptCloud.Location(indices,1),ptCloud.Location(indices,2),ptCloud.Location(indices,3),'*')
legend('Point Cloud','Query Point','Nearest Neighbors','Location','southoutside','Color',[1 1 1])
hold off

 findNearestNeighbors

2-477

Find K-Nearest Neighbors in Organized Point Cloud

Find the K-nearest neighbors of a query point in the organized point cloud data by using
the camera projection matrix. Compute the camera projection matrix from sampled point
cloud data points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by
using the Kinect depth sensor.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

2 Alphabetical List

2-478

Specify the step size for sampling the point cloud data.

stepSize = 100;

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud
object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Define the 3-D world point coordinates of input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point
cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a query point and the number of nearest neighbors to be identified.

point = [0.4 0.3 0.2];
K = 20;

Find the indices and distances of K nearest neighboring points by using the camera
projection matrix. Use the point cloud method select to get the point cloud data of
nearest neighbors.

[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix);
ptCloudB = select(ptCloud,indices);

Display the point cloud and the nearest neighbors of the query point.

figure
pcshow(ptCloud)
hold on

 findNearestNeighbors

2-479

pcshow(ptCloudB.Location,'ob')
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[1 1 1])
hold off

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

2 Alphabetical List

2-480

Note The function supports organized point cloud data generated only from RGB-D
sensors.

point — Query point
three-element vector of form [x,y,z]

Query point, specified as a three-element vector of form [x,y,z].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.

camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D
image points. You can compute the camMatrix by using the estimateCameraMatrix
function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: findNearestNeighbors(ptCloud,point,k,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When
you set Sort to true, the returned indices are sorted in the ascending order based on
the distance from a query point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of
'MaxLeafChecks' and an integer. When you set this value to Inf, the entire tree is

 findNearestNeighbors

2-481

searched. When the entire tree is searched, it produces exact search results. Increasing
the number of leaf nodes to check increases accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based
search method.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices
of the nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean
distances between the query point and its nearest neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration". In VISAPP International Conference on Computer
Vision Theory and Applications. 2009. pp. 331–340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

2 Alphabetical List

2-482

• Generates code that uses a precompiled, platform-specific shared library.

See Also
cameraMatrix | estimateCameraMatrix | pointCloud

Introduced in R2015a

 findNearestNeighbors

2-483

findNeighborsInRadius
Find neighbors within a radius of a point in the point cloud

Syntax
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,
camMatrix)
[indices,dists] = findNeighborsInRadius(___ ,Name,Value)

Description
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns
the neighbors within a radius of a query point in the input point cloud. The input point
cloud can be an unorganized or organized point cloud data. The neighbors within a radius
of the query point are computed by using the Kd-tree based search algorithm.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,
camMatrix) returns the neighbors within a radius of a query point in the input point
cloud. The input point cloud is an organized point cloud data generated by a depth
camera. The neighbors within a radius of the query point are determined using fast
approximate neighbor search algorithm. The function uses the camera projection matrix
camMatrix to know the relationship between adjacent points and hence, speeds up the
search. However, the results have lower accuracy as compared to the Kd-tree based
approach.

Note

• This function only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the

given point cloud data.

2 Alphabetical List

2-484

[indices,dists] = findNeighborsInRadius(___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input arguments in the
preceding syntaxes.

Examples

Find Radial Neighbors in Point Cloud

Load a set of 3-D coordinate points into the workspace.

load('xyzPoints.mat');

Create a point cloud object.

ptCloud = pointCloud(xyzPoints);

Specify a query point and the radius within which the neighbors are to be identified.

point = [0,0,3];
radius = 0.5;

Get the indices and the distances of points that lie within the specified radius.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius);

Get the point cloud data of radial neighbors.

ptCloudB = select(ptCloud,indices);

Display the point cloud. Plot the query point and the corresponding radial neighbors.

figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*')
pcshow(ptCloudB.Location,'r')
legend('Point Cloud','Query Point','Radial Neighbors','Location','southoutside','Color',[1 1 1])
hold off

 findNeighborsInRadius

2-485

Find Radial Neighbors in Organized Point Cloud

Find radial neighbors of a query point in the organized point cloud data by using the
camera projection matrix. Compute the camera projection matrix from sampled point
cloud data points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by
using the Kinect depth sensor.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

2 Alphabetical List

2-486

Specify the step size for sampling the point cloud data.

stepSize = 100;

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud
object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Define the 3-D world point coordinates of input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point
cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a query point and the radius within which the neighbors are to be identified.

point = [0.4 0.3 0.2];
radius = 0.05;

Get the indices and the distances of radial neighbors. Use the point cloud method select
to get the point cloud data of neighboring points.

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,camMatrix);
ptCloudB = select(ptCloud,indices);

Display the point cloud and the radial neighbors found around a query point.

figure
pcshow(ptCloud);
hold on;
pcshow(ptCloudB.Location, 'b');

 findNeighborsInRadius

2-487

legend('Point Cloud','Radial Neighbors','Location','southoutside','Color',[1 1 1])
hold off;

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x,y,z]

2 Alphabetical List

2-488

Query point, specified as a three-element vector of form [x,y,z].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified
radius around a query point in the input point cloud.

camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D
image points. You can find camMatrix by using the estimateCameraMatrix function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: findNeighborsInRadius(ptCloud,point,radius,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When
you set Sort to true, the returned indices are sorted in the ascending order based on
the distance from a query point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of
'MaxLeafChecks' and an integer. When you set this value to Inf, the entire tree is
searched. When the entire tree is searched, it produces exact search results. Increasing
the number of leaf nodes to check increases accuracy, but reduces efficiency.

 findNeighborsInRadius

2-489

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear
indices of the radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean
distances between the query point and its radial neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration". In VISAPP International Conference on Computer
Vision Theory and Applications. 2009. pp. 331–340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
cameraMatrix | estimateCameraMatrix | pointCloud

2 Alphabetical List

2-490

Introduced in R2015a

 findNeighborsInRadius

2-491

findPointsInROI
Find points within a region of interest in the point cloud

Syntax
indices = findPointsInROI(ptCloud,roi)
indices = findpointsInROI(ptCloud,roi,camMatrix)

Description
indices = findPointsInROI(ptCloud,roi) returns the points within a region of
interest (ROI) in the input point cloud. The points within the specified ROI are obtained
using Kd-tree based search algorithm.

indices = findpointsInROI(ptCloud,roi,camMatrix) returns the points within a
ROI in the input point cloud. The input point cloud is an organized point cloud data
generated by a depth camera. The points within the specified ROI are obtained using fast
approximate neighbor search algorithm. The function uses the camera projection matrix
camMatrix to know the relationship between adjacent points and hence, speeds up the
search. However, the results have lower accuracy as compared to the Kd-tree based
approach.

Note

• This function only supports organized point cloud data produced by RGB-D sensors.
• You can use estimateCameraMatrix to estimate camera projection matrix for the

given point cloud data.

Examples

2 Alphabetical List

2-492

Find Points Within a Cuboid ROI in Point Cloud

Read a point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Define a cuboid ROI within the range of the x, y and z coordinates of the input point
cloud.

roi = [-2 2 -2 2 2.4 3.5];

Find the indices of the points that lie within the cuboid ROI.

indices = findPointsInROI(ptCloud,roi);

Select the points that lie within the cuboid ROI and store as a point cloud object.

ptCloudB = select(ptCloud,indices);

Display the input point cloud and the point cloud within the specified ROI.

figure
pcshow(ptCloud.Location,[0.5 0.5 0.5])
hold on
pcshow(ptCloudB.Location,'r');
legend('Point Cloud','Points within ROI','Location','southoutside','Color',[1 1 1])
hold off

 findPointsInROI

2-493

Find Points Within a Cuboid ROI in Organized Point Cloud

Find points within a cuboid ROI in the organized point cloud data by using the camera
projection matrix. Compute the camera projection matrix from sampled point cloud data
points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by
using the Kinect depth sensor.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

2 Alphabetical List

2-494

Specify the step size for sampling the point cloud data.

stepSize = 100;

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud
object.

indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);

Remove invalid points from the sampled point cloud.

[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);

Get the 3-D world point coordinates from input point cloud.

worldPoints = tempPtCloud.Location;

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point
cloud.

[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];

Estimate camera projection matrix from the image and the world point coordinates.

camMatrix = estimateCameraMatrix(imagePoints,worldPoints);

Specify a cuboid ROI within the range of the x, y and z coordinates of the input point
cloud.

roi = [0.3 0.7 0 0.4 0.1 0.3];

Find the indices of the point cloud data that lie within the cuboid ROI.

indices = findPointsInROI(ptCloud,roi);

Use the point cloud method select to get the point cloud data of points within the ROI.

ptCloudB = select(ptCloud,indices);

Display the input point cloud and the points within the cuboid ROI.

figure
pcshow(ptCloud)
hold on

 findPointsInROI

2-495

pcshow(ptCloudB.Location,'r');
legend('Point Cloud','Points within the ROI','Location','southoutside','Color',[1 1 1])
hold off

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

2 Alphabetical List

2-496

roi — Region of interest
six-element vector

Region of interest, specified as a six-element vector of form [xmin, xmax, ymin, ymax,
zmin, zmax], where:

• xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D
image points. You can find camMatrix by using the estimateCameraMatrix function.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear
indices of the ROI points stored in the point cloud.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration". In VISAPP International Conference on Computer
Vision Theory and Applications. 2009. pp. 331–340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 findPointsInROI

2-497

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
cameraMatrix | estimateCameraMatrix | pointCloud

Introduced in R2015a

2 Alphabetical List

2-498

removeInvalidPoints
Remove invalid points from point cloud

Syntax
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description
[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with
Inf or NaN coordinate values from point cloud and returns the indices of valid points.

Examples

Remove Invalid Points from Point Cloud

Create a point cloud object with NaN and Inf values.

xyzpoints = abs(randn(10,3)).*100;
xyzpoints(1:2:4,:) = nan('single');
xyzpoints(6:2:10,:) = inf('single');
ptCloud = pointCloud(xyzpoints);

Inspect the Location property of point cloud data to verify the occurrence of NaN and
Inf values.

ptCloud.Location

ans = 10×3

 NaN NaN NaN
 183.3885 303.4923 120.7487
 NaN NaN NaN
 86.2173 6.3055 163.0235
 31.8765 71.4743 48.8894

 removeInvalidPoints

2-499

 Inf Inf Inf
 43.3592 12.4144 72.6885
 Inf Inf Inf
 357.8397 140.9034 29.3871
 Inf Inf Inf

Remove points with NaN and Inf values from the point cloud.

ptCloudOut = removeInvalidPoints(ptCloud);

Inspect the Location property of point cloud data to verify that the invalid points are
removed.

ptCloudOut.Location

ans = 5×3

 183.3885 303.4923 120.7487
 86.2173 6.3055 163.0235
 31.8765 71.4743 48.8894
 43.3592 12.4144 72.6885
 357.8397 140.9034 29.3871

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

2 Alphabetical List

2-500

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is
an organized point cloud (M-by-N-by-3), the function returns the output as an
unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcread | pointCloud

Introduced in R2015a

 removeInvalidPoints

2-501

select
Select points in point cloud

Syntax
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select(___ ,'OutputSize',outputSize)

Description
ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing
only the points that are selected using linear indices.

ptCloudOut = select(ptCloud,row,column) returns a pointCloud object
containing only the points that are selected using row and column subscripts. This syntax
applies only if the input is an organized point cloud data of size M-by-N-by-3.

ptCloudOut = select(___ ,'OutputSize',outputSize) returns the selected
points as a pointCloud object of size specified by outputSize.

Examples

Select Points from Point Cloud

Read a point cloud data into the workspace.

ptCloud = pcread('teapot.ply');

Read the number of points in the point cloud data.

Length = ptCloud.Count;

Select indices within the range [1, Length].

2 Alphabetical List

2-502

stepSize = 10;
indices = 1:stepSize:Length;

Select points specified by the indices from input point cloud. This selection of points
downsamples the input point cloud by a factor of stepSize.

ptCloudB = select(ptCloud,indices);

Display the input and the selected point cloud data.

figure
subplot(1,2,1)
pcshow(ptCloud)
title('Input Point Cloud','Color',[1 1 1]);
subplot(1,2,2)
pcshow(ptCloudB)
title('Selected Points','Color',[1 1 1]);

 select

2-503

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

2 Alphabetical List

2-504

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized
point cloud data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an
organized point cloud data of size M-by-N-by-3.

outputSize — Size of output point cloud
'selected' (default) | 'full'

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.

• If the size is 'selected', then the output contains only the selected points from the
input point cloud, ptCloud.

• If the size is 'full', then the output is same size as the input point cloud ptCloud.
Cleared points are filled with NaN and the color is set to [0 0 0].

Output Arguments
ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 select

2-505

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcread | pointCloud

Introduced in R2015a

2 Alphabetical List

2-506

cylinderModel class

Object for storing a parametric cylinder model

Syntax
model = cylinderModel(params)

Description
Object for storing a parametric cylinder model.

Construction
model = cylinderModel(params) constructs a parametric cylinder model from the 1-
by-7 params input vector that describes a cylinder.

Input Arguments
params — cylinder parameters
1-by-7 scalar vector

Cylinder parameters, specified as a 1-by-7 scalar vector containing seven parameters
[x1,y1,z1,x2,y2,z2,r] that desribe a cylinder.

• [x1,y1,z1] and [x2,y2,z2] are the centers of each end-cap surface of the cylinder.
• r is the radius of the cylinder.

Properties
These properties are read-only.

 cylinderModel class

2-507

Parameters — Cylinder model parameters
1-by-7 scalar vector

Cylinder model parameters, stored as a 1-by-7 scalar vector that describes a cylinder
[x1,y1,z1,x2,y2,z2,r] that describe a cylinder.

• [x1,y1,z1] and [x2,y2,z2] are the centers of each end-cap surface of the cylinder.
• r is the radius of the cylinder.

Center — Center of cylinder
1-by-3 vector

Center of cylinder, stored as a 1-by-3 vector.

Height — Height of cylinder
scalar

Height of cylinder, stored as a scalar.

Radius — Radius of cylinder
scalar

Radius of cylinder, stored as a scalar.

Methods
plot Plot cylinder in a figure window

Examples

Detect Cylinder in Point Cloud

Load the point cloud.

load('object3d.mat');

Display point cloud.

2 Alphabetical List

2-508

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting.

maxDistance = 0.005;

Set the region of interest to constrain the search.

roi = [0.4,0.6;-inf,0.2;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

 cylinderModel class

2-509

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder in the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector,...
 'SampleIndices',sampleIndices);

Plot the cylinder.

hold on
plot(model)

2 Alphabetical List

2-510

See Also
affine3d | pcdenoise | pcdownsample | pcfitcylinder | pcfitplane |
pcfitsphere | pcmerge | pcplayer | pcread | pcregistericp | pcshow |
pctransform | pcwrite | planeModel | pointCloud | sphereModel

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

 cylinderModel class

2-511

plot
Class: cylinderModel

Plot cylinder in a figure window

Syntax
plot(model)
plot(model,'Parent',ax)

Description
H = plot(model) plots a cylinder within the axis limits of the current figure. H is the
handle to surf, a 3-D shaded surface plot.

H = plot(model,'Parent',ax) additionally specifies an output axes.

Input Arguments
model — Parametric cylinder model
cylinder model

Parametric cylinder model returned by cylinderModel.

'ax' — Output axes
gca (default) | axes

Output axes, specified as the current axes for displaying the cylinder.

Examples

2 Alphabetical List

2-512

Detect Cylinder in Point Cloud

Load the point cloud.

load('object3d.mat');

Display point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')

 plot

2-513

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting.

maxDistance = 0.005;

Set the region of interest to constrain the search.

roi = [0.4,0.6;-inf,0.2;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder in the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector,...
 'SampleIndices',sampleIndices);

Plot the cylinder.

hold on
plot(model)

2 Alphabetical List

2-514

See Also
cylinderModel | pcfitcylinder

Introduced in R2015b

 plot

2-515

planeModel
Object for storing a parametric plane model

Description
Construct and store a parametric plane model based on parameters that describe a plane.

Creation

Syntax
model = planeModel(Parameters)

Description
model = planeModel(Parameters) constructs a parametric plane model from the 1-
by-4 params input vector that describes a plane.

Input Arguments
Parameters — Plane parameters
1-by-4 scalar vector

Plane parameters, specified as a 1-by-4 vector. This input specifies the Parameters
property. The four parameters [a,b,c,d] describe the equation for a plane:

ax + by + cz + d = 0

Properties
These properties are read-only.

2 Alphabetical List

2-516

Parameters — Plane model parameters
1-by-4 vector

Plane model parameters, stored as a 1-by-4 vector. These parameters are specified by the
params input argument.

Normal — Normal vector of the plane
1-by-3 vector

Normal vector of the plane, stored as a 1-by-3 vector. The [a,b,c] vector specifies the
unnormalized normal vector of the plane.

Object Functions
planeModel.plot Plot plane in a figure window

Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.

load('object3d.mat')

Display and label the point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')

 planeModel

2-517

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of the plane.

referenceVector = [0,0,1];

Set the maximum angular distance to 5 degrees.

maxAngularDistance = 5;

Detect the first plane, the table, and extract it from the point cloud.

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
 maxDistance,referenceVector,maxAngularDistance);

2 Alphabetical List

2-518

plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);

Set the region of interest to constrain the search for the second plane, left wall.

roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);

Detect the left wall and extract it from the remaining point cloud.

[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
 maxDistance,'SampleIndices',sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);

Plot the two planes and the remaining points.

figure
pcshow(plane1)
title('First Plane')

 planeModel

2-519

figure
pcshow(plane2)
title('Second Plane')

2 Alphabetical List

2-520

figure
pcshow(remainPtCloud)
title('Remaining Point Cloud')

 planeModel

2-521

See Also
affine3d | cylinderModel | pcdenoise | pcdownsample | pcfitcylinder |
pcfitplane | pcfitsphere | pcmerge | pcplayer | pcread | pcregistericp |
pcshow | pctransform | pcwrite | pointCloud | sphereModel

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

2 Alphabetical List

2-522

planeModel.plot
Plot plane in a figure window

Syntax
plot(model)
plot(model,Name,Value)

Description
H = plot(model) plots a plane within the axis limits of the current figure. H is the
handle to the patch.

H = plot(model,Name,Value) includes additional options specified by one or more
Name,Value pair arguments.

Examples

Detect Plane in Point Cloud

Load point cloud.

load('object3d.mat');

Display the point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a plane in a point cloud')

 planeModel.plot

2-523

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of a plane.

referenceVector = [0, 0, 1];

Set the maximum angular distance (5 degrees).

maxAngularDistance = 5;

Detect the table in the point cloud and extract it.

model = pcfitplane(ptCloud,maxDistance,referenceVector,maxAngularDistance);

2 Alphabetical List

2-524

Plot the plane.

hold on
plot(model)

Input Arguments
model — Parametric plane model
plane model

Parametric plane model returned by planeModel.

 planeModel.plot

2-525

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color', 'r'.

Parent — Output axes
gca (default) | axes

Output axes, specified as the comma-separated pair of 'Parent' and the current axes for
displaying the visualization.

Color — Color of the plane
'red' (default) | 1-by-3 RGB vector | short name of color | long name of color

Color of the plane, specified as the comma-separated pair of 'Color' and one of:

• 1-by-3 RGB vector with values in the range of [0 1]
• short name of a MATLAB ColorSpec color, such as 'b'
• long name of a MATLAB ColorSpec color, such as 'blue'

Introduced in R2015b

2 Alphabetical List

2-526

sphereModel class
Object for storing a parametric sphere model

Syntax
model = sphereModel(params)

Description
Object for storing a parametric sphere model

Construction
model = sphereModel(params) constructs a parametric sphere model from the 1-by-4
params input vector that describes a sphere.

Input Arguments
params — Sphere parameters
1-by-4 scalar vector

Sphere parameters, specified as a 1-by-4 scalar vector. This input specifies the
Parameters property. The four parameters [a,b,c,d] satisfy the equation for a sphere:

(x− a)2 + (y − b)2 + (z − c)2 = d2

Properties
These properties are read-only.

Parameters — Sphere model parameters
1-by-4 vector

 sphereModel class

2-527

Sphere model parameters, stored as a 1-by-4 vector. These parameters are specified by
the params input argument. The four parameters [a,b,c,d] satisfy the equation for a
sphere:

(x− a)2 + (y − b)2 + (z − c)2 = d2

Center — Center of the sphere
1-by-3 vector

Center of the sphere, stored as a 1-by-3 vector [xc,yc,zc] that specifies the center
coordinates of the sphere.

Radius — Radius of sphere
scalar

Radius of sphere, stored as a scalar value.

Methods
plot Plot sphere in a figure window

Examples

Detect Sphere in Point Cloud

Load point cloud.

load('object3d.mat');

Display point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a sphere in a point cloud')

2 Alphabetical List

2-528

Set the maximum point-to-sphere distance (1cm), for sphere fitting.

maxDistance = 0.01;

Set the region of interest to constrain the search.

roi = [-inf, 0.5; 0.2, 0.4; 0.1, inf];
sampleIndices = findPointsInROI(ptCloud, roi);

Detect the globe in the point cloud and extract it.

model = pcfitsphere(ptCloud, maxDistance, 'SampleIndices', sampleIndices);

Plot the sphere.

 sphereModel class

2-529

hold on
plot(model)

See Also
affine3d | cylinderModel | pcdenoise | pcdownsample | pcfitcylinder |
pcfitplane | pcfitsphere | pcmerge | pcplayer | pcread | pcregistericp |
pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

2 Alphabetical List

2-530

Introduced in R2015b

 sphereModel class

2-531

plot
Class: sphereModel

Plot sphere in a figure window

Syntax
plot(model)
plot(model,'Parent',ax)

Description
H = plot(model) plots a sphere in the current figure. H is the handle to surf, a 3-D
shaded surface plot.

H = plot(model,'Parent',ax) additionally allows you to specify an output axes.

Input Arguments
model — Parametric sphere model
sphere model

Parametric sphere model returned by sphereModel.

'Parent' — Output axes
gca (default) | axes

Output axes, specified as the comma-separated pair of 'Parent' and the current axes for
displaying the visualization.

Examples

2 Alphabetical List

2-532

Detect Sphere in Point Cloud

Load point cloud.

load('object3d.mat');

Display point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a sphere in a point cloud')

 plot

2-533

Set the maximum point-to-sphere distance (1cm), for sphere fitting.

maxDistance = 0.01;

Set the region of interest to constrain the search.

roi = [-inf, 0.5; 0.2, 0.4; 0.1, inf];
sampleIndices = findPointsInROI(ptCloud, roi);

Detect the globe in the point cloud and extract it.

model = pcfitsphere(ptCloud, maxDistance, 'SampleIndices', sampleIndices);

Plot the sphere.

hold on
plot(model)

2 Alphabetical List

2-534

See Also
pcfitsphere | sphereModel

Introduced in R2015b

 plot

2-535

opticalFlow
Object for storing optical flow matrices

Description
The opticalFlow object stores the direction and speed of a moving object from one
image or video frame to another. Use the object function plot to plot the optical flow
vectors.

Creation

Syntax
flow = opticalFlow
flow = opticalFlow(Vx,Vy)

Description
flow = opticalFlow creates an optical flow object with default property values.

flow = opticalFlow(Vx,Vy) creates an optical flow object from two equal-sized
matrices Vx and Vy. The matrices Vx and Vy are the x and y components of velocity
respectively. The input velocity components set the “Properties” on page 2-537 of optical
flow object.

Input Arguments
Vx — x component of velocity
M-by-N matrix

x component of velocity, specified as an M-by-N matrix.
Data Types: single | double

2 Alphabetical List

2-536

Vy — y component of velocity
M-by-N matrix

y component of velocity, specified as an M-by-N matrix.
Data Types: single | double

Note Vx and Vy must be of the same size and data type.

Properties
Vx — x component of velocity
0-by-1 empty matrix (default) | M-by-N matrix

x component of velocity, specified as an M-by-N matrix. If the input Vx is not specified, the
default value of this property is set to 0-by-1 empty matrix.
Data Types: single | double

Vy — y component of velocity
0-by-1 empty matrix (default) | M-by-N matrix

y component of velocity, specified as an M-by-N matrix. If the input Vy is not specified, the
default value of this property is set to 0-by-1 empty matrix.
Data Types: single | double

Orientation — Phase angles of optical flow
0-by-1 empty matrix (default) | M-by-N matrix

This property is read-only.

Phase angles of optical flow in radians, specified as an M-by-N matrix of the same size
and data type as the components of velocity. The phase angles of optical flow is calculated
from the x and y components of velocity. If the inputs Vx and Vy are not specified, the
default value of this property is set to 0-by-1 empty matrix.
Data Types: single | double

Magnitude — Magnitude of optical flow
0-by-1 empty matrix (default) | M-by-N matrix

 opticalFlow

2-537

This property is read-only.

Magnitude of optical flow, specified as an M-by-N matrix of the same size and data type as
the components of velocity. The magnitude of optical flow is calculated from the x and y
components of velocity. If the inputs Vx and Vy are not specified, the default value of this
property is set to 0-by-1 empty matrix.
Data Types: single | double

Object Functions
plot Plot optical flow vectors

Examples

Create Optical Flow Object

Create an optical flow object and view its properties.

flow = opticalFlow

flow =

 opticalFlow with properties:

 Vx: [0×1 double]
 Vy: [0×1 double]
 Orientation: [0×1 double]
 Magnitude: [0×1 double]

The default values of the properties are returned as an empty matrix of size 0-by-1 and
data type double.

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

2 Alphabetical List

2-538

Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);

Inspect the properties of the optical flow object. The orientation and the magnitude are
computed from the velocity matrices.

opflow

opflow =
 opticalFlow with properties:

 Vx: [100x100 double]
 Vy: [100x100 double]
 Orientation: [100x100 double]
 Magnitude: [100x100 double]

Plot the velocity of the object as a quiver plot.

plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);

 opticalFlow

2-539

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Alphabetical List

2-540

See Also
opticalFlowFarneback | opticalFlowHS | opticalFlowLK | opticalFlowLKDoG |
quiver

Introduced in R2015a

 opticalFlow

2-541

plot
Plot optical flow vectors

Syntax
plot(flow)
plot(flow,Name,Value)

Description
plot(flow) plots the optical flow vectors.

plot(flow,Name,Value) specifies options using one or more name-value arguments in
addition to the input argument in the previous syntax.

Examples

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);

Inspect the properties of the optical flow object. The orientation and the magnitude are
computed from the velocity matrices.

opflow

opflow =
 opticalFlow with properties:

 Vx: [100x100 double]
 Vy: [100x100 double]

2 Alphabetical List

2-542

 Orientation: [100x100 double]
 Magnitude: [100x100 double]

Plot the velocity of the object as a quiver plot.

plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);

Input Arguments
flow — Object containing optical flow matrices
opticalFlow object

 plot

2-543

Object containing optical flow velocity matrices, specified as an opticalFlow object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plot(flow,'DecimationFactor',[1 1])

DecimationFactor — Decimation factor of velocity vectors
[1 1] (default) | two-element vector

Decimation factor of velocity vectors, specified as the comma-separated pair consisting of
'DecimationFactor' and a two-element vector. The two-element vector is of form
[XDecimFactor YDecimFactor] and specifies the decimation factor for velocity vectors
along the x and y directions respectively. XDecimFactor and YDecimFactor are positive
scalar integers. Increase the value of this property to get a less cluttered quiver plot.

ScaleFactor — Scaling factor for velocity vector display
1 (default) | positive integer-valued scalar

Scaling factor for velocity vector display, specified as the comma-separated pair
consisting of 'ScaleFactor' and a positive integer-valued scalar. Increase this value to
display longer vectors.

Parent — Figure axes
gca handle

Figure axes, specified as the comma-separated pair consisting of 'Parent' and axes
object. The default is set to the current axes handle, gca.

See Also
opticalFlow | quiver

Introduced in R2015a

2 Alphabetical List

2-544

opticalFlowHS
Object for estimating optical flow using Horn-Schunck method

Description
Create an optical flow object for estimating the direction and speed of a moving object
using the Horn-Schunck method. Use the object function estimateFlow to estimate the
optical flow vectors. Using the reset object function, you can reset the internal state of
the optical flow object.

Creation

Syntax
opticFlow = opticalFlowHS
opticFlow = opticalFlowHS(Name,Value)

Description
opticFlow = opticalFlowHS returns an optical flow object that you can use to
estimate the direction and speed of the moving objects in a video. The optical flow is
estimated using the Horn-Schunck method.

opticFlow = opticalFlowHS(Name,Value) returns an optical flow object with
properties specified as one or more Name,Value pair arguments. Any unspecified
properties have default values. Enclose each property name in quotes.

For example, opticalFlowHS('Smoothness',1.5)

Properties
Smoothness — Expected smoothness
1 (default) | positive scalar

 opticalFlowHS

2-545

Expected smoothness of optical flow, specified as a positive scalar. Increase this value
when there is increased motion between consecutive frames. A typical value for
'Smoothness' is around 1.

MaxIteration — Maximum number of iterations
10 (default) | positive integer-valued scalar

Maximum number of iterations, specified as a positive integer-valued scalar. Increase this
value to estimate the optical flow of objects with low velocity.

The iterative computation stops when the number of iterations equals the value of
'MaxIteration' or when the algorithm reaches the value set for
'VelocityDifference'. To stop computation only by using 'MaxIteration', set the
value of 'VelocityDifference' to 0.

VelocityDifference — Minimum absolute velocity difference
0 (default) | positive scalar

Minimum absolute velocity difference, specified as a positive scalar. This value depends
on the input data type. Decrease this value to estimate the optical flow of objects that
have low velocity.

The iterative computation stops when the algorithm reaches the value set for
'VelocityDifference' or the number of iterations equals 'MaxIteration'. To use
only 'VelocityDifference' to stop computation, set 'MaxIteration' to Inf.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the
timestamp of the frame to read as 11.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

2 Alphabetical List

2-546

Specify the optical flow estimation method as opticalFlowHS. The output is an object
specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowHS

opticFlow =
 opticalFlowHS with properties:

 Smoothness: 1
 MaxIteration: 10
 VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read image frames from the VideoReader object and convert to grayscale images.
Estimate the optical flow from consecutive image frames. Display the current image
frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
 frameRGB = readFrame(vidReader);
 frameGray = rgb2gray(frameRGB);
 flow = estimateFlow(opticFlow,frameGray);
 imshow(frameRGB)
 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
 hold off
 pause(10^-3)
end

 opticalFlowHS

2-547

Algorithms
To compute the optical flow between two images, you must solve the following optical
flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

2 Alphabetical List

2-548

Horn-Schunck Method
By assuming that the optical flow is smooth over the entire image, the Horn-Schunck
method computes an estimate of the velocity field, [u v]T, that minimizes this equation:

E =∬(Ixu + Iyv + It)2dxdy + α∬ ∂u
∂x

2
+ ∂u
∂y

2
+ ∂v
∂x

2
+ ∂v
∂y

2
dxdy

.

In this equation, ∂u∂x and ∂u∂y are the spatial derivatives of the optical velocity component,
u, and α scales the global smoothness term. The Horn-Schunck method minimizes the
previous equation to obtain the velocity field, [u v], for each pixel in the image. This
method is given by the following equations:

ux, y
k + 1 = ux, y

k −
Ix[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

vx, y
k + 1 = vx, y

k −
Iy[Ixuk

x, y + Iyvk
x, y + It]

α2 + Ix2 + Iy
2

.

In these equations, ux, y
k vx, y

k is the velocity estimate for the pixel at (x,y), and ux, y
k vx, y

k

is the neighborhood average of ux, y
k vx, y

k . For k = 0, the initial velocity is 0.

To solve u and v using the Horn-Schunck method:

1 Compute Ix and Iy using the Sobel convolution kernel, −1 −2 −1; 0 0 0; 1 2 1 , and
its transposed form, for each pixel in the first image.

2 Compute It between images 1 and 2 using the −1 1 kernel.
3 Assume the previous velocity to be 0, and compute the average velocity for each pixel

using 0 1 0; 1 0 1; 0 1 0 as a convolution kernel.
4 Iteratively solve for u and v.

 opticalFlowHS

2-549

References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical

flow techniques.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
opticalFlow | opticalFlowFarneback | opticalFlowLK | opticalFlowLKDoG |
quiver

Introduced in R2015a

2 Alphabetical List

2-550

opticalFlowLK
Object for estimating optical flow using Lucas-Kanade method

Description
Create an optical flow object for estimating the direction and speed of a moving object
using the Lucas-Kanade method. Use the object function estimateFlow to estimate the
optical flow vectors. Using the reset object function, you can reset the internal state of
the optical flow object.

Creation

Syntax
opticFlow = opticalFlowLK
opticFlow = opticalFlowLK('NoiseThreshold',threshold)

Description
opticFlow = opticalFlowLK returns an optical flow object that you can use to
estimate the direction and speed of the moving objects in a video. The optical flow is
estimated using the Lucas-Kanade method.

opticFlow = opticalFlowLK('NoiseThreshold',threshold) returns an optical
flow object with the property 'NoiseThreshold' specified as a Name,Value pair.
Enclose the property name in quotes.

For example, opticalFlowLK('NoiseThreshold',0.05)

Properties
threshold — Threshold for noise reduction
0.0039 (default) | positive scalar

 opticalFlowLK

2-551

Threshold for noise reduction, specified as a positive scalar. As you increase this number,
the movement of the objects has less impact on optical flow calculation.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Compute Optical Flow Using Lucas-Kanade Algorithm

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Lucas-Kanade method.
Specify the threshold for noise reduction. The output is an optical flow object specifying
the optical flow estimation method and its properties.

opticFlow = opticalFlowLK('NoiseThreshold',0.009);

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from
consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
 frameRGB = readFrame(vidReader);
 frameGray = rgb2gray(frameRGB);
 flow = estimateFlow(opticFlow,frameGray);
 imshow(frameRGB)
 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',10,'Parent',hPlot);

2 Alphabetical List

2-552

 hold off
 pause(10^-3)
end

 opticalFlowLK

2-553

Algorithms
To compute the optical flow between two images, you must solve the following optical
flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

2 Alphabetical List

2-554

Lucas-Kanade Method
To solve the optical flow constraint equation for u and v, the Lucas-Kanade method
divides the original image into smaller sections and assumes a constant velocity in each
section. Then, it performs a weighted least-square fit of the optical flow constraint
equation to a constant model for u v T in each section Ω. The method achieves this fit by
minimizing the following equation:

∑
x ∈ Ω

W2[Ixu + Iyv + It]2

W is a window function that emphasizes the constraints at the center of each section. The
solution to the minimization problem is

∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

u
v

= −
∑W2IxIt

∑W2IyIt

.

The Lucas-Kanade method computes It using a difference filter, [-1 1].

u and v are solved as follows:

1 Compute Ix and Iy using the kernel −1 8 0 −8 1 /12 and its transposed form.
2 Compute It between images 1 and 2 using the −1 1 kernel.
3 Smooth the gradient components, Ix, Iy, and It, using a separable and isotropic 5-by-5

element kernel whose effective 1-D coefficients are 1 4 6 4 1 /16.
4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• The eigenvalues are compared to the threshold, τ, that corresponds to the value
you enter for the threshold for noise reduction. The results fall into one of the
following cases:

 opticalFlowLK

2-555

Case 1: λ1 ≥ τ and λ2 ≥ τ

A is nonsingular, the system of equations are solved using Cramer's rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), the gradient flow is normalized to calculate u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical

flow techniques.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
opticalFlow | opticalFlowFarneback | opticalFlowHS | opticalFlowLK |
opticalFlowLKDoG | quiver

Introduced in R2015a

2 Alphabetical List

2-556

opticalFlowLKDoG
Object for estimating optical flow using Lucas-Kanade derivative of Gaussian method

Description
Create an optical flow object for estimating the direction and speed of moving objects
using the Lucas-Kanade derivative of Gaussian (DoG) method. Use the object function
estimateFlow to estimate the optical flow vectors. Using the reset object function, you
can reset the internal state of the optical flow object.

Creation

Syntax
opticFlow = opticalFlowLKDoG
opticFlow = opticalFlowLKDoG(Name,Value)

Description
opticFlow = opticalFlowLKDoG returns an optical flow object that you can use to
estimate the direction and speed of the moving objects in a video. The optical flow is
estimated using the Lucas-Kanade derivative of Gaussian (DoG) method.

opticFlow = opticalFlowLKDoG(Name,Value) returns an optical flow object with
properties specified as one or more Name,Value pair arguments. Any unspecified
properties have default values. Enclose each property name in quotes.

For example, opticalFlowLKDoG('NumFrames',3)

Properties
NumFrames — Number of buffered frames
3 (default) | positive integer-valued scalar

 opticalFlowLKDoG

2-557

Number of buffered frames for temporal smoothing, specified as a positive integer-valued
scalar. As you increase this number, the optical flow estimation method becomes less
robust to abrupt changes in the trajectory of the moving objects. The amount of delay in
flow estimation depends on the value of NumFrames. The output flow corresponds to the
image at tflow = tcurrent − 0.5(NumFrames-1), where tcurrent is the time of the current image.

ImageFilterSigma — Standard deviation for image smoothing filter
1.5 | positive scalar

Standard deviation for image smoothing filter, specified as a positive scalar.

GradientFilterSigma — Standard deviation for gradient smoothing filter
1 | positive scalar

Standard deviation for gradient smoothing filter, specified as a positive scalar.

NoiseThreshold — Threshold for noise reduction
0.0039 (default) | positive scalar

Threshold for noise reduction, specified as a positive scalar. As you increase this number,
the movement of the objects has less impact on optical flow calculation.

Object Functions
estimateFlow Estimate optical flow
reset Reset the internal state of the optical flow estimation object

Examples

Compute Optical Flow Using Lucas-Kanade DoG Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Lucas-Kanade DoG
method. Specify the threshold for noise reduction. The output is an optical flow object
specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowLKDoG('NoiseThreshold',0.0005)

2 Alphabetical List

2-558

opticFlow =
 opticalFlowLKDoG with properties:

 NumFrames: 3
 ImageFilterSigma: 1.5000
 GradientFilterSigma: 1
 NoiseThreshold: 5.0000e-04

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from
consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
 frameRGB = readFrame(vidReader);
 frameGray = rgb2gray(frameRGB);
 flow = estimateFlow(opticFlow,frameGray);
 imshow(frameRGB)
 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',35,'Parent',hPlot);
 hold off
 pause(10^-3)
end

 opticalFlowLKDoG

2-559

2 Alphabetical List

2-560

Algorithms
To compute the optical flow between two images, you must solve the following optical
flow constraint equation:

Ixu + Iyv + It = 0

.

• Ix, Iy, and It are the spatiotemporal image brightness derivatives.
• u is the horizontal optical flow.
• v is the vertical optical flow.

 opticalFlowLKDoG

2-561

Lucas-Kanade Derivative of Gaussian Method
The Lucas-Kanade method computes It using a derivative of Gaussian filter.

To solve the optical flow constraint equation for u and v:

1 Compute Ix and Iy using the following steps:

a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter
characteristics such as the standard deviation and number of filter coefficients
using the NumFrames property.

b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image
using spatial filtering. Specify the standard deviation and length of the image
smoothing filter using the ImageFilterSigma property.

2 Compute It between images 1 and 2 using the following steps:

a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the
temporal filter characteristics such as the standard deviation and number of
filter coefficients using the NumFrames property.

b Use the filter described in step 1b to perform spatial filtering on the output of the
temporal filter.

3 Smooth the gradient components, Ix, Iy, and It, using a gradient smoothing filter. Use
the GradientFilterSigma property to specify the standard deviation and the
number of filter coefficients for the gradient smoothing filter.

4 Solve the 2-by-2 linear equations for each pixel using the following method:

•
If A =

a b
b c

=
∑W2Ix2 ∑W2IxIy

∑W2IyIx ∑W2Iy
2

Then the eigenvalues of A are λi = a + c
2 ± 4b2 + (a− c)2

2 ; i = 1, 2

• When the algorithm finds the eigenvalues, it compares them to the threshold, τ,
that corresponds to the value you enter for the NoiseThreshold property. The
results fall into one of the following cases:

Case 1: λ1 ≥ τ and λ2 ≥ τ

2 Alphabetical List

2-562

A is nonsingular, so the algorithm solves the system of equations using Cramer's
rule.

Case 2: λ1 ≥ τ and λ2 < τ

A is singular (noninvertible), so the algorithm normalizes the gradient flow to
calculate u and v.

Case 3: λ1 < τ and λ2 < τ

The optical flow, u and v, is 0.

References
[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “ Performance of optical

flow techniques.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
opticalFlow | opticalFlowFarneback | opticalFlowHS | opticalFlowLK |
quiver

Introduced in R2015a

 opticalFlowLKDoG

2-563

opticalFlowFarneback
Object for estimating optical flow using Farneback method

Description
Create an optical flow object for estimating the direction and speed of moving objects
using the Farneback method. Use the object function estimateFlow to estimate the
optical flow vectors. Using the reset object function, you can reset the internal state of
the optical flow object.

Creation

Syntax
opticFlow = opticalFlowFarneback
opticFlow = opticalFlowFarneback(Name,Value)

Description
opticFlow = opticalFlowFarneback returns an optical flow object that you can use
to estimate the direction and speed of the moving objects in a video. The optical flow is
estimated using the Farneback method.

opticFlow = opticalFlowFarneback(Name,Value) returns an optical flow object
with properties specified as one or more Name,Value pair arguments. Any unspecified
properties have default values. Enclose each property name in quotes.

For example, opticalFlowFarneback('NumPyramidLevels',3)

Properties
NumPyramidLevels — Number of pyramid layers
3 (default) | positive scalar

2 Alphabetical List

2-564

Number of pyramid layers, specified as a positive scalar. The value includes the initial
image as one of the layers. When you set this value to 1, the function estimates optical
flow only from the original image frame and does not perform pyramid decomposition.
The recommended values are between 1 and 4.

PyramidScale — Image scale
0.5 (default) | positive scalar in the range (0,1)

Image scale, specified as a positive scalar in the range (0,1). The value specifies the rate
of downsampling at each pyramid level. A value of 0.5 creates a classical pyramid, where
the resolution of the pyramid reduces by a factor of two at each level. The lowest level in
the pyramid has the highest resolution.

NumIterations — Number of search iterations per pyramid level
3 (default) | positive integer

Number of search iterations per pyramid level, specified as a positive integer. The
Farneback algorithm performs an iterative search for the key points at each pyramid
level, until convergence.

NeighborhoodSize — Size of the pixel neighborhood
5 (default) | positive integer

Size of the pixel neighborhood, specified as a positive integer. Increase the neighborhood
size to increase blurred motion. The blur motion yields a more robust estimation of optical
flow. A typical value for NeighborhoodSize is 5 or 7.

FilterSize — Averaging filter size
15 (default) | positive integer in the range [2, Inf)

Averaging filter size, specified as a positive integer in the range [2, Inf). After the
algorithm computes the displacement (flow), the averaging over neighborhoods is done
using a Gaussian filter of size (FilterSize * FilterSize). Also, the pixels close to the
borders are given a reduced weight because the algorithm assumes that the polynomial
expansion coefficients are less reliable there. Increasing the filter size increases the
robustness of the algorithm to image noise. The larger the filter size, the greater the
algorithm handles image noise and fast motion detection, making it more robust.

Object Functions
estimateFlow Estimate optical flow

 opticalFlowFarneback

2-565

reset Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Farneback Method

Read a video file. Specify the timestamp of the frame to be read.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Create an optical flow object for estimating the optical flow using Farneback method. The
output is an object specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowFarneback

opticFlow =
 opticalFlowFarneback with properties:

 NumPyramidLevels: 3
 PyramidScale: 0.5000
 NumIterations: 3
 NeighborhoodSize: 5
 FilterSize: 15

Create a custom figure window to visualize the optical flow vectors.

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read the image frames and convert to grayscale images. Estimate the optical flow from
consecutive image frames. Display the current image frame and plot the optical flow
vectors as quiver plot.

while hasFrame(vidReader)
 frameRGB = readFrame(vidReader);
 frameGray = rgb2gray(frameRGB);
 flow = estimateFlow(opticFlow,frameGray);

 imshow(frameRGB)

2 Alphabetical List

2-566

 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',2,'Parent',hPlot);
 hold off
 pause(10^-3)
end

 opticalFlowFarneback

2-567

Algorithms
The Farneback algorithm generates an image pyramid, where each level has a lower
resolution compared to the previous level. When you select a pyramid level greater than
1, the algorithm can track the points at multiple levels of resolution, starting at the lowest
level. Increasing the number of pyramid levels enables the algorithm to handle larger
displacements of points between frames. However, the number of computations also
increases. The diagram shows an image pyramid with three levels.

2 Alphabetical List

2-568

1. Optical �ow computation at lowest resolution

3. Final optical �ow computation of original image

}
}

}
ical �ow compu

3. Fin

Distance the object moved between frames

2. Optical �ow at next highest resolution

The tracking begins in the lowest resolution level, and continues until convergence. The
point locations detected at a level are propagated as keypoints for the succeeding level.
In this way, the algorithm refines the tracking with each level. The pyramid decomposition
enables the algorithm to handle large pixel motions, which can be distances greater than
the neighborhood size.

References
[1] Farneback, G. “Two-Frame Motion Estimation Based on Polynomial Expansion.” In

Proceedings of the 13th Scandinavian Conference on Image Analysis, 363 - 370.
Halmstad, Sweden: SCIA, 2003.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

 opticalFlowFarneback

2-569

See Also
opticalFlow | opticalFlowHS | opticalFlowLK | opticalFlowLKDoG | quiver

Introduced in R2015b

2 Alphabetical List

2-570

estimateFlow
Estimate optical flow

Syntax
flow = estimateFlow(opticFlow,I)

Description
flow = estimateFlow(opticFlow,I) estimates optical flow between two consecutive
video frames.

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the
timestamp of the frame to read as 11.

vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);

Specify the optical flow estimation method as opticalFlowHS. The output is an object
specifying the optical flow estimation method and its properties.

opticFlow = opticalFlowHS

opticFlow =
 opticalFlowHS with properties:

 Smoothness: 1
 MaxIteration: 10
 VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

 estimateFlow

2-571

h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);

Read image frames from the VideoReader object and convert to grayscale images.
Estimate the optical flow from consecutive image frames. Display the current image
frame and plot the optical flow vectors as quiver plot.

while hasFrame(vidReader)
 frameRGB = readFrame(vidReader);
 frameGray = rgb2gray(frameRGB);
 flow = estimateFlow(opticFlow,frameGray);
 imshow(frameRGB)
 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
 hold off
 pause(10^-3)
end

2 Alphabetical List

2-572

Input Arguments
opticFlow — Object for optical flow estimation
opticalFlowFarneback object | opticalFlowHS | object | opticalFlowLK object |
opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

• opticalFlowFarneback object
• opticalFlowHS object
• opticalFlowLK object
• opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used
for estimating the optical flow velocity matrices.

I — Current video frame
2-D grayscale image

Current video frame, specified as a 2-D grayscale image of size m-by-n. The input image is
generated from the current video frame read using the VideoReader object. The video
frames in RGB format must be converted to 2-D grayscale images for estimating the
optical flow.

Output Arguments
flow — Object for storing optical flow velocity matrices
opticalFlow object

Object for storing optical flow velocity matrices, returned as an opticalFlow object.

Algorithms
The function estimates optical flow of the input video using the method specified by the
input object opticFlow. The optical flow is estimated as the motion between two
consecutive video frames. The video frame T at the given instant tcurrent is referred as
current frame and the video frame T-1 is referred as previous frame. The initial value of
the previous frame at time tcurrent = 0 is set as a uniform image of grayscale value 0.

 estimateFlow

2-573

Note If you specify opticFlow as opticalFlowLKDoG object, then the estimation
delays by an amount relative to the number of video frames. The amount of delay depends
on the value of NumFrames defined in opticalFlowLKDoG object. The optic flow
estimated for a video frame at tcurrent corresponds to the video frame at time
tf low = (tcurrent− (NumFrames− 1)/2). tcurrent is the time of the current video frame.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
reset

Introduced in R2015a

2 Alphabetical List

2-574

reset
Reset the internal state of the optical flow estimation object

Syntax
reset(opticFlow)

Description
reset(opticFlow) resets the internal state of the optical flow estimation object. The
previous frame is reset to its initial value which is a uniform image of intensity value 0.

Input Arguments
opticFlow — Object for optical flow estimation
opticalFlowFarneback object | opticalFlowHS | object | opticalFlowLK object |
opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

• opticalFlowFarneback object
• opticalFlowHS object
• opticalFlowLK object
• opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used
for estimating the optical flow velocity matrices.

 reset

2-575

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateFlow

Introduced in R2015a

2 Alphabetical List

2-576

vision.PeopleDetector
Package: vision

Detect upright people using HOG features

Description
The people detector object detects people in an input image using the Histogram of
Oriented Gradient (HOG) features and a trained Support Vector Machine (SVM) classifier.
The object detects unoccluded people in an upright position.

To detect people in an image:

1 Create the vision.PeopleDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
peopleDetector = vision.PeopleDetector
peopleDetector = vision.PeopleDetector(model)
peopleDetector = vision.PeopleDetector(Name,Value)

Description
peopleDetector = vision.PeopleDetector returns a people detector object,
peopleDetector, that tracks a set of points in a video.

peopleDetector = vision.PeopleDetector(model) creates a people detector
object and sets the ClassificationModel property to model.

 vision.PeopleDetector

2-577

peopleDetector = vision.PeopleDetector(Name,Value) sets properties using
one or more name-value pairs. Enclose each property name in quotes. For example,
peopleDetector =
vision.PeopleDetector('ClassificationModel','UprightPeople_128x64')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ClassificationModel — Name of classification model
'UprightPeople_128x64' (default) | 'UprightPeople_96x48'

Name of classification model, specified as 'UprightPeople_128x64' or
'UprightPeople_96x48'. The pixel dimensions indicate the image size used for
training.

The images used to train the models include background pixels around the person.
Therefore, the actual size of a detected person is smaller than the training image size.

ClassificationThreshold — People classification threshold
1 (default) | nonnegative scalar value

People classification threshold, specified as a nonnegative scalar value. Use this threshold
to control the classification of individual image subregions during multiscale detection.
The threshold controls whether a subregion gets classified as a person. You can increase
this value when there are many false detections. The higher the threshold value, the more
stringent the requirements are for the classification. Vary the threshold over a range of
values to find the optimum value for your data set. Typical values range from 0 to 4.

Tunable: Yes

MinSize — Smallest region containing a person
[] (default) | two-element vector

2 Alphabetical List

2-578

Smallest region containing a person, specified in pixels as a two-element vector, [height
width]. Set this property to the minimum size region containing a person. You can reduce
computation time when you set this property. To do so, set this property to a value larger
than the image size used to train the classification model. When you do not specify this
property, the detector sets it to the image size used to train the classification model.

Tunable: Yes

MaxSize — Largest region containing a person
[] (default) | two-element vector

Largest region that contains a person, specified in pixels as a two-element vector, [height
width]. Set this property to the largest region containing a person. You can reduce
computation time when you set this property. To do so, set this property to a value smaller
than the size of the input image. When you do not specify this property, the detector sets
it to the input image size. This property is tunable.

ScaleFactor — Multiscale object detection scaling
1.05 (default) | numeric value greater than 1.0001

Multiscale object detection scaling, specified as a value greater than 1.0001. The scale
factor incrementally scales the detection resolution between MinSize and MaxSize. You
can set the scale factor to an ideal value using:
size(I)/(size(I)-0.5)
The object calculates the detection resolution at each increment.

round(TrainingSize*(ScaleFactorN))

In this case, the TrainingSize is [128 64] for the 'UprightPeople_128x64' model
and [96 48] for the 'UprightPeople_96x48' model. N is the increment. Decreasing
the scale factor can increase the detection accuracy. However, doing so increases the
computation time. This property is tunable.

WindowStride — Detection window stride
[8 8] (default) | scalar | two-element vector

Detection window stride in pixels, specified as a scalar or a two-element vector, [x y]. The
detector uses the window stride to slide the detection window across the image. When
you specify this value as a vector, the first and second elements are the stride size in the x
and y directions. When you specify this value as a scalar, the stride is the same for both x
and y. Decreasing the window stride can increase the detection accuracy. However, doing

 vision.PeopleDetector

2-579

so increases computation time. Increasing the window stride beyond [8 8] can lead to a
greater number of missed detections. This property is tunable.

MergeDetections — Merge detection control
true | false

Merge detection control, specified as true or false. This property controls whether
similar detections are merged. Set this property to true to merge bounding boxes using a
mean-shift based algorithm. Set this property to false to output the unmerged bounding
boxes.

For more flexibility and control of merging parameters, you can use the
selectStrongestBbox function in place of the MergeDetections algorithm. To do
this, set the MergeDetections property to false. See the “Tracking Pedestrians from a
Moving Car” example, which shows the use of the people detector and the
selectStrongestBbox function.

UseROI — Use region of interest
false (default) | true

Use region of interest, specified as true or false. Set this property to true to detect
objects within a rectangular region of interest within the input image.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
bboxes = peopleDetector(I)
[bboxes, scores] = peopleDetector(I)
[___] = peopleDetector(I,roi)

2 Alphabetical List

2-580

Description
bboxes = peopleDetector(I) performs multiscale object detection on the input
image, I and returns an M-by-4 matrix defining M bounding boxes. M represents the
number of detected people. Each row of the output matrix, BBOXES, contains a four-
element vector, [x y width height]. This vector specifies, in pixels, the upper-left corner
and size, of a bounding box. When no people are detected, the step method returns an
empty vector. The input image, I, must be a grayscale or truecolor (RGB) image.

[bboxes, scores] = peopleDetector(I) additionally returns a confidence value for
the detections.

[___] = peopleDetector(I,roi)detects people within the rectangular search
region, roi.

Input Arguments
I — Input image
grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

roi — Rectangular region of interest
four-element vector (default)

Rectangular region of interest within image I, specified as a four-element vector, [x y
width height].

model — Classification model
'UprightPeople_128x64' (default) | 'UprightPeople_96x48'

Classification model, specified as 'UprightPeople_128x64' or
'UprightPeople_96x48'.

Output Arguments
peopleDetector — People detector
object (default)

 vision.PeopleDetector

2-581

People detector object, returned as an object. The detector detects people in an input
image using the Histogram of Oriented Gradient (HOG) features and a trained SVM
classifier. The object detects unoccluded people in an upright position.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Detect People

Create a people detector and load the input image.

peopleDetector = vision.PeopleDetector;
I = imread('visionteam1.jpg');

Detect people using the people detector object.

[bboxes,scores] = peopleDetector(I);

Annotate detected people.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure, imshow(I)
title('Detected people and detection scores');

2 Alphabetical List

2-582

References
[1] Dalal, N. and B. Triggs. “Histograms of Oriented Gradients for Human

Detection,”Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, June 2005, pp. 886-893.

 vision.PeopleDetector

2-583

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
detectPeopleACF | extractHOGFeatures | insertObjectAnnotation |
vision.CascadeObjectDetector

Topics
“Tracking Pedestrians from a Moving Car”
“Multiple Object Tracking”

Introduced in R2012b

2 Alphabetical List

2-584

semanticSegmentationMetrics
Semantic segmentation quality metrics

Description
A semanticSegmentationMetrics object encapsulates semantic segmentation quality
metrics for a set of images.

Creation
Create a semanticSegmentationMetrics object using the
evaluateSemanticSegmentation function.

Properties
ConfusionMatrix — Confusion matrix
square table

This property is read-only.

Confusion matrix, specified as a square table. Each table element (i,j) is the count of
pixels known to belong to class i but predicted to belong to class j.

NormalizedConfusionMatrix — Normalized confusion matrix
table

This property is read-only.

Normalized confusion matrix, specified as a square table. Each table element (i,j) is the
count of pixels known to belong to class i but predicted to belong to class j, divided by the
total number of pixels predicted in class j. Elements are in the range [0, 1].

DataSetMetrics — Data set metrics
table

 semanticSegmentationMetrics

2-585

This property is read-only.

Semantic segmentation metrics aggregated over the data set, specified as a table.
DataSetMetrics contains up to five metrics, depending on the value of the 'Metrics'
name-value pair used with evaluateSemanticSegmentation:

• GlobalAccuracy — Ratio of correctly classified pixels to total pixels, regardless of
class.

• MeanAccuracy — Ratio of correctly classified pixels in each class to total pixels,
averaged over all classes. The value is equal to the mean of
ClassMetrics.Accuracy.

• MeanIoU — Average intersection over union (IoU) of all classes. The value is equal to
the mean of ClassMetrics.IoU.

• WeightedIoU — Average IoU of all classes, weighted by the number of pixels in the
class.

• MeanBFScore — Average boundary F1 (BF) score of all images. The value is equal to
the mean of ImageMetrics.BFScore.

ClassMetrics — Class metrics
table

This property is read-only.

Semantic segmentation metrics for each class, specified as a table. ClassMetrics
contains up to three metrics for each class, depending on the value of the 'Metrics'
name-value pair used with evaluateSemanticSegmentation:

• Accuracy — Ratio of correctly classified pixels in each class to the total number of
pixels belonging to that class according to the ground truth. Accuracy can be
expressed as:
Accuracy = (TP + TN) / (TP + TN + FP + FN)

 Positive Negative
Positive TP: True Positive FN: False Negative
Negative FP: False Positive TN: True Negative

TP: True positives and FN is the number of false negatives.
• IoU — Ratio of correctly classified pixels to the total number of pixels that are

assigned that class by the ground truth and the predictor. IoU can be expressed as:

2 Alphabetical List

2-586

IoU = TP / (TP + FP + FN)
The image describes the true positives (TP), false positives (FP), and false negatives
(FN).

• MeanBFScore — Boundary F1 score for each class, averaged over all images.

ImageMetrics — Image metrics
table

This property is read-only.

Semantic segmentation metrics for each image in the data set, specified as a table.
ImageMetrics contains up to five metrics, depending on the value of the 'Metrics'
name-value pair used with evaluateSemanticSegmentation:

• GlobalAccuracy — Ratio of correctly classified pixels to total pixels, regardless of
class

• MeanAccuracy — Ratio of correctly classified pixels to total pixels, averaged over all
classes in the image

 semanticSegmentationMetrics

2-587

• MeanIoU — Average IoU of all classes in the image
• WeightedIoU — Average IoU of all classes in the image, weighted by the number of

pixels in each class
• MeanBFScore — Average BF score of each class in the image

Each image metric returns a vector, with one element for each image in the data set. The
order of the rows matches the order of the images defined by the input
PixelLabelDatastore objects representing the data set.

Examples
Evaluate Results of Semantic Segmentation

The triangleImages data set has 100 test images with ground truth labels. Define the
location of the data set.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');

Define the location of the test images.

testImagesDir = fullfile(dataSetDir,'testImages');

Define the location of the ground truth labels.

testLabelsDir = fullfile(dataSetDir,'testLabels');

Create an imageDatastore holding the test images.

imds = imageDatastore(testImagesDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Create a pixelLabelDatastore holding the ground truth pixel labels for the test images.

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);

Load a semantic segmentation network that has been trained on the training images of
noisyShapes.

2 Alphabetical List

2-588

net = load('triangleSegmentationNetwork');
net = net.net;

Run the network on the test images. Predicted labels are written to disk in a temporary
directory and returned as a pixelLabelDatastore.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Evaluate the prediction results against the ground truth.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
---------------------------------------[==] 100%
Elapsed time: 00:00:01
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.90624 0.95085 0.61588 0.87529 0.40652

Display the classification accuracy, the intersection over union, and the boundary F-1
score for each class.

metrics.ClassMetrics

ans=2×3 table
 Accuracy IoU MeanBFScore
 ________ _______ ___________

 triangle 1 0.33005 0.028664
 background 0.9017 0.9017 0.78438

 semanticSegmentationMetrics

2-589

See Also
bfscore | evaluateSemanticSegmentation | jaccard | plotconfusion

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

2 Alphabetical List

2-590

vision.StandardDeviation
Package: vision

Find standard deviation values in input or sequence of inputs

Description
Find the standard deviation values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.StandardDeviation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
stdDev = vision.StandardDeviation
stdDev = vision.StandardDeviation(Name,Value)

Description
stdDev = vision.StandardDeviation returns an object, stdDev, that computes the
value and index of the maximum elements in an input or a sequence of inputs.

stdDev = vision.StandardDeviation(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, stdDev =
vision.Maximum('RunningStandardDeviation',false)

 vision.StandardDeviation

2-591

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ValueOutputPort — Output Minimum value
true (default) | false

Output standard deviation value, specified as true or false. Set this property to true to
output the Minimum value of the input. This property applies when you set the
RunningStandardDeviation property to false.

RunningStandardDeviation — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set
this property to true, the object computes the standard deviation value over a sequence
of inputs. When you set this property to false, the object computes the standard
deviation value over the current input.

ResetInputPort — Additional input to enable resetting of running standard
deviation
false (default) | true

Additional input to enable resetting of running standard deviation, specified as true or
false. When you set this property to true, a reset input must be specified to reset the
running standard deviation. This property applies only when you set the
RunningStandardDeviation property to true.

ResetCondition — Condition that triggers resetting of running standard
deviation
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running standard deviation, specified as as 'Rising
edge', 'Falling edge', 'Either edge', or 'Non-zero'. This property applies only
when you set the ResetInputPort property to true.

2 Alphabetical List

2-592

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningStandardDeviation property to
false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies
when you set the Dimension property to 'All' and the RunningStandardDeviation
property to false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary
mask'. This property applies only when you set the ROIProcessing property to true.

ROIPortion — ROI or perimeter calculation
'Entire ROI' (default) | 'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This
property applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for
all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual
statistics for each ROI' or 'Single statistic for all ROIs'. This property
applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or
'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

 vision.StandardDeviation

2-593

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This
applies when you set the ROIForm property to 'Label matrix'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[value,index] = stdDev(input)
index = stdDev(input)

[___] = stdDev(I,ROI)
[___ ,flag] = stdDev(I,ROI)

[___] = stdDev(I,label,labelNumbers)
[___ ,flag] = stdDev(I,label,labelNumbers)

Description
[value,index] = stdDev(input) returns the standard deviation value and index of
the input.

index = stdDev(input) returns the one-based index of the standard deviation value
when you set the IndexOutputPort property to true and the ValueOutputPort
property to false. The RunningStandardDeviation property must be set to false.

[___] = stdDev(I,ROI) returns the standard deviation value in the input image
within the given region of interest.

2 Alphabetical List

2-594

[___ ,flag] = stdDev(I,ROI)additionally returns a flag to indicate whether the
given ROI is within the bounds of the image.

[___] = stdDev(I,label,labelNumbers) returns the standard deviation of the
input image for a region the labels specified in the labelNumbers vector. The regions
are defined and labeled in the label matrix.

[___ ,flag] = stdDev(I,label,labelNumbers) additionally returns a flag to
indicate whether the input label numbers are valid.

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is
available when you set the the ROIProcessing property to true and the ROIForm
property to 'Lines', 'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

Output Arguments
value — Minimum value
same as input

 vision.StandardDeviation

2-595

Minimum value, returned as the same data type as the input

index — Index to standard deviation value
one-based index

Index to standard deviation value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Determine Standard Deviation in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the standard deviation.

2 Alphabetical List

2-596

stdDev = vision.StandardDeviation;
stdDevValue = stdDev(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.Maximum | vision.Mean | vision.Median | vision.Minimum

Introduced in R2012a

 vision.StandardDeviation

2-597

stereoParameters
Object for storing stereo camera system parameters

Description
The stereoParameters object stores the intrinsic and extrinsic parameters of two
cameras and their geometric relationship.

Creation
You can create a stereoParameters object using the stereoParameters function
described here. You can also create a stereoParameters object by using the
estimateCameraParameters with an M-by-2-by-numImages-by-2 array of input image
points, where M is the number of keypoint coordinates in each pattern.

Syntax
stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
rotationOfCamera2,translationOfCamera2)
stereoParams = stereoParameters(paramStruct)

Description
stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
rotationOfCamera2,translationOfCamera2) creates a stereoParameters object
that contains the parameters of a stereo camera system, and sets the
CameraParameters1 on page 2-0 , CameraParameters2 on page 2-0 ,
RotationOfCamera2 on page 2-0 , and TranslationOfCamera2 on page 2-
0 properties.

stereoParams = stereoParameters(paramStruct) creates an identical
stereoParameters object from an existing stereoParameters object with parameters
stored in paramStruct.

2 Alphabetical List

2-598

Input Arguments
paramStruct — Stereo parameters
struct

Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from
an existing stereoParameters object, use the toStruct function.

Properties
Intrinsic and extrinsic parameters of the two cameras

CameraParameters1 — Parameters of camera 1
cameraParameters object

Parameters of camera 1 , specified as a cameraParameters object. The object contains
the intrinsic, extrinsic, and lens distortion parameters of a camera.

CameraParameters2 — Parameters of camera 2
cameraParameters object

Parameters of camera 2 , specified as a cameraParameters object. The object contains
the intrinsic, extrinsic, and lens distortion parameters of a camera.

Geometric relationship between the two cameras

RotationOfCamera2 — Rotation of camera 2
3-by-3 matrix

Rotation of camera 2 relative to camera 1, specified as a 3-by-3 matrix.

TranslationOfCamera2 — Translation of camera 2
3-element vector

Translation of camera 2 relative to camera 1, specified as a 3-element vector.

FundamentalMatrix — Fundamental matrix
3-by-3 matrix

Fundamental matrix, stored as a 3-by-3 matrix. The fundamental matrix relates the two
stereo cameras, such that the following equation must be true:

 stereoParameters

2-599

P2 1 * FundamentalMatrix * P1 1 ′ = 0

P1, the point in image 1 in pixels, corresponds to the point, P2, in image 2.

EssentialMatrix — Essential matrix
3-by-3 matrix

Essential matrix, stored as a 3-by-3 matrix. The essential matrix relates the two stereo
cameras, such that the following equation must be true:

P2 1 * EssentialMatrix * P1 1 ′ = 0

P1, the point in image 1, corresponds to P2, the point in image 2. Both points are
expressed in normalized image coordinates, where the origin is at the camera’s optical
center. The x and y pixel coordinates are normalized by the focal length fx and fy.

Accuracy of estimated parameters

MeanReprojectionError — Average Euclidean distance
number of pixels

Average Euclidean distance between reprojected points and detected points over all
image pairs, specified in pixels.

Settings for camera parameter estimation

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns that estimate the extrinsics of the two cameras, stored as
an integer.

WorldPoints — World coordinates
M-by-2 array

World coordinates of key points in the calibration pattern, specified as an M-by-2 array. M
represents the number of key points in the pattern.

WorldUnits — World points units
'mm' (default) | character vector

World points units, specified as a character vector. The character vector describes the
units of measure.

2 Alphabetical List

2-600

Object Functions
toStruct Convert a stereo parameters object into a struct

Examples

Stereo Camera Calibration

Specify calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo','right'));

Detect the checkerboards.

[imagePoints,boardSize] = ...
 detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints. Square size is in
millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize the calibration accuracy.

 showReprojectionErrors(params);

 stereoParameters

2-601

Visualize camera extrinsics.

figure;
showExtrinsics(params);

2 Alphabetical List

2-602

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on

Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–1334.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit
Image Correction.” IEEE International Conference on Computer Vision and
Pattern Recognition. 1997.

 stereoParameters

2-603

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• Use the toStruct method to pass a stereoParameters object into generated code.

See the “Code Generation for Depth Estimation From Stereo Video” example.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
cameraParameters | extrinsicsEstimationErrors |
intrinsicsEstimationErrors | stereoCalibrationErrors

Functions
detectCheckerboardPoints | estimateCameraParameters |
estimateFundamentalMatrix | generateCheckerboardPoints |
reconstructScene | rectifyStereoImages | showExtrinsics |
showReprojectionErrors | undistortImage | undistortPoints

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Code Generation for Depth Estimation From Stereo Video”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2014a

2 Alphabetical List

2-604

toStruct
Convert a stereo parameters object into a struct

Syntax
paramStruct = toStruct(stereoParams)

Description
paramStruct = toStruct(stereoParams) returns a struct containing the stereo
parameters in the stereoParams input object. You can use the struct to create an
identical stereoParameters object. Use the struct for C code generation. You can call
toStruct, and then pass the resulting structure into the generated code, which
recreates the stereoParameters object.

Input Arguments
stereoParams — Stereo parameters
stereoParameters object

Stereo parameters, specified as a stereoParameters object. The object contains the
parameters of the stereo camera system.

Output Arguments
paramStruct — Stereo parameters
struct

Stereo parameters, returned as a stereo parameters struct.

 toStruct

2-605

See Also

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2015a

2 Alphabetical List

2-606

vision.TemplateMatcher
Package: vision

Locate template in image

Description
To locate a template in an image.

1 Create the vision.TemplateMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tMatcher = vision.TemplateMatcher
tMatcher = vision.TemplateMatcher(Name,Value)

Description
tMatcher = vision.TemplateMatcher returns a template matcher System object,
tMatcher. This object performs template matching by shifting a template in single-pixel
increments throughout the interior of an image.

tMatcher = vision.TemplateMatcher(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, tMatcher =
vision.TemplateMatcher('Metric','Sum of absolute differences')

 vision.TemplateMatcher

2-607

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Metric — Metric used for template matching source
'Sum of absolute differences' (default) | 'Sum of squared differences' |
'Maximum absolute difference'

Metric used for template matching, specified as 'Sum of absolute differences',
'Sum of squared differences' , or 'Maximum absolute difference'.

OutputValue — Type of output
'Best match location' (default) | 'Metric matrix'

Type of output, specified as 'Metric matrix' or 'Best match location'.

SearchMethod — Specify search criteria to find minimum difference between two
inputs
'Exhaustive' (default) | 'Three-step'

Specify search criteria to find minimum difference between two inputs, specified as
'Exhaustive' or 'Three-step'. If you set this property to 'Exhaustive', the object
searches for the minimum difference pixel by pixel. If you set this property to 'Three-
step', the object searches for the minimum difference using a steadily decreasing step
size. The 'Three-step' method is computationally less expensive than the
'Exhaustive' method, but sometimes does not find the optimal solution. This property
applies when you set the OutputValue property to 'Best match location'.

BestMatchNeighborhoodOutputPort — Enable metric values output
false (default) | true

Enable metric values output, specified as true or false. This property applies when you
set the OutputValue property to 'Best match location'.

2 Alphabetical List

2-608

NeighborhoodSize — Size of the metric values
3 (default) | odd number

Size of the metric values, specified as an odd number. The size N, of the N-by-N matrix of
metric values as an odd number. For example, if the matrix size is 3-by-3 set this property
to 3. This property applies when you set the OutputValue property to 'Best match
location' and the BestMatchNeighborhoodOutputPort property to true.

ROIInputPort — Enable ROI specification through input
false (default) | true

Enable ROI specification through input, specified as true or false. Set this property to
true to define the Region of Interest (ROI) over which to perform the template matching.
If you set this property to true, the ROI must be specified. Otherwise the entire input
image is used.

ROIValidityOutputPort — Enable output of a flag indicating if any part of ROI is
outside input image
false (default) | true

Enable output of a flag indicating if any part of ROI is outside input image, specified as
true or false. When you set this property to true, the object returns an ROI flag. The
flag, when set to false, indicates a part of the ROI is outside of the input image. This
property applies when you set the ROIInputPort property to true

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

 vision.TemplateMatcher

2-609

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
location = tMatcher(I,T)

[location,Nvals,Nvalid] = tMatcher(I,T,ROI)
[location,Nvals,Nvalid,ROIvalid] = tMatcher(I,T,ROI)
[location,ROIvalid] = tMatcher(I,T,ROI)

2 Alphabetical List

2-610

Description
location = tMatcher(I,T) computes the [x y] location coordinates, location, of the
best template match between the image matrix, I, and the template matrix, T. The output
coordinates are relative to the top left corner of the image. The object computes the
location by shifting the template in single-pixel increments throughout the interior of the
image.

[location,Nvals,Nvalid] = tMatcher(I,T,ROI)returns the location of the best
template match location, the metric values around the best match Nvals, and a logical
flag Nvalid. This applies when you set the OutputValue property to 'Best match
location' and the BestMatchNeighborhoodOutputPort property to true.

[location,Nvals,Nvalid,ROIvalid] = tMatcher(I,T,ROI) also returns a logical
flag, ROIvalid to indicate whether the ROI is outside the bounds of the input image I.
This applies when you set the OutputValue property to 'Best match location', and
the BestMatchNeighborhoodOutputPort, ROIInputPort, and
ROIValidityOutputPort properties to true.

[location,ROIvalid] = tMatcher(I,T,ROI)also returns a logical flag ROIvalid
indicating if the specified ROI is outside the bounds of the input image I. This applies
when you set the OutputValue property to 'Best match location', and both the
ROIInputPort and ROIValidityOutputPort properties to true.

Input Arguments
I — Input image
truecolor | M-by-N 2-D grayscale image

Input image, specified as either a 2-D grayscale or truecolor image.

T — Template
binary image | truecolor | M-by-N 2-D grayscale image

Input template, specified as 2-D grayscale or truecolor image.

ROI — Input ROI
four-element vector

Input ROI, specified as a four-element vector, [x y width height], where the first two
elements represent the coordinates of the upper-left corner of the rectangular ROI.

 vision.TemplateMatcher

2-611

Output Arguments
Nvals — Metric value
matrix

Metric value matrix , specified as a matrix. A false value for Nvalid indicates that the
neighborhood around the best match extended outside the borders of the metric value
matrix Nvals.

Nvalid — Valid neighborhood
true | false

Valid neighborhood, sepcified as true or false. A false value for Nvalid indicates that
the neighborhood around the best match extended outside the borders of the metric value
matrix Nvals.

ROIvalid — Valid ROI
true | false

Valid ROI neighborhood, specified as true or false. A false value for ROIvalid
indicates that the ROI is outside the bounds of the input image.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

2 Alphabetical List

2-612

Video Stabilization

This example shows how to remove the effect of camera motion from a video stream.

Introduction

In this example we first define the target to track. In this case, it is the back of a car and
the license plate. We also establish a dynamic search region, whose position is
determined by the last known target location. We then search for the target only within
this search region, which reduces the number of computations required to find the target.
In each subsequent video frame, we determine how much the target has moved relative to
the previous frame. We use this information to remove unwanted translational camera
motions and generate a stabilized video.

Initialization

Create a System object™ to read video from a multimedia file. We set the output to be of
intensity only video.

% Input video file which needs to be stabilized.
filename = 'shaky_car.avi';

hVideoSource = vision.VideoFileReader(filename, ...
 'ImageColorSpace', 'Intensity',...
 'VideoOutputDataType', 'double');

Create a template matcher System object to compute the location of the best match of the
target in the video frame. We use this location to find translation between successive
video frames.

hTM = vision.TemplateMatcher('ROIInputPort', true, ...
 'BestMatchNeighborhoodOutputPort', true);

Create a System object to display the original video and the stabilized video.

hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];

Here we initialize some variables used in the processing loop.

pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18]; % [width height]

 vision.TemplateMatcher

2-613

pos.search_border = [15 10]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
fileInfo = info(hVideoSource);
W = fileInfo.VideoSize(1); % Width in pixels
H = fileInfo.VideoSize(2); % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = fileInfo.VideoSize;
TargetRowIndices = ...
 pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...
 pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;

Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above to stabilize
the input video.

while ~isDone(hVideoSource)
 input = hVideoSource();

 % Find location of Target in the input video frame
 if firstTime
 Idx = int32(pos.template_center_pos);
 MotionVector = [0 0];
 firstTime = false;
 else
 IdxPrev = Idx;

 ROI = [SearchRegion, pos.template_size+2*pos.search_border];
 Idx = hTM(input,Target,ROI);

 MotionVector = double(Idx-IdxPrev);
 end

 [Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
 SearchRegion, Offset, pos);

 % Translate video frame to offset the camera motion
 Stabilized = imtranslate(input, Offset, 'linear');

2 Alphabetical List

2-614

 Target = Stabilized(TargetRowIndices, TargetColIndices);

 % Add black border for display
 Stabilized(:, BorderCols) = 0;
 Stabilized(BorderRows, :) = 0;

 TargetRect = [pos.template_orig-Offset, pos.template_size];
 SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_border];

 % Draw rectangles on input to show target and search region
 input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],...
 'Color', 'white');
 % Display the offset (displacement) values on the input image
 txt = sprintf('(%+05.1f,%+05.1f)', Offset);
 input = insertText(input(:,:,1),[191 215],txt,'FontSize',16, ...
 'TextColor', 'white', 'BoxOpacity', 0);
 % Display video
 hVideoOut([input(:,:,1) Stabilized]);
end

 vision.TemplateMatcher

2-615

Release

Here you call the release method on the objects to close any open files and devices.

release(hVideoSource);

Conclusion

Using the Computer Vision Toolbox™ functionality from MATLAB® command line it is
easy to implement complex systems like video stabilization.

Appendix

The following helper function is used in this example.

2 Alphabetical List

2-616

• updatesearch.m

Algorithms
Typical use of the template matcher involves finding a small region within a larger image.
The region is specified by the template image which can be as large as the input image,
but which is typically smaller than the input image.

The object outputs the best match coordinates, relative to the top-left corner of the
image. The [x y] coordinates of the location correspond to the center of the template.
When you use a template with an odd number of pixels, the object uses the center of the
template. When you use a template with an even number of pixels, the object uses the
centered upper-left pixel for the location. The following table shows how the object
outputs the location (LOC), of odd and even templates:

Odd number of pixels in template Even number of pixels in template

 vision.TemplateMatcher

2-617

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertMarker | opticalFlowFarneback | opticalFlowHS | opticalFlowLK |
opticalFlowLKDoG

Introduced in R2012a

2 Alphabetical List

2-618

vision.Variance
Package: vision

Find variance values in input or sequence of inputs

Description
Find the variance values in an input or sequence of inputs.

To track a set of points:

1 Create the vision.Variance object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
varObj = vision.Variance
varObj = vision.Variance(Name,Value)

Description
varObj = vision.Variance returns an object, varObj, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

varObj = vision.Variance(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, varObj =
vision.Variance('RunningVariance',false)

 vision.Variance

2-619

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

RunningVariance — Calculate over single input or multiple inputs
false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set
this property to true, the object computes the variance value over a sequence of inputs.
When you set this property to false, the object computes the variance value over the
current input.

ResetInputPort — Additional input to enable resetting of running variance
false (default) | true

Additional input to enable resetting of running variance, specified as true or false.
When you set this property to true, a reset input must be specified to reset the running
variance. This property applies only when you set the RunningVariance property to
true.

ResetCondition — Condition that triggers resetting of running variance
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Condition that triggers resetting of running variance, specified as as 'Rising edge',
'Falling edge', 'Either edge', or 'Non-zero'. This property applies only when
you set the ResetInputPort property to true.

Dimension — Dimension to operate along
'Column' (default) | {'All'} | 'Row' | 'Custom'

Dimension to operate along, specified as {'All'}, 'Row', 'Column', or 'Custom'. This
property applies only when you set the RunningVariance property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | numerical scalar

2 Alphabetical List

2-620

Numerical dimension to calculate over, specified as a numerical scalar. This property only
applies when you set the Dimension property to 'Custom'.

ROIProcessing — Enable region-of-interest processing
false (default) | true

Enable region-of-interest processing, specified as true or false. This property applies
when you set the Dimension property to 'All' and the RunningVariance property to
false.

ROIForm — Type of ROI
'Rectangles' (default) | Lines' | 'Label matrix''Binary mask'

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary
mask'. This property applies only when you set the ROIProcessing property to true.

ROIStatistics — Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default) | 'Single statistic for
all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual
statistics for each ROI' or 'Single statistic for all ROIs'. This property
applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or
'Label matrix'.

ValidityOutputPort — Flag to indicate if any part of ROI is outside input image
false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.

This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.

Set this property to true to return the validity of the specified label numbers. This
applies when you set the ROIForm property to 'Label matrix'.

Fixed-Point Properties
RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' |
'Simplest''Zero'

 vision.Variance

2-621

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest' , 'Round' , 'Simplest' , or 'Zero'.

OverflowAction — Action to take when integer input is out-of-range
'Wrap' (default) | 'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

ProductDataType — Product data type
'Same as input' (default) | 'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType — Data type of accumulator
'Same as product' (default) | 'Same as input' | 'Custom'

Data type of accumulator, specified as 'Same as product', 'Same as input', or
'Custom'.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype(true,32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This
property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

2 Alphabetical List

2-622

Syntax
[value,index] = varObj(input)
index = varObj(input)

[___] = varObj(I,ROI)
[___ ,flag] = varObj(I,ROI)

[___] = varObj(I,label,labelNumbers)
[___ ,flag] = varObj(I,label,labelNumbers)

Description
[value,index] = varObj(input) returns the variance value and index of the input.

index = varObj(input) returns the one-based index of the variance value when you
set the IndexOutputPort property to true and the ValueOutputPort property to
false. The RunningVariance property must be set to false.

[___] = varObj(I,ROI) returns the variance value in the input image within the
given region of interest.

[___ ,flag] = varObj(I,ROI)additionally returns a flag to indicate whether the
given ROI is within the bounds of the image.

[___] = varObj(I,label,labelNumbers) returns the variance of the input image
for a region the labels specified in the labelNumbers vector. The regions are defined and
labeled in the label matrix.

[___ ,flag] = varObj(I,label,labelNumbers) additionally returns a flag to
indicate whether the input label numbers are valid.

Input Arguments
input — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

ROI — Region of interest
four-element vector

 vision.Variance

2-623

Region of interest, specified as a four-element vector, [x y width height]. This option is
available when you set the the ROIProcessing property to true and the ROIForm
property to 'Lines', 'Rectangles', or 'Binary Mask'.

label — Label numbers
matrix

Label numbers, specified as a matrix. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers — Label numbers
vector

Label numbers, specified as a vector. This option is available when you set the
ROIProcessing property to true and the ROIForm property to 'Label matrix'.

Output Arguments
value — Variance value
same as input

Variance value, returned as the same data type as the input

index — Index to variance value
one-based index

Index to variance value, returned as a one-based index.

flag — Flag for valid data
true | false

Flag for valid data, returned as true or false.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

2 Alphabetical List

2-624

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Determine Variance in Grayscale Image

Read a color image.

img = imread('peppers.png');

Convert the image to grayscale.

img = im2single(rgb2gray(img));

Find the variance.

varObj = vision.Variance;
varValue = varObj(img);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 vision.Variance

2-625

See Also
vision.Maximum | vision.Mean | vision.Median | vision.Minimum |
vision.StandardDeviation

Introduced in R2012a

2 Alphabetical List

2-626

vision.VideoPlayer
Package: vision

Play video or display image

Description
Play a video or display image sequences.

Note If you own the MATLAB Coder product, you can generate C or C++ code from
MATLAB code in which an instance of this system object is created. When you do so, the
scope system object is automatically declared as an extrinsic variable. In this manner, you
are able to see the scope display in the same way that you would see a figure using the
plot function, without directly generating code from it. For the full list of system objects
supporting code generation, see “Code Generation Support, Usage Notes, and
Limitations”.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Creation

Syntax
videoPlayer = vision.VideoPlayer
videoPlayer = vision.VideoPlayer(___ ,Name,Value)

 vision.VideoPlayer

2-627

Description
videoPlayer = vision.VideoPlayer returns a video player object, videoPlayer,
for displaying video frames.

videoPlayer = vision.VideoPlayer(___ ,Name,Value)additionally sets
properties using one or more name-value pairs. Enclose each property name in quotes.
For example, videoPlayer = vision.VideoPlayer('Name','Caption title')

Properties
Name — Caption display on video player window
Video (default) | character vector

Caption display on video player window, specified as a character vector.

Tunable: Yes

Position — Size and position of the video player window in pixels
four-element vector

Size and position of the video player window in pixels, specified as a four-element vector,
[left bottom width height]. The default size depends on your screen resolution.
The window is positioned in the center of the screen, 400 pixels in width by 300 pixels in
height.

Tunable: Yes

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

2 Alphabetical List

2-628

Syntax
videoPlayer(videoFrame)

Description
videoPlayer(videoFrame) displays one grayscale or truecolor RGB video
frame,videoFrame, in the video player.

Input Arguments
videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, specified as a truecolor or 2-D grayscale image.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Play a Video File

Read video from a file and set up player object.

 vision.VideoPlayer

2-629

videoFReader = vision.VideoFileReader('viplanedeparture.mp4');
videoPlayer = vision.VideoPlayer;

Play video. Every call to the step method reads another frame.

while ~isDone(videoFReader)
 frame = step(videoFReader);
 step(videoPlayer,frame);
end

Close the file reader and video player.

release(videoFReader);
release(videoPlayer);

2 Alphabetical List

2-630

See Also
implay | imshow | vision.DeployableVideoPlayer | vision.VideoFileReader |
vision.VideoFileWriter

Topics
“Face Detection and Tracking Using CAMShift”
“Face Detection and Tracking Using the KLT Algorithm”
“Face Detection and Tracking Using Live Video Acquisition”
“Video Display in a Custom User Interface”

Introduced in R2012a

 vision.VideoPlayer

2-631

fastRCNNObjectDetector
Detect objects using Fast R-CNN deep learning detector

Description
The fastRCNNObjectDetector object detects objects from an image, using a Fast R-
CNN (regions with convolution neural networks) object detector. To detect objects in an
image, pass the trained detector to the detect function. To classify image regions, pass
the detector to the classifyRegions function.

When using the detect or classifyRegions functions with
fastRCNNObjectDetector, use of a CUDA enabled NVIDIA GPU with compute
capability 3.0 or higher is highly recommended. The GPU reduces computation time
significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation
Create a fastRCNNObjectDetector object by calling the
trainFastRCNNObjectDetector function with training data (requires Deep Learning
Toolbox).

detector = trainFastRCNNObjectDetector(trainingData,...)

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainFastRCNNObjectDetector function. You can modify this name
after creating your fastRCNNObjectDetector object.
Example: 'stopSign'

2 Alphabetical List

2-632

Network — Trained Fast R-CNN object detection network
object

This property is read-only.

Trained Fast R-CNN detection network, specified as an object. This object stores the
layers that define the convolutional neural network used within the Fast R-CNN detector.
This network classifies region proposals produced by the RegionProposalFcn property.

RegionProposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Fast R-CNN detector was trained to find, specified as
a cell array. This property is set by the trainingData input argument for the
trainFastRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Fast R-CNN network, specified as a [height width]
vector. The minimum size depends on the network architecture.

Object Functions
detect Detect objects using Fast R-CNN object detector
classifyRegions Classify objects in image regions using Fast R-CNN object detector

Examples

 fastRCNNObjectDetector

2-633

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.

Load a Faster R-CNN object detector pretrained to detect vehicles.

data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;

Read in a test image.

I = imread('highway.png');
imshow(I)

Run the detector on the image and inspect the results. The labels come from the
ClassNames property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

2 Alphabetical List

2-634

 150 86 80 72
 91 89 67 48

scores = 2x1 single column vector

 1.0000
 0.9001

labels = 2x1 categorical array
 vehicle
 vehicle

The detector has high confidence in the detections. Annotate the image with the bounding
boxes for the detections and the corresponding detection scores.

 detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
 figure
 imshow(detectedI)

 fastRCNNObjectDetector

2-635

See Also
Apps
Image Labeler | Video Labeler

Functions
SeriesNetwork | selectStrongestBboxMulticlass | trainACFObjectDetector |
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainNetwork

Topics
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2017a

2 Alphabetical List

2-636

fasterRCNNObjectDetector
Detect objects using Faster R-CNN deep learning detector

Description
The fasterRCNNObjectDetector object detects objects from an image, using a Faster
R-CNN (regions with convolution neural networks) object detector. To detect objects in an
image, pass the trained detector to the detect function.

When using the detect function, use of a CUDA enabled NVIDIA GPU with compute
capability 3.0 or higher is highly recommended. The GPU reduces computation time
significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation
Create a fasterRCNNObjectDetector object by calling the
trainFasterRCNNObjectDetector function with training data (requires Deep
Learning Toolbox).

detector = trainFasterRCNNObjectDetector(trainingData,...)

Properties
ModelName — Name of classification model
character vector | string scalar

This property is read-only.

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainFasterRCNNObjectDetector function. You can modify this name
after creating your fasterRCNNObjectDetector object.

Network — Trained Fast R-CNN object detection network
DAGNetwork object

 fasterRCNNObjectDetector

2-637

This property is read-only.

Trained Fast R-CNN object detection network, specified as a DAGNetwork object. This
object stores the layers that define the convolutional neural network used within the
Faster R-CNN detector.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

This property is read-only.

Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format
[height width]. This value is set during training.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Faster R-CNN detector was trained to find, specified
as a cell array. This property is set by the trainingData input argument for the
trainFasterRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Faster R-CNN network, specified as a [height
width] vector. The minimum size depends on the network architecture.

Object Functions
detect Detect objects using Faster R-CNN object detector

Examples

2 Alphabetical List

2-638

Object Detection Using Faster R-CNN Deep Learning

This example shows how to train an object detector using a deep learning technique
named Faster R-CNN (Regions with Convolutional Neural Networks).

Overview

Deep learning is a powerful machine learning technique that automatically learns image
features for training robust object detectors. There are several techniques for object
detection using deep learning such as Faster R-CNN and you only look once (YOLO) v2.
This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function.

“Object Detection using Deep Learning”

Note: This example requires Computer Vision Toolbox™ and Deep Learning Toolbox™.
Parallel Computing Toolbox™ is recommended to train the detector using a CUDA-
capable NVIDIA™ GPU with compute capability 3.0.

Download Pretrained Detector

This example uses a pretrained detector to allow the example to run without having to
wait for training to complete. If you want to train the detector with the
trainFasterRCNNObjectDetector function, set the doTrainingAndEval variable to
true. Otherwise, download the pretrained detector.

doTrainingAndEval = false;
if ~doTrainingAndEval && ~exist('fasterRCNNResNet50VehicleExample.mat','file')
 % Download pretrained detector.
 disp('Downloading pretrained detector (118 MB)...');
 pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50VehicleExample.mat';
 websave('fasterRCNNResNet50VehicleExample.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle data set that contains 295 images. Each image contains
one or two labeled instances of a vehicle. A small data set is useful for exploring the
Faster R-CNN training procedure, but in practice, more labeled images are needed to
train a robust detector.

% Unzip vehicle dataset images.
unzip vehicleDatasetImages.zip

 fasterRCNNObjectDetector

2-639

% Load vehicle dataset ground truth.
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The ground truth data is stored in a table. The first column contains the path to the image
files. The remaining columns contain the ROI labels for vehicles.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4×2 table
 imageFilename vehicle
 _______________________________ ____________

 'vehicleImages/image_00001.jpg' [1×4 double]
 'vehicleImages/image_00002.jpg' [1×4 double]
 'vehicleImages/image_00003.jpg' [1×4 double]
 'vehicleImages/image_00004.jpg' [1×4 double]

Display one of the images from the data set to understand the type of images it contains.

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

% Read one of the images.
I = imread(vehicleDataset.imageFilename{10});

% Insert the ROI labels.
I = insertShape(I, 'Rectangle', vehicleDataset.vehicle{10});

% Resize and display image.
I = imresize(I,3);
figure
imshow(I)

2 Alphabetical List

2-640

Split the data set into a training set for training the detector, and a test set for evaluating
the detector. Select 60% of the data for training. Use the rest for evaluation.

% Set random seed to ensure example training reproducibility.
rng(0);

% Randomly split data into a training and test set.
shuffledIdx = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));
trainingData = vehicleDataset(shuffledIdx(1:idx),:);
testData = vehicleDataset(shuffledIdx(idx+1:end),:);

Configure Training Options

trainFasterRCNNObjectDetector trains the detector in four steps. The first two steps
train the region proposal and detection networks used in Faster R-CNN. The final two
steps combine the networks from the first two steps such that a single network is created
for detection [1]. Specify the network training options for all steps using
trainingOptions.

 fasterRCNNObjectDetector

2-641

% Options for step 1.
options = trainingOptions('sgdm', ...
 'MaxEpochs', 5, ...
 'MiniBatchSize', 1, ...
 'InitialLearnRate', 1e-3, ...
 'CheckpointPath', tempdir);

The 'MiniBatchSize' property is set to 1 because the vehicle dataset has images with
different sizes. The prevents them from being batched together for processing. Choose a
MiniBatchSize greater than 1 if the training images are all the same size to reduce
training time.

The 'CheckpointPath' property is set to a temporary location for all the training
options. This name-value pair enables the saving of partially trained detectors during the
training process. If training is interrupted, such as from a power outage or system failure,
you can resume training from the saved checkpoint.

Train Faster R-CNN

The Faster R-CNN object detection network is composed of a feature extraction network
followed by two sub-networks. The feature extraction network is typically a pretrained
CNN such as ResNet-50 or Inception v3. The first sub-network following the feature
extraction network is a region proposal network (RPN) trained to generate object
proposals (object or background). The second sub-network is trained to predict the actual
class of each proposal (car or person).

This example uses a pretrained ResNet-50 for feature extraction. Other pretrained
networks such as MobileNet v2 or ResNet-18 can also be used depending on application
requirements. The trainFasterRCNNObjectDetector function automatically adds the
sub-networks required for object detection. You many also “Create Faster R-CNN Object
Detection Network”

Train Faster R-CNN object detector if doTrainingAndEval is true. Otherwise, you can
load a pretrained network.

if doTrainingAndEval

 % Train Faster R-CNN detector.
 % * Use 'resnet50' as the feature extraction network.
 % * Adjust the NegativeOverlapRange and PositiveOverlapRange to ensure
 % training samples tightly overlap with ground truth.
 [detector, info] = trainFasterRCNNObjectDetector(trainingData, 'resnet50', options, ...
 'NegativeOverlapRange', [0 0.3], ...

2 Alphabetical List

2-642

 'PositiveOverlapRange', [0.6 1]);
else
 % Load pretrained detector for the example.
 pretrained = load('fasterRCNNResNet50VehicleExample.mat');
 detector = pretrained.detector;
end

% Note: This example verified on an Nvidia(TM) Titan X with 12 GB of GPU
% memory. Training this network took approximately 10 minutes using this setup.
% Training time varies depending on the hardware you use.

As a quick sanity check, run the detector on one test image.

% Read a test image.
I = imread(testData.imageFilename{1});

% Run the detector.
[bboxes,scores] = detect(detector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

 fasterRCNNObjectDetector

2-643

Evaluate Detector Using Test Set

Evaluate the detector on a large set of images to measure the trained detector's
performance. Computer Vision Toolbox™ provides object detector evaluation functions to
measure common metrics such as average precision (evaluateDetectionPrecision)
and log-average miss rates (evaluateDetectionMissRate). Here, the average
precision metric is used. The average precision provides a single number that
incorporates the ability of the detector to make correct classifications (precision) and the
ability of the detector to find all relevant objects (recall).

The first step for detector evaluation is to collect the detection results by running the
detector on the test set.

if doTrainingAndEval
 % Create a table to hold the bounding boxes, scores, and labels output by
 % the detector.
 numImages = height(testData);
 results = table('Size',[numImages 3],...
 'VariableTypes',{'cell','cell','cell'},...
 'VariableNames',{'Boxes','Scores','Labels'});

2 Alphabetical List

2-644

 % Run detector on each image in the test set and collect results.
 for i = 1:numImages

 % Read the image.
 I = imread(testData.imageFilename{i});

 % Run the detector.
 [bboxes, scores, labels] = detect(detector, I);

 % Collect the results.
 % Collect the results.
 results.Boxes{i} = bboxes;
 results.Scores{i} = scores;
 results.Labels{i} = labels;
 end
else
 % Load pretrained detector for the example.
 pretrained = load('fasterRCNNResNet50VehicleExample.mat');
 results = pretrained.results;
end

% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);

% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of
recall. Ideally, the precision would be 1 at all recall levels. The use of additional layers in
the network can help improve the average precision, but might require additional training
data and longer training time.

% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

 fasterRCNNObjectDetector

2-645

Summary

This example showed how to train a vehicle detector using Faster R-CNN. You can follow
similar steps to train detectors for traffic signs, pedestrians, or other objects.

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks." IEEE Transactions of Pattern Analysis and
Machine Intelligence. Vol. 39, Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation." Proceedings of the 2014 IEEE

2 Alphabetical List

2-646

Conference on Computer Vision and Pattern Recognition. Columbus, OH, June 2014, pp.
580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on
Computer Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges."
European Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective
Search for Object Recognition."_ International Journal of Computer Vision_. Vol. 104,
Number 2, Sept. 2013, pp. 154-171.

See Also
Apps
Image Labeler | Video Labeler

Functions
SeriesNetwork | selectStrongestBboxMulticlass | trainACFObjectDetector |
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainNetwork

Topics
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2017a

 fasterRCNNObjectDetector

2-647

yolov2ObjectDetector
Detect objects using YOLO v2 object detector

Description
The yolov2ObjectDetector object defines the trained YOLO v2 object detector. To
detect objects in an image, pass the trained YOLO v2 object detector to the detect
object function. The YOLO v2 object detector recognizes specific objects in images, based
on the training images and ground truth data used with the
trainYOLOv2ObjectDetector function.

Creation
Create a yolov2ObjectDetector object by calling the trainYOLOv2ObjectDetector
function with training data (requires Deep Learning Toolbox).

detector = trainYOLOv2ObjectDetector(trainingData,____)

Properties
ModelName — Name of the classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainYOLOv2ObjectDetector function. You can modify this name after
creating the yolov2ObjectDetector object.

Network — Trained YOLO v2 object detection network
DAGNetwork object

This property is read-only.

Trained YOLO v2 object detection network, specified as a DAGNetwork object. This object
stores the layers that define the YOLO v2 object detection network.

2 Alphabetical List

2-648

ClassNames — Names of object classes
cell array of character vectors

This property is read-only.

Names of object classes that the YOLO v2 object detector was trained to find, specified as
a cell array of character vectors. This property is set by the trainingData input
argument in the trainYOLOv2ObjectDetector function. Specify the class names as
part of the trainingData table.

AnchorBoxes — Set of anchor boxes
N-by-2 matrix

This property is read-only.

Set of anchor boxes, specified as an N-by-2 matrix defining the height and the width of N
anchor boxes. This property is set by the AnchorBoxes property of the output layer in
the YOLO v2 network.

The anchor boxes are defined when creating the YOLO v2 network by using the
yolov2Layers function. Alternatively, if you create the YOLO v2 network layer-by-layer,
the anchor boxes are defined by using the yolov2OutputLayer function.

TrainingImageSize — Set of image sizes used for training
M-by-2 matrix

This property is read-only.

Set of image sizes used for training, specified as an M-by-2 matrix, where each row is of
the form [height width]. This property is set by the trainingSizes input argument in
the trainYOLOv2ObjectDetector function.

Object Functions
detect Detect objects using YOLO v2 object detector

See Also
Apps
Image Labeler | Video Labeler

 yolov2ObjectDetector

2-649

Functions
fasterRCNNObjectDetector | trainYOLOv2ObjectDetector | yolov2Layers

Topics
“Create YOLO v2 Object Detection Network”
“Estimate Anchor Boxes Using Clustering”
“Object Detection Using YOLO v2 Deep Learning”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

2 Alphabetical List

2-650

vision.ChromaResampler
Package: vision

Downsample or upsample chrominance components of images

Description
To downsample or upsample chrominance components of images:

1 Create the vision.ChromaResampler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
resampler = vision.ChromaResampler
gammaCorr = vision.ChromaResampler(Name,Value)

Description
resampler = vision.ChromaResampler returns a chroma resampling object,
Cresampler, that downsamples or upsamples chroma components of a YCbCr signal to
reduce the bandwidth and storage requirements.

gammaCorr = vision.ChromaResampler(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example, resampler
= vision.ChromaResampler('InterpolationFilter','Linear')

 vision.ChromaResampler

2-651

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Resampling — Resampling format
[4:4:4 to 4:2:2] (default) | resample format

Resampling format, specified as one of the following:

[4:4:4 to 4:2:2]
[4:4:4 to 4:2:0 (MPEG1)]
[4:4:4 to 4:2:0 (MPEG2)]
[4:4:4 to 4:1:1]
[4:2:2 to 4:2:0 (MPEG1)]
[4:2:2 to 4:2:0 (MPEG2)]

To upsample the chrominance components of images, set this property to one of the
following:

[4:2:2 to 4:4:4]
[4:2:0 (MPEG1) to 4:4:4]
[4:2:0 (MPEG2) to 4:4:4]
[4:1:1 to 4:4:4]
[4:2:0 (MPEG1) to 4:2:2]
[4:2:0 (MPEG2) to 4:2:2]

The default is [4:4:4 to 4:2:2]

InterpolationFilter — Method used to approximate missing values
Pixel replication (default) | Linear

Method used to approximate missing values, specified as Pixel replication or
Linear. The default is Linear. When you set this property to Linear, the object uses
linear interpolation to calculate the missing values. When you set this property to Pixel

2 Alphabetical List

2-652

replication, the object replicates the chrominance values of the neighboring pixels to
create the upsampled image. This property applies when you upsample the chrominance
values.

AntialiasingFilterSource — Lowpass filter used to prevent aliasing
Auto (default) | Property | None

Lowpass filter used to prevent aliasing, specified as Auto, Property , or None. When you
set this property to Auto, the object uses a built-in lowpass filter. When you set this
property to Property, the coefficients of the filters are specified by the
HorizontalFilterCoefficients and VerticalFilterCoefficients properties.
When you set this property to None, the object does not filter the input signal. This
property applies when you downsample the chrominance values.

HorizontalFilterCoefficients — Horizontal filter coefficients
[0.2 0.6 0.2] (default) | three-element vector

Horizontal filter coefficients, specified as a three-element vector. This property applies
when you set the Resampling property to one of [4:4:4 to 4:2:2] | [4:4:4 to
4:2:0 (MPEG1)] | [4:4:4 to 4:2:0 (MPEG2)] | [4:4:4 to 4:1:1] and the
AntialiasingFilterSource property to Property.

VerticalFilterCoefficients — Specify the filter coefficients to apply to the
input signal
[0.5 0.5] (default) | two-element vector

Specify the filter coefficients to apply to the input signal, specifie as a two-element vector.
This property applies when you set the Resampling property to one of [4:4:4 to
4:2:0 (MPEG1)] | [4:4:4 to 4:2:0 (MPEG2)] | [4:2:2 to 4:2:0 (MPEG1)] |
[4:2:2 to 4:2:0 (MPEG2)] and the AntialiasingFilterSource property to
Property.

TransposedInput — Input is row-major format
false (default) | true

Input is row-major format , specified as true or false. Set this property to true when
the input contains data elements from the first row first, then data elements from the
second row second, and so on through the last row. Otherwise, the object assumes that
the input data is stored in column-major format.

 vision.ChromaResampler

2-653

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[Cb1,Cr1] = resampler(Cb,Cr)

Description
[Cb1,Cr1] = resampler(Cb,Cr) resamples the input chrominance components Cb
and Cr and returns Cb1 and Cr1, as the resampled outputs.

Input Arguments
Cb1 — Chrominance component
matrix

Chrominance component of an image, specified as a matrix.

Cr2 — Chrominance component
matrix

Chrominance component of an image, specified as a matrix.

Output Arguments
Cb1 — Resampled chrominance component
same as input (default)

Chrominance component of an image, returned as a matrix.

Cr1 — Resampled chrominance component
same as input (default)

2 Alphabetical List

2-654

Chrominance component of an image, returned as a matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Resample Chrominance Components of Image

Create a resampler object

resampler = vision.ChromaResampler;

Read an RGB image and convert it to YCbCr.

imageRGB = imread('peppers.png');
imageYCbCr = rgb2ycbcr(imageRGB);

Resample the Cb and Cr chrominance components.

[Cb,Cr] = resampler(imageYCbCr(:,:,2), imageYCbCr(:,:,3));

 vision.ChromaResampler

2-655

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
rgb2ycbcr

Introduced in R2012a

2 Alphabetical List

2-656

groundTruthDataSource
Object for storing ground truth data sources

Description
The groundTruthDataSource object defines the source of ground truth data. Use this
object to specify a data source for the groundTruth object. To label the data source, load
the groundTruthDataSource object into a labeling app.

• The Image Labeler supports data sources for collections of images.
• The Video Labeler and Ground Truth Labeler (requires Automated Driving

Toolbox™) apps support data sources for videos and image sequences. These apps also
support custom data sources.

Creation

Syntax
gtSource = groundTruthDataSource(imageFiles)

gtSource = groundTruthDataSource(videoName)

gtSource = groundTruthDataSource(imageSeqFolder)
gtSource = groundTruthDataSource(imageSeqFolder,timeStamps)

gtSource = groundTruthDataSource(sourceName,readerFcn,timeStamps)

Description
gtSource = groundTruthDataSource(imageFiles) returns a ground truth data
source object for a collection of images specified by imageFiles. Images must be in a
file format readable by imread.

 groundTruthDataSource

2-657

gtSource = groundTruthDataSource(videoName) returns a ground truth data
source object for a video file specified by videoName. Videos must be in a file format
readable by VideoReader.

gtSource = groundTruthDataSource(imageSeqFolder) returns a ground truth
data source object for an image sequence located in the folder specified by
imageSeqFolder.

gtSource = groundTruthDataSource(imageSeqFolder,timeStamps) returns a
ground truth data source object for an image sequence with a corresponding timestamp
for each image contained in the specified folder. timeStamps sets the TimeStamps
property.

gtSource = groundTruthDataSource(sourceName,readerFcn,timeStamps)
returns a ground truth data source object by using the custom reader function handle,
readerFcn. sourceName sets the Source property and timeStamps set the
TimeStamps property. The custom reader function loads an image from sourceName
that corresponds to the current timestamp specified in the duration vector
timeStamps.

Input Arguments
imageFiles — Image file names
string array | cell array of character vectors

Image file names, specified as a string array or a cell array of character vectors. Images
must be in a file format readable by imread. For a list of the supported image file
formats, see imformats.

videoName — Name of video file
string scalar | character vector

Name of video file, specified as a string scalar or character vector. Videos must be in a file
format readable by VideoReader. For a list of the supported video file formats, see
VideoReader.getFileFormats. If your video format is not supported, specify a custom
reader function, readerFcn.

imageSeqFolder — Image sequence folder
string scalar | character vector

2 Alphabetical List

2-658

Image sequence folder, specified as a string scalar or a character vector. The image files
name extensions must be supported by imformats. If your video format is not supported,
specify a custom reader function, readerFcn.

The images are loaded in the order returned by the dir command.

readerFcn — Custom reader function
function handle

Custom reader function, specified as a function handle. The custom reader function must
load an image from a source at a specified timestamp by using this syntax:

outputImage = readerFcn(sourceName,currentTimeStamp)

• readerFcn is the name of your custom reader function.
• sourceName is the name of the data source.
• currentTimeStamp is the current timestamp, as specified by the input vector

timeStamp.

The outputImage returned by the custom function must be a grayscale or RGB image in
any format supported by imshow. For more information, see “Use Custom Data Source
Reader for Ground Truth Labeling”.

Properties
TimeStamps — Timestamps of video or image sequence
duration vector

This property is read-only.

Timestamps of video or image sequence, specified as a duration vector.

• For a video file, TimeStamps is automatically populated with the timestamps that are
present for the video frames.

• For an image sequence or custom reader, TimeStamps is populated with the values in
the input duration vector timeStamps.

• For an image collection, the TimeStamps property remains empty.

.

 groundTruthDataSource

2-659

Source — Source of ground truth data
character vector | cell array of character vectors

This property is read-only.

Source of ground truth data, specified as a character vector or cell array of character
vectors. The source name can refer to image file names, a video file name, image
sequence file names, or custom data source names.

Examples

Create a Ground Truth Data Source From a Video File

Use the groundTruthDataSource object to create a data source.

Read a video file and create a data source.

videoName = 'vipunmarkedroad.avi';
dataSource = groundTruthDataSource(videoName)

dataSource =
groundTruthDataSource for a video file with properties

 Source: ...tlab\toolbox\vision\visiondata\vipunmarkedroad.avi
 TimeStamps: [84x1 duration]

Create a VideoReader to read the video frames.

reader = VideoReader(videoName);

Read the 5th frame in the video and display

 timeStamp = seconds(dataSource.TimeStamps(5));
 reader.CurrentTime = timeStamp;
 I = readFrame(reader);

 figure
 imshow(I)

2 Alphabetical List

2-660

Create Data Source From Image Sequence

Create a ground truth data source from a an image sequence stored in a specified folder.

Specify the folder containing a sequence of images.

imageDir = fullfile(matlabroot,'toolbox','vision',...
 'visiondata','building');

Create a data source for the images that are in the imageDir folder.

 dataSource = groundTruthDataSource(imageDir)

dataSource =
groundTruthDataSource for a video as an image sequence with properties

 Source: {
 'B:\matlab\toolbox\vision\visiondata\building\building1.JPG';

 groundTruthDataSource

2-661

 'B:\matlab\toolbox\vision\visiondata\building\building2.JPG';
 'B:\matlab\toolbox\vision\visiondata\building\building3.JPG'
 ... and 2 more
 }
 TimeStamps: [5x1 duration]

Read the 5th frame in the sequence.

 I = imread(dataSource.Source{5});
 figure
 imshow(I)

2 Alphabetical List

2-662

Create Data Source Using Custom Reader

Create a ground truth data source using a custom reader.

Specify image directory containing sequence of road images.

imageDir = fullfile(matlabroot,'toolbox','vision',...
 'visiondata','building');

Use an image data store as a custom data source.

imgDataStore = imageDatastore(imageDir);

Write a reader function to read images from the data source. The first input argument,
sourceName,of the custom reader function, readerFcn, is not used. The 2nd input,
currentTimeStamp, is converted from a duration scalar to a 1-based index suitable for
the data source.

readerFcn = @(~,idx)readimage(imgDataStore,seconds(idx));

Create a data source for the images in the,imageDir, folder using readerFcn.

dataSource = groundTruthDataSource(imageDir,readerFcn,1:5)

dataSource =
 groundTruthDataSource with properties:

 Source: ...471_pass\matlab\toolbox\vision\visiondata\building
 TimeStamps: [5×1 duration]

Read the 5th frame in the sequence.

I = readerFcn(imageDir,seconds(5));
figure
imshow(I)

 groundTruthDataSource

2-663

Tips
• groundTruth objects for video-based groundTruthDataSource objects rely on the

video reading capabilities of your operating system. A groundTruth object created
using a video data source remains consistent only for the same platform that was used
to create it. To create a platform-specific groundTruth object, convert the video into
a sequence of images.

2 Alphabetical List

2-664

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
duration | groundTruth | imageDatastore | labelType |
objectDetectorTrainingData

Topics
“Get Started with the Image Labeler”
“Get Started with the Video Labeler”
“Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
“Use Custom Data Source Reader for Ground Truth Labeling”
“Create Automation Algorithm for Labeling”
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data”

Introduced in R2017a

 groundTruthDataSource

2-665

groundTruth
Object for storing ground truth labels

Description
The groundTruth object contains information about the data source, the list of label
definitions, and all marked labels for a set of ground truth labels. You can export or
import a groundTruth object from the Image Labeler, Video Labeler, and Ground
Truth Labeler apps. Use of the Ground Truth Labeler requires Automated Driving
Toolbox.

• To create training data for an object detector from arrays of groundTruth objects,
use the objectDetectorTrainingData function.

• To create training data for a semantic segmentation network from arrays of
groundTruth objects, use the pixelLabelTrainingData function.

Creation

Syntax
gTruth = groundTruth(dataSource,labelDefs,labelData)

Description
gTruth = groundTruth(dataSource,labelDefs,labelData) returns an object
containing ground truth labels that can be imported into the Image Labeler, Video
Labeler, and Ground Truth Labeler apps. The dataSource, labelDefinitions, and
labelData inputs set the properties. Label definitions describe the labels, sublabels, and
attributes. Label data contains the identifying information, position, and timestamps for
the labels.

2 Alphabetical List

2-666

Properties
DataSource — Source of ground truth data
groundTruthDataSource object

Source of ground truth data, specified as a groundTruthDataSource object. The object
contains information that describes the video, image sequence, or custom data source
from which ground truth data was labeled.

To access images from the original data source, use VideoReader or imageDatastore.
You can also use a custom reader function. See “Use Custom Data Source Reader for
Ground Truth Labeling”.

LabelDefinitions — Label definitions
table

This property is read-only.

Label definitions, specified as a table with up to five columns. The possible columns are
Name, Type, PixelLabelID, Description, and Hierarchy.

The table includes the PixelLabelID column when you use pixel labels and includes the
Hierarchy column when you create sublabels and/or attributes. The table always contains
the Name, Type, and Description columns. Descriptions for labels are optional, so that
column can be empty.

Label
Definition

Description

Name Character vector specifying the name of the label category.
Type labelType enumeration that specifies the label category type.
PixelLabelID A scalar, column vector, or an M-by-3 matrix of integer-valued label IDs.

PixelLabelID specifies the pixel label values used to represent a label
category. This value is required when you set Type to
labelType.PixelLabel. Pixel label ID values must be between 0 and
255.

Description Character vector that describes the label category. The description
label definition is optional.

 groundTruth

2-667

Label
Definition

Description

Hierarchy A structure containing sublabel and attribute data. The app populates
the hierarchy column when you create a sublabel or attribute. This
label definition applies only to the Video Labeler and Ground Truth
Labeler apps. See “Get Started with the Video Labeler” and “Get
Started with the Ground Truth Labeler” (Automated Driving Toolbox).

For example, this definition table contains six label categories: cars, sky, vegetation,
road, Signs, and laneMarkers.

Note Attributes and sublabels are only available in the Video Labeler and Ground
Truth Labeler. In the example above, two of the labels contain attributes. Therefore, a
Hierarchy column was created for all labels.

The following code below represents a table with two label categories:

defs = table({'Cars';'Lanes'}, ...
 [labelType.Rectangle;labelType.Line], ...
 'VariableNames',{'Name','Type'})

LabelData — Label data for each ROI and scene label
table | timetable

This property is read-only.

Label data for each ROI and scene label, specified as a table for image collections or a
timetable for videos or image sequence. Each column of the table or timetable holds

2 Alphabetical List

2-668

labels for a single label category. LabelData describes the elements of the table. The
label categories are specified as labelType enumerations.

Label
Categor
y

Label Values

labelT
ype.Re
ctangl
e

Labels in each row are stored as M-by-4 matrices of [x,y,width,height]
bounding box locations. If the labels contain sublabels, attributes, or both,
then the labels are stored as structures. These structures contain the bounding
box locations and the sublabel and attribute information.

labelT
ype.Li
ne

Labels in each row are stored as M-by-1 cell arrays. Each element of the cell
array holds [x,y] locations for the points used to mark the polyline. If the labels
contain sublabels, attributes, or both, then the labels are stored as structures.
These structures contain the line locations and the sublabel and attribute
information.

labelT
ype.Pi
xelLab
el

Label data for all label categories is represented by a single label matrix. The
matrix must be stored on disk as a uint8 image. The image file name must be
specified as a character vector in the LabelData table. The label matrix must
contain 1 or 3 channels. For a 3-channel matrix, the RGB pixel values
represent label IDs.

labelT
ype.Sc
ene

Labels in each row are stored as logical values representing the presence or
absence of the scene label for the image.

labelT
ype.Cu
stom

Labels in each row are stored in the way they are provided in the table. These
labels are not imported into the labeling app.

 groundTruth

2-669

Supported GroundTruth Objects

 Video Labeler or Ground
Truth Labeler App

Image Labeler App

Data source Video file, image sequence
folder, custom reader

Image files

Label definitions Rectangle, Line,
PixelLabel, or Scene
label types

Rectangle, PixelLabel
or Scene label types

Label data Timetable of Rectangle,
Line, PixelLabel, or
Scene label types

Table (no timetable) for
Rectangle, PixelLabel,
or Scene label types

2 Alphabetical List

2-670

To add ground truth data that is not an ROI (Rectangle, Line, PixelLabel) or Scene
label category to a groundTruth object, provide a label definition with a labelType
that is Custom. The custom data is not visible when you load it into the labeling app.

Object Functions
selectLabelsByGroup Select ground truth data for set of labels by group
selectLabelsByType Select ground truth data for a set of labels by type
selectLabelsByName Select ground truth data by name
changeFilePaths Change file paths in data source and pixel label data of ground

truth object

Examples
Create Ground Truth for Stop Signs and Cars

Create a data source from a collection of images.

data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)

imageFilenames = 2x1 cell array
 {'stopSignImages/image001.jpg'}
 {'stopSignImages/image002.jpg'}

imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);

Define labels used to specify the ground truth. Use labelDefinitionCreator to create
the label definitions table.

ldc = labelDefinitionCreator();
addLabel(ldc,'stopSign',labelType.Rectangle);
addLabel(ldc,'carRear',labelType.Rectangle);
labelDefs = create(ldc)

labelDefs=2×4 table
 Name Type Group Description
 __________ _________ ______ ___________

 'stopSign' Rectangle 'None' ' '

 groundTruth

2-671

 'carRear' Rectangle 'None' ' '

Initialize label data for rectangle ROIs.

stopSignTruth = {[856 318 39 41];[445 523 52 54]};
carRearTruth = {[398 378 315 210];[332 633 691 287]};

Construct a table of label data.

labelNames = {'stopSign';'carRear'};
labelData = table(stopSignTruth,carRearTruth,'VariableNames',labelNames)

labelData=2×2 table
 stopSign carRear
 ____________ ____________

 [1x4 double] [1x4 double]
 [1x4 double] [1x4 double]

Create a ground truth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth =
 groundTruth with properties:

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [2x4 table]
 LabelData: [2x2 table]

Create Ground Truth Data of Road Lanes

Create a groundTruth object to store data representing marked road lanes.

Create a data source from an image.

dataSource = groundTruthDataSource({'stopSignTest.jpg'});

Define labels used to specify ground truth. Use labelDefinitionCreator to create
label definitions table.

2 Alphabetical List

2-672

ldc = labelDefinitionCreator();
addLabel(ldc,'Lane',labelType.Line);
labelDefs = create(ldc);

Assign two lane markers in the image.

laneMarkerTruth = {[257 254;311 180] [327 183;338 205;374 250]};

Construct a table of label data.

labelNames = {'Lane'};
labelData = table(laneMarkerTruth,'VariableNames',labelNames)

labelData=1×1 table
 Lane

 [2x2 double] [3x2 double]

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth =
 groundTruth with properties:

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [1x4 table]
 LabelData: [1x1 table]

Create Ground Truth Data For Pixel Labels

Create a groundTruth object to store data representing parts of a scene.

Create a data source.

dataSource = groundTruthDataSource({'visionteam.jpg'});

Use labelDefinitionCreator to create the label definitions table. Define labels,
'Person' and 'Background'. Assign their corresponding label type as PixelLabel.

ldc =labelDefinitionCreator();
addLabel(ldc,'Person',labelType.PixelLabel);

 groundTruth

2-673

addLabel(ldc,'Background',labelType.PixelLabel);
labelDefs = create(ldc)

labelDefs=2×5 table
 Name Type PixelLabelID Group Description
 ____________ __________ ____________ ______ ___________

 'Person' PixelLabel [1] 'None' ' '
 'Background' PixelLabel [2] 'None' ' '

Specify the location of the pixel label data for the image.

dataFile = {'pixelLabeledVisionTeam.jpg'}

dataFile = 1x1 cell array
 {'pixelLabeledVisionTeam.jpg'}

Construct a table of label data for the pixel label data.

labelData = table(dataFile,'VariableNames',{'PixelLabelData'})

labelData=1×1 table
 PixelLabelData

 'pixelLabeledVisionTeam.jpg'

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth =
 groundTruth with properties:

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [2x5 table]
 LabelData: [1x1 table]

2 Alphabetical List

2-674

Create Ground Truth for Car and Lane Markers

Create a data source from a video.

videoName = 'caltech_cordova1.avi';
dataSource = groundTruthDataSource(videoName);

Define labels used to specify the ground truth. Use labelDefinitionCreator to create
the label definitions table.

ldc = labelDefinitionCreator();
addLabel(ldc,'Cars',labelType.Rectangle);
addLabel(ldc,'LaneMarkers',labelType.Line);
labelDefs = create(ldc)

labelDefs=2×4 table
 Name Type Group Description
 _____________ _________ ______ ___________

 'Cars' Rectangle 'None' ' '
 'LaneMarkers' Line 'None' ' '

Create label data for cars and lane markers.

numRows = numel(dataSource.TimeStamps);
carsTruth = cell(numRows,1);
laneMarkerTruth = cell(numRows,1);

Add two car labels and two lane markers to the first frame.

carsTruth{1} = [182 186 31 22;404 191 53 34];
laneMarkerTruth{1} = {[257 254;311 180] [327 183;338 205;374 250]};

Create a table of label data.

labelNames = {'Cars','LaneMarkers'};
labelData = table(carsTruth,laneMarkerTruth,'VariableNames',labelNames);

Create a groundTruth object. To import this object into the Ground Truth Labeler app,
click Import Labels.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth =
 groundTruth with properties:

 groundTruth

2-675

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [2x4 table]
 LabelData: [250x2 timetable]

Tips
• groundTruth objects for video-based data sources rely on the video reading

capabilities of your operating system. A groundTruth object created using a video
data source remains consistent only for the same platform that was used to create it.
To create a platform-specific groundTruth object, convert the video into a sequence
of images.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
groundTruthDataSource | labelType | objectDetectorTrainingData |
pixelLabelDatastore | pixelLabelImageDatastore | pixelLabelTrainingData

Topics
“Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
“Get Started with the Video Labeler”
“Get Started with the Image Labeler”
“Use Custom Data Source Reader for Ground Truth Labeling”
“Share and Store Labeled Ground Truth Data”

Introduced in R2017a

2 Alphabetical List

2-676

selectLabels
Select ground truth data for a set of labels

Note The function will be removed in a future release. Use
selectLabelsByGroupselectLabelsByType and selectLabelsByName instead.

For more information, see “selectLabels object function will be removed”

Syntax
gtLabel = selectLabels(gTruth,labelNames)
gtLabel = selectLabels(gTruth,types)

Description
gtLabel = selectLabels(gTruth,labelNames) returns a new groundTruth
object, or array of groundTruth objects, containing only the labels specified by
labelNames.

gtLabel = selectLabels(gTruth,types) returns a new groundTruth object, or
array of groundTruth objects, containing only the label types specified by types.

Examples

Select Ground Truth Data By Label Name and Type

Add the image folder to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);

Load the ground truth object.

load('stopSignsAndCarsGroundTruth.mat');

 selectLabels

2-677

View the definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
 Name Type Group
 __________ _________ ______

 'stopSign' Rectangle 'None'
 'carRear' Rectangle 'None'
 'carFront' Rectangle 'None'

Obtain the ground truth data for labelName 'stopSign'.

stopSignGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,'stopSign');

Obtain the ground truth data for labelType Rectangle.

rectGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,labelType.Rectangle);

Obtain ground truth for 'carRear' and 'carFront'.

carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,{'carRear','carFront'});

Remove the image folder from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth labels
groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth
objects.

labelNames — Label names
cell array of character vectors

Label names, specified as a cell array of character vectors.

2 Alphabetical List

2-678

types — Label type
labelType enumeration

Label type, specified as a labelType enumeration.

Output Arguments
gtLabel — Ground truth with only specified labels or types
groundTruth object | array of groundTruth objects

Ground truth with only specified labels or types, returned as a groundTruth object or as
an array of groundTruth objects.

Compatibility Considerations

selectLabels object function will be removed
Not recommended starting in R2019a

The selectLabels function will be removed in a future release. Use
selectLabelsByName, selectLabelsByType, and selectLabelsByGroup instead.

See Also
Functions
groundTruth | groundTruthDataSource | selectLabelsByGroup |
selectLabelsByName | selectLabelsByType

Introduced in R2017a

 selectLabels

2-679

vision.labeler.AutomationAlgorithm
Interface for algorithm automation in ground truth labeling

Description
AutomationAlgorithm specifies the interface for defining custom automation
algorithms to run in the labeling apps, such as the Image Labeler, Video Labeler, and
Ground Truth Labeler. Classes that inherit from the AutomationAlgorithm interface
can be used with the automation workflow of the labeling apps to generate ground truth
labels. Use of the Ground Truth Labeler requires Automated Driving Toolbox.

Properties
The AutomationAlgorithm class predefines this set of properties.

SelectedLabelDefinitions — Selected label definitions
struct array

Selected label definitions, specified as a struct array containing two or three fields. The
fields specify the Type, Name, and optionally Attributes for each selected label defintion.
An additional field, PixelLabelID exists for label definitions of type PixelLabel.

The fields correspond to the selected label definition in the labeling app. Selected label
definitions are highlighted in yellow on the left panels titled ROI Label Definition and
Scene Label Definition in the labeling app.

Field Description
Type Enumeration of class labelType with possible values of Rectangle,

Line, PixelLabel, or Scene. Invalid label definitions are grayed out.

The Video Labeler and Ground Truth Labeler support Rectangle,
Line, PixelLabel and Scene labels. The Image Labeler supports
Rectangle, PixelLabel, and Scene labels.

Name Character vector that contains the name of the selected label definition.

2 Alphabetical List

2-680

Field Description
Attribute Struct containing one field for each attribute that is part of the label

definition. The value for each field describes the specifications of the
attribute. The first field contains an attribute name. The second field
contains the values associated with the name. The values are contained
in (an additional) struct. If you are defining a List attribute, you must
also define the list of values for it. Values for Numerical value,
String, or Logical are optional. Descriptions for the attributes are
optional for all cases. The figure shows the app interface for setting
these values.

See the example below for the programmatic version.
PixelLabelID Positive integer that holds the ID for each selected pixel label.

Note This field is valid only for labels of type PixelLabel.

 vision.labeler.AutomationAlgorithm

2-681

Example: Define SelectedLabelDefinitions structure array for Rectangle and
Scene labels:

selectedLabelDefs(1).Name = 'Car';
selectedLabelDefs(1).Type = labelType.Rectangle;
selectedLabelDefs(1).Attributes = struct('distance',struct('DefaultValue',0,'Description','Sensor distance');
selectedLabelDefs(2).Name = 'Sunny';
selectedLabelDefs(2).Type = labelType.Scene;
selectedLabelDefs(2).Attributes = [];

Example: Define SelectedLabelDefinitions structure for PixelLabel label:

selectedLabelDefs.Name = 'Road';
selectedLabelDefs.Type = labelType.PixelLabel;
selectedLabelDefs.PixelLabelID = 2;

ValidLabelDefinitions — All valid label definitions
struct array

All valid label definitions that satisfy the checkLabelDefinition method, specified as a
struct array containing these fields.

Field Description
Type Enumeration of class labelType with possible values of Rectangle,

Line, PixelLabel, or Scene. Invalid label definitions are grayed out.
Name character vector that contains the name of the label definition
PixelLabelID Positive integer that holds the ID for each valid pixel label

Note This field is valid only for labels of type PixelLabel.

GroundTruth — Ground truth of marked labels
groundTruth object

Ground truth of marked labels, specified as a groundTruth object. The object holds all
the labels marked in the labeling app prior to automation.

Clients of AutomationAlgorithm class are required to define the following properties.
These properties setup the name, description, and user instructions for your automated
algorithm.

2 Alphabetical List

2-682

Name — Automation algorithm name
character vector

Automation algorithm name, specified as a character vector.

Description — Automation algorithm description
character vector

Algorithm description, specified as a character vector.

UserDirections — Algorithm directions displayed in app
cell array

Algorithm directions displayed in app, specified as a cell array. UserDirections are
specified as a cellstr, with each string representing a separate direction. Use the
checkSetup method to verify that the directions have been adhered to.

Methods
Clients of an AutomationAlgorithm implement these user-defined functions to define
execution of the algorithm.
checkLabelDefinition Validate label definition
checkSetup Set up validation (optional)
initialize Initialize state for algorithm execution (optional)
run Run label automation on every frame in interval
terminate Terminate automated algorithm (optional)

Clients of an AutomationAlgorithm can also implement the user-defined
settingsDialog function to display algorithm settings, or a constructor with no input
arguments.

For more information on creating your own automation algorithm, see “Create
Automation Algorithm for Labeling”.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

 vision.labeler.AutomationAlgorithm

2-683

Functions
groundTruth | groundTruthDataSource | imageDatastore | labelType |
objectDetectorTrainingData | vision.labeler.mixin.Temporal

Topics
“Create Automation Algorithm for Labeling”
“Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)
“Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving
Toolbox)

Introduced in R2017a

2 Alphabetical List

2-684

checkLabelDefinition
Validate label definition

The labeler app calls the checkLabelDefinition method for each ROI Label and Scene
Label definition. The method restricts an automation algorithm to use only relevant
labels. For example, a label definition of type Rectangle must not be used to mark a lane
boundary.

Clients of AutomationAlgorithm must implement this method.

Syntax
isValid = checkLabelDefinition(algObj,labelDef)

Description
isValid = checkLabelDefinition(algObj,labelDef) returns true for valid label
definitions and false for invalid definitions for the automation algorithm provided by
algObj. labelDef is a struct containing label definitions. Definitions that return false
are disabled during automation.

Examples
These examples show two ways of defining the checkLabelDefinition method for a
client of an automation algorithm.

Restrict Automation to Rectangular ROI Labels
This checkLabelDefinition method designates Rectangle labels as valid, and all
other labels as invalid.

function checkLabelDefinition(algObj,labelDef)

 if labelDef.Type == labelType.Rectangle

 checkLabelDefinition

2-685

 isValid = true;
 else
 isValid = false;
 end
end

Restrict Automation to Any ROI
This checkLabelDefinition method designates ROI labels (Rectangle and Line) as
valid, and all other labels as invalid.

function checkLabelDefinition(algObj,labelDef)

 if isROI(labelDef.Type)
 isValid = true;
 else
 isValid = false;
 end
end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

labelDef — Label definition
struct

Label definition, specified as a struct containing Type and Name fields.

Field Description
Type Enumeration of class labelType with possible values of Rectangle,

Line, PixelLabel, and Scene.
Name Character vector containing the name of the specified label.

Example: Create a labelDef structure for a Rectangle label:

labelDef(1).Type = labelType.Rectangle;
labelDef(1).Name = 'Car';

2 Alphabetical List

2-686

Output Arguments
isValid — Flag to validate label definition
true | false

Flag to validate label definition, returned as true or false.

Tips
• To access the selected label definitions (highlighted in yellow on the left panels titled

ROI Label Definition and Scene Label Definition in the labeling app), use the
SelectedLabelDefinitions property.

See Also
labelType | vision.labeler.AutomationAlgorithm

Introduced in R2017a

 checkLabelDefinition

2-687

checkSetup
Set up validation (optional)

The checkSetup method checks the validity of the setup when you click Run in the
labeling app. If checkSetup returns true, then the setup is valid and the app proceeds
to execute the initialize, run, and terminate methods.

Clients of AutomationAlgorithm can optionally implement this method.

Syntax
isReady = checkSetup(algObj)
isReady = checkSetup(algObj,labelsToAutomate)

Description
isReady = checkSetup(algObj) returns true if you completed set up correctly and
the automation algorithm algObj can begin execution. Otherwise, checkSetup returns
false.

isReady = checkSetup(algObj,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use
for labeling. This syntax is available only for time-dependent (temporal) automation
algorithms. The Ground Truth Labeler (requires Automated Driving Toolbox) and Video
Labeler apps support these algorithms, but the Image Labeler does not. For more
information, see “Temporal Automation Algorithms”.

Examples
Check Setup for ROI Labels
This example shows how to define a checkSetup method for a client of a temporal
automation algorithm. This method determines that an automation algorithm is ready to
run if at least one ROI label exists. Note that this method uses a labelsToAutomate

2 Alphabetical List

2-688

argument, which is supported by the Ground Truth Labeler and Video Labeler apps,
but not the Image Labeler.

function isReady = checkSetup(algObj,labelsToAutomate)

 notEmpty = ~isempty(labelsToAutomate);

 hasROILabels = any(labelsToAutomate.Type == labelType.Rectangle);

 if notEmpty && hasROILabels
 isReady = true;
 else
 isReady = false;
 end

end

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

labelsToAutomate — Selected labels
table

Selected labels (ROI and Scene) that are marked before executing the algorithm,
specified as a table with the following variables.

Variable Name Description
Type Enumeration of class labelType with possible values of Rectangle,

Line and Scene.
Name Character vector containing the name of the specified label.
Time Scalar double specifying the time, in seconds, when the label was

marked.

 checkSetup

2-689

Variable Name Description
Position Label Type Description

Rectangle Position of bounding box locations, specified as a 1-
by-4 vector in the format [x,y,w,h].

Line Points along a polyline, specified as an N-by-2 vector in
the format [x1,y1;x2,y2; . . . xN,yN] for N points.

Scene []

Example of a labelsToAutomate table:

 Type Name Time Position
 _________ ____________ _________ ____________

 Rectangle 'Car' 0.033333 [1x4 double]
 Line 'LaneMarker' 0.066667 [5x2 double]
 Scene 'Sunny' 0.1 [0]

Output Arguments
isReady — Set up validation
true | false

Set up validation, returned as true or false.

See Also
labelType | vision.labeler.AutomationAlgorithm

Introduced in R2017a

2 Alphabetical List

2-690

initialize
Initialize state for algorithm execution (optional)

The initialize method initializes the state of the automation algorithm before the
automation algorithm runs.

Clients of AutomationAlgorithm can optionally implement this method.

Syntax
initialize(algObj,I)
initialize(algObj,I,labelsToAutomate)

Description
initialize(algObj,I) initializes state of the algObj automation algorithm. I is a
numeric matrix containing the frame that corresponds to the start of the interval.

Clients of AutomationAlgorithm must implement this user-defined method.

initialize(algObj,I,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use
for labeling. This syntax is available only for time-dependent (temporal) automation
algorithms. The Ground Truth Labeler (requires Automated Driving Toolbox) and Video
Labeler apps support these algorithms, but the Image Labeler does not. For more
information, see “Temporal Automation Algorithms”.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

 initialize

2-691

I — Image frame corresponding to start of time interval
numeric matrix

Image frame corresponding to start of time interval, specified as a numeric matrix.

labelsToAutomate — Selected labels
table

Selected labels (ROI and Scene) that are marked before executing the algorithm,
specified as a table with the following variables.

Variable Name Description
Type Enumeration of class labelType with possible values of Rectangle,

Line and Scene.
Name Character vector containing the name of the specified label.
Time Scalar double specifying the time, in seconds, when the label was

marked.
Position Label Type Description

Rectangle Position of bounding box locations, specified as a 1-
by-4 vector in the format [x,y,w,h].

Line Points along a polyline, specified as an N-by-2 vector in
the format [x1,y1;x2,y2; . . . xN,yN] for N points.

Scene []

Example of a labelsToAutomate table:

 Type Name Time Position
 _________ ____________ _________ ____________

 Rectangle 'Car' 0.033333 [1x4 double]
 Line 'LaneMarker' 0.066667 [5x2 double]
 Scene 'Sunny' 0.1 [0]

See Also
checkSetup | labelType | run | terminate |
vision.labeler.AutomationAlgorithm

2 Alphabetical List

2-692

Introduced in R2017a

 initialize

2-693

run
Run label automation on every frame in interval

run computes the labels for a single image frame by executing the automation algorithm.

Clients of AutomationAlgorithm must implement this method.

Syntax
autoLabels = run(algObj,I)

Description
autoLabels = run(algObj,I) processes a single image, I, using the algObj
automation algorithm, and returns the automated labels in autoLabels.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

I — Image frame
numeric matrix

Image frame, specified as a numeric matrix.

Output Arguments
autoLabels — Labels from automation
table | struct array | categorical matrix

Labels from automation, returned as one of the following.

2 Alphabetical List

2-694

• For algorithms without pixel labels, autoLabels is returned as a table (or struct
array) containing these variable (or field) names.

Variable Name Description
Type Enumeration of class labelType with possible values of

Rectangle, Line and Scene.
Name Character vector containing the name of the specified label.
Position 1-by-4 vector in the format [x,y,w,h] that specifies the position of

bounding box locations for the Rectangle labelType.

N-by-2 vector in the format [x1,y1;x2,y2; . . . xN,yN] that
specifies N points along a polyline for the Line labelType.

[] for Scene labelType.

Example of an autoLabels table:

 Name Type Position
 ____________ _________ ____________

 'Car' Rectangle [1×4 double]
 'LaneMarker' Line [3×2 double]
 'Sunny' Scene [1]

For information on defining a table, see “Create autoLabels Table or Structure” on
page 2-695.

• For algorithms with pixel labels, autoLabels is returned as a categorical label
matrix, where each category represents a pixel label. See “How Labeler Apps Store
Exported Pixel Labels”

Tips

Create autoLabels Table or Structure
When you implement the run method for an automation algorithm without pixel labels,
you must populate a table or structure with the labels from automation, according to
autoLabels. This code demonstrates how to populate a structure array with three
elements.

 run

2-695

% Rectangle labeled 'Car' positioned with top-left at (20,20)
% with width and height equal to 50.
autoLabels(1).Name = 'Car';
autoLabels(1).Type = labelType('Rectangle');
autoLabels(1).Position = [20 20 50 50];

% Line labeled 'LaneMarker' with 3 points.
autoLabels(2).Name = 'LaneMarker';
autoLabels(2).Type = labelType('Line');
autoLabels(2).Position = [100 100; 100 110; 110 120];

% Scene labeled 'Sunny'
autoLabels(3).Name = 'Sunny';
autoLabels(3).Type = labelType('Scene');
autoLabels(3).Position = true;

See Also
checkSetup | initialize | labelType | terminate |
vision.labeler.AutomationAlgorithm

Introduced in R2017a

2 Alphabetical List

2-696

settingsDialog
Display algorithm settings (optional)

The settingsDialog method runs when the user clicks Settings in the labeling app. Use
this method to provide a dialog figure with controls for user settings required for the
algorithm. Use a modal dialog, created using functions like dialog, inputdlg or
listdlg.

Clients of AutomationAlgorithm can optionally implement this method.

Syntax
settingsDialog(algObj)

Description
settingsDialog(algObj) displays automated algorithm settings in a dialog.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

Introduced in R2017a

 settingsDialog

2-697

terminate
Terminate automated algorithm (optional)

The terminate method cleans up the state of the automation algorithm after run
processes the last frame in the specified interval or when the user stops the automation
algorithm.

Clients of AutomationAlgorithm can optionally implement this method.

Syntax
terminate(algObj)

Description
terminate(algObj) cleans up the state of the automation algorithm.

Input Arguments
algObj — Automation algorithm
vision.labeler.AutomationAlgorithm object

Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

See Also
checkSetup | initialize | run | vision.labeler.AutomationAlgorithm

Introduced in R2017a

2 Alphabetical List

2-698

vision.labeler.mixin.Temporal
Mixin interface for adding temporal context to automation algorithms

Description
The Temporal mixin class provides an interface for attaching temporal properties to an
automation algorithm. You can add this class only to automation algorithms used by the
Ground Truth Labeler (requires Automated Driving Toolbox) or Video Labeler app.

Properties
The Temporal class predefines this set of properties.

StartTime — Timestamp of first frame
scalar

Timestamp of the first frame of the algorithm interval, specified as a scalar.

CurrentTime — Timestamp of current executing frame
scalar

Timestamp of the current executing frame, specified as a scalar. This value updates
during the execution of the algorithm.

EndTime — Timestamp of last frame
scalar

Timestamp of the last frame of the algorithm interval, specified as a scalar.

StartFrameIndex — Index of first frame
integer

Index of the first frame of the algorithm interval, specified as an integer.

EndFrameIndex — Index of last frame
integer

 vision.labeler.mixin.Temporal

2-699

Index of the last frame of the algorithm interval, specified as an integer.

AutomationDirection — Direction in which to run automated algorithm
'Forward' | 'Reverse'

Direction in which to run the automated algorithm, specified as 'Forward' or
'Reverse'.

Object Functions
supportsReverseAutomation Set reverse algorithm automation flag

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
vision.labeler.AutomationAlgorithm

Topics
“Create Automation Algorithm for Labeling”
“Temporal Automation Algorithms”

Introduced in R2017b

2 Alphabetical List

2-700

supportsReverseAutomation
Set reverse algorithm automation flag

Syntax
flag = supportsReverseAutomation(algObj)

Description
flag = supportsReverseAutomation(algObj) indicates whether the temporal
automation algorithm, algObj, supports automation in the reverse direction. A true
value enables the Ground Truth Labeler (requires Automated Driving Toolbox) or Video
Labeler to open the algorithm in reverse mode.

Examples

Set Algorithm Automation Direction Flag
function flag = supportsReverseAutomation(algObj)
 flag = true;
end

Input Arguments
algObj — Temporal automation algorithm
object

Temporal automation algorithm, specified as an object.

 supportsReverseAutomation

2-701

Output Arguments
flag — Reverse automation indicator
true | false

Reverse automation indicator, returned as true or false.

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
vision.labeler.mixin.Temporal

Introduced in R2017b

2 Alphabetical List

2-702

labelType
Enumeration of supported label types

Description
The labelType enumeration provides a means to specify the type of label in a
labelDefinitionCreator object and the labeler apps: Ground Truth Labeler
(requires Automated Driving Toolbox), Image Labeler, and Video Labeler.

Creation

Syntax
labelType

Description
labelType creates an labelType enumeration to specify a type of label.

Enumerators
These properties represent the enumerators.

Rectangle — Rectangular region of interest
enumerator

Rectangular region of interest (ROI) label, specified as an enumerator in labelType
enumeration.

Line — Polyline region of interest label
enumerator

Polyline region of interest label, specified as an enumerator in labelType enumeration.

 labelType

2-703

Scene — Scene label
enumerator

Scene label, specified as an enumerator in labelType enumeration. Scene labels can be
marked on a frame or on an interval of frames.

Custom — Custom label type
enumerator

Custom label type, specified as an enumerator in labelType enumeration. The Labeler
apps do not display labels with type Custom.

PixelLabel — Label marked as pixel labeled region
enumerator

Label marked as pixel labeled region of interest, specified as an enumerator in
labelType enumeration. The pixel labeled ROI provides labels for every pixel within the
ROI and is used to label a group of neighboring pixels that share the same label category.

Object Functions
isCustom Determine if label types are Custom labels
isROI Determine if label types are ROI labels
isScene Determine if label types are Scene labels

Examples

Specify Label Type in Label Definition Creator Object

Create a label definition creator object. Add a label named "Road" with the label type
specified as a rectangle.

ldc = labelDefinitionCreator();
addLabel(ldc,'Road',labelType.Rectangle);

Add a label named "Sky" with the label type specified as a scene.

addLabel(ldc,'Sky',labelType.Scene);

2 Alphabetical List

2-704

Add a sublabel named "Lanes" to the label "Road". Specify the label type for the sublabel
as a line.

addSublabel(ldc,'Road','Lanes',labelType.Line);

Display the details of the definitions stored in the label definition creator object.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Road with 1 sublabels and 0 attributes. (info)
 Sky with 0 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "Road" as a structured data by using the info object
function. The Type field in the structure labelStruct indicates the type of label.

labelStruct = info(ldc,'Road')

labelStruct = struct with fields:
 Name: "Road"
 Type: Rectangle
 Attributes: []
 Sublabels: "Lanes"
 Description: ' '

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Get Started with the Image Labeler”
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data”

 labelType

2-705

“Create Automation Algorithm for Labeling”
“Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)

Introduced in R2017a

2 Alphabetical List

2-706

isCustom
Determine if label types are Custom labels

Syntax
tf = isCustom(labelTypes)

Description
tf = isCustom(labelTypes) returns a logical array that indicates which elements in
labelTypes are Custom label types. isCustom returns logical 1 (true) for Custom
labels and otherwise returns logical 0 (false).

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified a labelType enumeration. labelType can contain
Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

 isCustom

2-707

isROI
Determine if label types are ROI labels

Syntax
tf = isROI(labelTypes)

Description
tf = isROI(labelTypes) returns a logical array that indicates which elements in
labelTypes are ROI label types. isROI returns logical 1 (true) for ROI labels and
otherwise returns logical 0 (false). Valid ROI label types are Rectangle and Line.

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified a labelType enumeration. labelType can contain
Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

2 Alphabetical List

2-708

isScene
Determine if label types are Scene labels

Syntax
tf = isScene(labelTypes)

Description
tf = isScene(labelTypes) returns a logical array that indicates which elements in
labelTypes are Scene label types. isScene returns logical 1 (true) for Scene labels
and otherwise returns logical 0 (false).

Input Arguments
labelTypes — Type of labels
enumeration

Types of labels, specified a labelType enumeration. labelType can contain
Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

 isScene

2-709

attributeType
Enumeration of supported attribute types

Description
The attributeType enumeration provides a means to specify the type of attribute in a
labelDefinitionCreator object and the Ground Truth Labeler (requires Automated
Driving Toolbox) and Video Labeler apps.

Creation

Syntax
attributeType

Description
attributeType creates an attributeType enumeration to specify the type of
attribute.

Enumerators
These properties represent the enumerators.

Numeric — Numeric scalar attribute
enumerator

Numeric scalar attribute, specified as an enumerator in attributeType enumeration.

String — String attribute
enumerator

String attribute, specified as an enumerator in attributeType enumeration.

2 Alphabetical List

2-710

Logical — Logical attribute
enumerator

Logical attribute, specified as an enumerator in attributeType enumeration.

List — List of strings attribute
enumerator

List of strings attribute, specified as an enumerator in attributeType enumeration
takes the attribute value as a string from a pre-defined list of strings.

None — None
enumerator

None, specified as an enumerator in attributeType enumeration indicates that the
attribute type is not yet defined.

Object Functions
hasValue Determine if the attribute type is numeric or logical

Examples

Specify Attribute Type in Label Definition Creator Object

Create a label definition creator object and add a label named "Vehicle". Specify the type
of label as a rectangle.

ldc = labelDefinitionCreator();
addLabel(ldc,'Vehicle',labelType.Rectangle);

Add an attribute named "Color" to the label "Vehicle". Specify the attribute type as a list.

addAttribute(ldc,'Vehicle','Color',attributeType.List,{'White','Green','Blue'})

Display information about the attribute "Color" as a structured data by using the info
object function. The Type field in the output structure colorStruct indicates the type of
attribute.

colorStruct = info(ldc,'Vehicle/Color')

 attributeType

2-711

colorStruct = struct with fields:
 Name: "Color"
 Type: List
 ListItems: {'White' 'Green' 'Blue'}
 Description: ' '

See Also
Apps
Ground Truth Labeler | Video Labeler

Objects
groundTruth | labelDefinitionCreator

Introduced in R2018b

2 Alphabetical List

2-712

hasValue
Determine if the attribute type is numeric or logical

Syntax
tf = hasValue(typeOfAttribute)

Description
tf = hasValue(typeOfAttribute) returns a logical value that indicates if the
enumerator in typeOfAttribute is either Numeric or Logical. hasValue returns
logical 1 (true) for Numeric and Logical attributes. Otherwise returns logical 0
(false).

Examples

Determine the Type of Attribute

Create an attributeType enumeration array.

Type = attributeType({'Numeric'; 'String'; 'Logical'; 'List'});

Check if any of the enumerator defined in the attributeType enumeration array is
Numeric or Logical.

tf = zeros(0,length(Type));
for i = 1:length(Type)
 tf(i) = hasValue(Type(i));
end

Display the output. The value 1 is returned when an enumerator in the attributeType
enumeration array is either Numeric or Logical. Otherwise, the value 0 is returned.

tf

 hasValue

2-713

tf = 1×4

 1 0 1 0

Input Arguments
typeOfAttribute — Type of attribute
attributeType enumeration

Type of attribute, specified as an attributeType enumeration. The enumerator in the
attributeType enumeration can be Numeric, String, Logical, List, or None.

See Also
Objects
attributeType | groundTruth | labelDefinitionCreator

Introduced in R2018b

2 Alphabetical List

2-714

cameraParameters
Object for storing camera parameters

Description
The cameraParameters object stores the intrinsic, extrinsic, and lens distortion
parameters of a camera.

Creation
You can create a cameraParameters object using the cameraParameters function
described here. You can also create a cameraParameters object by using the
estimateCameraParameters with an M-by-2-by-numImages array of input image
points, where M is the number of keypoint coordinates in each pattern.

Syntax
cameraParams = cameraParameters
cameraParams = cameraParameters(Name,Value)
cameraParams = cameraParameters(paramStruct)

Description
cameraParams = cameraParameters creates a cameraParameters object that
contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

cameraParams = cameraParameters(Name,Value) sets properties on page 2-716
of the cameraParameters object by using one or more Name,Value pair arguments.
Unspecified properties use default values.

cameraParams = cameraParameters(paramStruct) creates an identical
cameraParameters object from an existing cameraParameters object with parameters
stored in paramStruct.

 cameraParameters

2-715

Input Arguments
paramStruct — Camera parameters
struct

Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from
an existing cameraParameters object, use the toStruct function.

Properties
Intrinsic camera parameters:

IntrinsicMatrix — Projection matrix
3-by-3 identity matrix

Projection matrix, specified as a 3-by-3 identity matrix. The object uses the following
format for the matrix format:

fx 0 0
s f y 0
cx cy 1

The coordinates [cx cy] represent the optical center (the principal point), in pixels. When
the x and y axis are exactly perpendicular, the skew parameter, s, equals 0.
fx = F*sx
fy = F*sy
F, is the focal length in world units, typically expressed in millimeters.
[sx, sy] are the number of pixels per world unit in the x and y direction respectively.
fx and fy are expressed in pixels.

PrincipalPoint — Optical center
2-element vector

Optical center, specified as a 2-element vector [cx,cy] in pixels. The vector contains the
coordinates of the optical center of the camera.

FocalLength — Focal length
2-element vector

Focal length in x and y, specified as a 2-element vector [fx, fy].

2 Alphabetical List

2-716

fx = F * sx
fy = F * sy
F is the focal length in world units, typically in millimeters, and [sx, sy] are the number of
pixels per world unit in the x and y direction respectively. Thus, fx and fy are in pixels.

The focal length F influences the angle of view and thus affects the area of the scene that
appears focused in an image. For a fixed subject distance:

• A short focal length offers a wide angle of view allowing to capture large area of the
scene under focus. It emphasizes both the subject and the scene background.

• A long focal length offers a narrow angle of view, thus reducing the area of the scene
under focus. It emphasizes more on the subject and restricts the amount of
background from being captured.

Skew — Camera axes skew
0 (default) | scalar

Camera axes skew, specified as a scalar. If the x and the y axes are exactly perpendicular,
then set the skew to 0.

Camera lens distortion:

RadialDistortion — Radial distortion coefficients
[0 0 0] (default) | 2-element vector | 3-element vector

Radial distortion coefficients, specified as either a 2- or 3-element vector. When you
specify a 2-element vector, the object sets the third element to 0. Radial distortion occurs
when light rays bend more near the edges of a lens than they do at its optical center. The
smaller the lens, the greater the distortion. The camera parameters object calculates the
radial distorted location of a point. You can denote the distorted points as (xdistorted,
ydistorted), as follows:

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

x, y = undistorted pixel locations
k1, k2, and k3 = radial distortion coefficients of the lens
r2 = x2 + y2

Typically, two coefficients are sufficient. For severe distortion, you can include k3. The
undistorted pixel locations appear in normalized image coordinates, with the origin at the
optical center. The coordinates are expressed in world units.

 cameraParameters

2-717

TangentialDistortion — Tangential distortion coefficients
[0 0]' (default) | 2-element vector

Tangential distortion coefficients, specified as a 2-element vector. Tangential distortion
occurs when the lens and the image plane are not parallel. The camera parameters object
calculates the tangential distorted location of a point. You can denote the distorted points
as (xdistorted, ydistorted). The undistorted pixel locations appear in normalized image
coordinates, with the origin at the optical center. The coordinates are expressed in world
units.

Tangential distortion occurs when the lens and the image plane are not parallel. The
tangential distortion coefficients model this type of distortion.

Camera lens

Vertical plane

Zero Tangential Distortion

Lens and sensor are parallel

Camera
sensor

Camera lens

Tangential Distortion

Lens and sensor are not parallel

Camera
sensor

Vertical plane

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

2 Alphabetical List

2-718

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2: x2 + y2

Extrinsic camera parameters:

RotationMatrices — 3-D rotation matrix
3-by-3-by-P matrix (read-only)

3-D rotation matrix, specified as a 3-by-3-by-P, with P number of pattern images. Each 3-
by-3 matrix represents the same 3-D rotation as the corresponding vector.

The following equation provides the transformation that relates a world coordinate in the
checkerboard’s frame [X Y Z] and the corresponding image point [x y]:

s x y 1 = X Y Z 1
R
t

K

R is the 3-D rotation matrix.
t is the translation vector.
K is the IntrinsicMatrix.
s is a scalar.
This equation does not take distortion into consideration. Distortion is removed by the
undistortImage function.

RotationVectors — 3-D rotation vectors
[] (default) | M-by-3 matrix (read-only)

3-D rotation vectors , specified as a M-by-3 matrix containing M rotation vectors. Each
vector describes the 3-D rotation of the camera’s image plane relative to the
corresponding calibration pattern. The vector specifies the 3-D axis about which the
camera is rotated, where the magnitude is the rotation angle in radians. The
corresponding 3-D rotation matrices are given by the RotationMatrices property

TranslationVectors — Camera translations
M-by-3 matrix | []

Camera translations, specified as an M-by-3 matrix. This matrix contains translation
vectors for M images. The vectors contain the calibration pattern that estimates the
calibration parameters. Each row of the matrix contains a vector that describes the
translation of the camera relative to the corresponding pattern, expressed in world units.

 cameraParameters

2-719

The following equation provides the transformation that relates a world coordinate in the
checkerboard’s frame [X Y Z] and the corresponding image point [x y]:

s x y 1 = X Y Z 1
R
t

K

R is the 3-D rotation matrix.
t is the translation vector.
K is the IntrinsicMatrix.
s is a scalar.
This equation does not take distortion into consideration. Distortion is removed by the
undistortImage function.

You must set the RotationVectors and TranslationVectors properties in the
constructor to ensure that the number of rotation vectors equals the number of
translation vectors. Setting only one property but not the other results in an error.

Estimated camera parameter accuracy:

MeanReprojectionError — Average Euclidean distance
numeric value (read-only)

Average Euclidean distance between reprojected and detected points, specified as a
numeric value in pixels.

ReprojectionErrors — Estimated camera parameters accuracy
M-by-2-by-P array

Estimated camera parameters accuracy, specified as an M-by-2-by-P array of [x y]
coordinates. The [x y] coordinates represent the translation in x and y between the
reprojected pattern key points and the detected pattern key points. The values of this
property represent the accuracy of the estimated camera parameters. P is the number of
pattern images that estimates camera parameters. M is the number of keypoints in each
image.

ReprojectedPoints — World points reprojected onto calibration images
M-by-2-by-P array

World points reprojected onto calibration images, specified as an M-by-2-by-P array of [x
y] coordinates. P is the number of pattern images and M is the number of keypoints in
each image.

2 Alphabetical List

2-720

Settings for camera parameter estimation:

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns that estimates camera extrinsics, specified as an integer.
The number of calibration patterns equals the number of translation and rotation vectors.

WorldPoints — World coordinates
M-by-2 array | []

World coordinates of key points on calibration pattern, specified as an M-by-2 array. M
represents the number of key points in the pattern.

WorldUnits — World points units
'mm' (default) | character vector

World points units, specified as a character vector. The character vector describes the
units of measure.

EstimateSkew — Estimate skew flag
false (default) | logical scalar

Estimate skew flag, specified as a logical scalar. When you set the logical to true, the
object estimates the image axes skew. When you set the logical to false, the image axes
are exactly perpendicular.

NumRadialDistortionCoefficients — Number of radial distortion coefficients
2 (default) | 3

Number of radial distortion coefficients, specified as the number '2' or '3'.

EstimateTangentialDistortion — Estimate tangential distortion flag
false (default) | logical scalar

Estimate tangential distortion flag, specified as the logical scalar true or false. When
you set the logical to true, the object estimates the tangential distortion. When you set
the logical to false, the tangential distortion is negligible.

 cameraParameters

2-721

Object Functions
pointsToWorld Determine world coordinates of image points
toStruct Convert a camera parameters object into a struct
worldToImage Project world points into image

Examples

Remove Distortion from an Image Using the Camera Parameters Object

Use the camera calibration functions to remove distortion from an image. This example
creates a vision.CameraParameters object manually, but in practice, you would use
the estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision.CameraParameters object manually.

IntrinsicMatrix = [715.2699 0 0; 0 711.5281 0; 565.6995 355.3466 1];
radialDistortion = [-0.3361 0.0921];
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix,'RadialDistortion',radialDistortion);

Remove distortion from the images.

I = imread(fullfile(matlabroot,'toolbox','vision','visiondata','calibration','mono','image01.jpg'));
J = undistortImage(I,cameraParams);

Display the original and the undistorted images.

figure; imshowpair(imresize(I,0.5),imresize(J,0.5),'montage');
title('Original Image (left) vs. Corrected Image (right)');

References
[1] Zhang, Z. “A flexible new technique for camera calibration”. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330–1334, 2000.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit
Image Correction”, IEEE International Conference on Computer Vision and
Pattern Recognition, 1997.

2 Alphabetical List

2-722

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• Use the toStruct method to pass a cameraParameters object into generated code.

See the “Code Generation for Depth Estimation From Stereo Video” example.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
cameraCalibrationErrors | extrinsicsEstimationErrors |
intrinsicsEstimationErrors | stereoParameters

Functions
detectCheckerboardPoints | estimateCameraParameters |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors |
undistortImage

Topics
“Measuring Planar Objects with a Calibrated Camera”
“Code Generation for Depth Estimation From Stereo Video”
“Single Camera Calibrator App”

Introduced in R2014a

 cameraParameters

2-723

fisheyeCalibrationErrors
Object for storing standard errors of estimated fisheye camera parameters

Description
fisheyeCalibrationErrors contains the standard errors of estimated camera
parameters. You can access the standard errors of the intrinsics and extrinsics by using
the object properties. To display the standard errors, use the displayErrors function.

Creation
The estimateFisheyeParameters function returns the fisheyeCalibrationErrors
object.

Properties
IntrinsicsErrors — Standard errors of estimated intrinsics
fisheyeIntrinsicsEstimationErrors object

Standard errors of the estimated intrinsics for a fisheye camera, specified as a
fisheyeIntrinsicsEstimationErrors object.

ExtrinsicsErrors — Standard errors of estimated rotations and translations
extrinsicsEstimationErrors object

Standard errors of the estimated rotations and translations for a fisheye camera relative
to the calibration pattern, specified as a extrinsicsEstimationErrors object.

Object Functions
displayErrors Display standard errors of camera parameter estimates

2 Alphabetical List

2-724

Examples

Display Fisheye Camera Calibration Errors

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye parameters using image and world points. Use the first image to get
the image size. Also, store the errors from the calibration.

I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
 worldPoints,imageSize);

Display the standard errors of the estimated camera parameters.

displayErrors(errors,params);

 Standard Errors of Estimated Camera Parameters
 --

Intrinsics

Mapping coefficients: [875.0781 +/- 0.9451 -0.0003 +/- -0.0000 -0.0000 +/- 0.0000 0.0000 +/- -0.0000]
Distortion center (pixels):[1005.8165 +/- 0.6871 743.0346 +/- 0.5578]
Stretch matrix parameters:[1.0000 +/- 0.0000 0.0000 +/- 0.0000 0.0000 +/- 0.0000]

Extrinsics

Rotation vectors:
 [-0.0699 +/- 0.0010 -0.0267 +/- 0.0009 0.0258 +/- 0.0002]

 fisheyeCalibrationErrors

2-725

 [0.3628 +/- 0.0010 0.2950 +/- 0.0009 -0.1967 +/- 0.0003]
 [-0.2159 +/- 0.0009 0.3442 +/- 0.0009 -0.1941 +/- 0.0003]
 [0.0282 +/- 0.0009 -0.3784 +/- 0.0009 0.0829 +/- 0.0003]
 [0.0146 +/- 0.0008 0.4575 +/- 0.0009 -0.1215 +/- 0.0003]
 [0.6775 +/- 0.0008 0.1089 +/- 0.0008 -0.0386 +/- 0.0004]
 [-0.4936 +/- 0.0008 0.0063 +/- 0.0008 0.0486 +/- 0.0003]
 [0.3823 +/- 0.0008 0.2797 +/- 0.0008 0.1509 +/- 0.0003]
 [0.5171 +/- 0.0008 -0.3295 +/- 0.0008 0.0541 +/- 0.0003]
 [-0.1896 +/- 0.0008 -0.3543 +/- 0.0009 0.2637 +/- 0.0003]
 [-0.2911 +/- 0.0008 0.3680 +/- 0.0008 -0.1329 +/- 0.0003]

Translation vectors (mm):
 [-132.9182 +/- 0.1609 -82.6066 +/- 0.1356 195.1106 +/- 0.2311]
 [-178.9931 +/- 0.1905 -15.7750 +/- 0.1712 241.7126 +/- 0.2795]
 [-183.7957 +/- 0.2168 -56.7378 +/- 0.1884 269.9739 +/- 0.2790]
 [-17.6295 +/- 0.1315 -70.2875 +/- 0.1041 157.0826 +/- 0.1933]
 [-161.9824 +/- 0.1808 -46.9681 +/- 0.1569 228.4060 +/- 0.2302]
 [-122.4240 +/- 0.1309 -16.0260 +/- 0.1153 162.6247 +/- 0.2072]
 [-112.4268 +/- 0.1745 -125.5877 +/- 0.1428 212.8055 +/- 0.2156]
 [-148.7137 +/- 0.1387 -72.5409 +/- 0.1260 173.7615 +/- 0.2086]
 [-49.5392 +/- 0.0919 -24.8329 +/- 0.0745 104.3541 +/- 0.1506]
 [-3.4045 +/- 0.1274 -93.4074 +/- 0.1010 155.8247 +/- 0.1693]
 [-160.7344 +/- 0.1855 -51.9152 +/- 0.1600 234.4075 +/- 0.2318]

See Also
estimateFisheyeParameters | extrinsicsEstimationErrors |
fisheyeIntrinsicsEstimationErrors | fisheyeParameters

Introduced in R2017b

2 Alphabetical List

2-726

fisheyeIntrinsics
Object for storing intrinsic fisheye camera parameters

Description
The fisheyeIntrinsics object stores the camera intrinsics for a fisheye camera. See
fisheyeParameters for details on other fisheye parameters.

Creation

Syntax
intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,
distortionCenter)
intrinsics = fisheyeIntrinsics(___ ,stretchMatrix)

Description
intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,
distortionCenter) returns a fisheyeIntrinsics object with the specified [a0 a2
a3 a4] polynomial coefficients, image size, and center of distortion. These input
arguments are assigned directly to the corresponding properties of the object. See
fisheyeParameters for more details.

intrinsics = fisheyeIntrinsics(___ ,stretchMatrix) additionally specifies a
2-by-2 transformation matrix that describes the alignment between the sensor plane and
the image plane. The default value is an identity matrix.

Properties
MappingCoeffecients — Polynomial coefficients for projection function
[a0 a2 a3 a4] vector

 fisheyeIntrinsics

2-727

Polynomial coefficients for the projection function described by Scaramuzza's Taylor
model, specified as an [a0 a2 a3 a4] vector.

DistortionCenter — Center of distortion in pixels
[cx cy] vector

Center of distortion in pixels, specified as a [cx cy] vector.

Stretchmatrix — Transformation from sensor plane to pixel in camera image
plane
2-by-2 transformation matrix

Transformation from the sensor plane to a pixel in the camera image plane, specified as a
2-by-2 transformation matrix. This misalignment is caused by the lens not being parallel
to the sensor and by the digitization process.

ImageSize — Image size
[mrows ncols] vector

Image size, specified as an [mrows ncols] vector.

Object Functions
pointsToWorld Determine world coordinates of image points
worldToImage Project world points into image

Examples

Create Fisheye Intrinsics

Specify the mapping coefficients, image size, and distortion center parameters of a
fisheyeIntrinsics object. Ignore optical axis misalignment.

mappingCoeffs = [880 -3e-4 0 0]; % mapping polynomial coefficients
imageSize = [1500 2000]; % in [mrows ncols]
distortionCenter = [1000 750]; % in pixels

intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,distortionCenter);

2 Alphabetical List

2-728

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating

Omindirectional Cameras." Proceedings to IEEE International Conference on
Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional
Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol.
108, 2015, pp.72–79.

See Also
estimateFisheyeParameters | fisheyeParameters

Introduced in R2017b

 fisheyeIntrinsics

2-729

fisheyeIntrinsicsEstimationErrors
Object for storing standard errors of estimated fisheye camera intrinsics

Description
fisheyeIntrinsicsEstimationErrors contains the standard errors of estimated
fisheye camera intrinsics.

Creation
The estimateFisheyeParameters function returns the fisheyeCalibrationErrors
object, which contains fisheyeIntrinsicsEstimationErrors and
extrinsicsEstimationErrors as properties.

Properties
MappingCoefficentsError — Standard error of mapping coefficient estimates
4-element vector

Standard error of mapping coefficient estimates, specified as a 4-element vector.

DistortionCenterError — Standard error of distortion center estimates
2-element vector

Standard error of distortion center estimates, specified as a two-element vector.

StretchMatrixError — Standard error of stretch matrix estimate
3-element vector

Standard error of stretch matrix estimate, specified as a 3-element vector.

See Also
cameraCalibrationErrors | stereoCalibrationErrors

2 Alphabetical List

2-730

Introduced in R2017b

 fisheyeIntrinsicsEstimationErrors

2-731

fisheyeParameters
Object for storing fisheye camera parameters

Description
The fisheyeParameters object is used to store fisheye camera parameters. Use
estimateFisheyeParameters to estimate parameters using calibration images.

Creation

Syntax
fisheyeParams = fisheyeParameters(intrinsics)
fisheyeParams = fisheyeParameters(intrinsics,Name,Value)

Description
fisheyeParams = fisheyeParameters(intrinsics) returns an object that
contains intrinsic and extrinsic parameters of a fisheye camera. intrinsics must be a
fisheyeIntrinsics object. This syntax sets the Intrinsics property of the object.

fisheyeParams = fisheyeParameters(intrinsics,Name,Value) configures the
fisheyeParams object properties using one or more Name,Value pair arguments.
Enclose the property name in single quotes. Unspecified properties have their default
values. For example, 'WorldUnits','m' sets the world units to 'm'.

Properties
Intrinsic Camera Parameters

Intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

2 Alphabetical List

2-732

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

Extrinsic Camera Parameters

RotationVectors — Camera rotations
[] (default) | M-by-3 matrix

Camera rotations, specified as an M-by-3 matrix. The matrix contains rotation vectors for
M images, where each image contains the calibration pattern that estimates the
calibration parameters. Each row of the matrix contains a vector that describes the 3-D
rotation of the camera relative to the corresponding pattern.

Each vector specifies the 3-D axis about which the camera is rotated. The magnitude of
the vector represents the angle of rotation in radians. You can convert any rotation vector
to a 3-by-3 rotation matrix using the Rodrigues formula.

To ensure that the number of rotation vectors equals the number of translation vectors,
you must set the RotationVectors and TranslationVectors properties together
when creating the object. Setting only one property results in an error.

TranslationVectors — Camera translations
[] (default) | M-by-3 matrix

Camera translations, specified as an M-by-3 matrix. This matrix contains translation
vectors for M images. The vectors contain the calibration pattern that estimates the
calibration parameters. Each row of the matrix contains a vector that describes the
translation of the camera relative to the corresponding pattern, expressed in world units.

To ensure that the number of rotation vectors equals the number of translation vectors,
you must set the RotationVectors and TranslationVectors properties together
when creating the object. Setting only one property results in an error.

Accuracy of Estimated Camera Parameters

ReprojectionErrors — Reprojection errors
[] (default) | M-by-2-by-P array

Reprojection errors, specified as an M-by-2-by-P array of [x,y] pairs. The [x,y] pairs
represent the translation in x and y between the reprojected pattern keypoints and the
detected pattern keypoints.

 fisheyeParameters

2-733

Settings Used to Estimate Camera Parameters

NumPatterns — Number of calibrated patterns
integer

Number of calibration patterns used to estimate camera extrinsics, specified as an
integer. The number of calibration patterns must equal the number of translation and
rotation vectors.

WorldPoints — World coordinates
[] (default) | M-by-2 matrix

World coordinates of key points on the calibration pattern, specified as an M-by-2 matrix.
M represents the number of key points in the pattern.

WorldUnits — World point units
'mm' (default) | character vector

World point units, specified as the comma-separated pair consisting of 'WorldUnits'
and a character vector representing units. This argument is used simply to store the unit
type and does not affect any calculations. Any character vector is valid.

EstimateAlignment — Estimate axes alignment
false (default) | true

Estimate axes alignment, specified as false or true. Set to true if the optical axis of
the fisheye lens is not perpendicular to the image plane.

Examples

Create Fisheye Parameters Object Manually

Create a fisheye parameters object by specifying the properties manually. Alternatively,
you can create this object using the estimateFisheyeParameters function.

Specify fisheye intrinsics.

 mappingCoefficients = rand(1,4);
 distortionCenter = [320 240];
 imageSize = [480 640];
 intrinsics = fisheyeIntrinsics(mappingCoefficients,imageSize,distortionCenter);

2 Alphabetical List

2-734

Create a fisheyeParameters object using the specified intrinsics.

 params = fisheyeParameters(intrinsics);

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating

Omindirectional Cameras." Proceedings to IEEE International Conference on
Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional
Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol.
108, 2015, pp.72–79.

See Also
estimateFisheyeParameters | fisheyeIntrinsics | showExtrinsics |
showReprojectionErrors | undistortFisheyeImage

Topics
“Fisheye Calibration Basics”

Introduced in R2017b

 fisheyeParameters

2-735

velodyneFileReader
Read point cloud data from Velodyne PCAP file

Description
The velodyneFileReader object reads point cloud data from a Velodyne® packet
capture (PCAP) file.

Creation

Syntax
veloReader = velodyneFileReader(fileName,deviceModel)
veloReader = velodyneFileReader(fileName,
deviceModel,'CalibrationFile',calibFile)

Description
veloReader = velodyneFileReader(fileName,deviceModel) creates a Velodyne
file reader that reads in point cloud data. Specify the PCAP file and the device model that
generated the file. The inputs set the FileName and DeviceModel properties directly.
The reader supports the VLP-16, Puck LITE, Puck Hi-Res, VLP-32C, HDL-32E, and
HDL-64E device models.

veloReader = velodyneFileReader(fileName,
deviceModel,'CalibrationFile',calibFile) specifies the Velodyne calibration
XML file and sets the CalibrationFile property.

Properties
FileName — Velodyne PCAP file name
character vector | string scalar

2 Alphabetical List

2-736

This property is read-only.

Name of Velodyne PCAP file to read lidar data from, specified as a character vector or
string scalar.

DeviceModel — Velodyne device model name
'VLP16' | 'PuckLITE' | 'PuckHiRes' | 'VLP32C' | 'HDL32E' | 'HDL64E'

This property is read-only.

Velodyne device model name, specified as 'VLP16', 'PuckLITE', 'PuckHiRes',
'VLP32C', 'HDL32E', or 'HDL64E'.

Note Specifying the incorrect device model returns an improperly calibrated point cloud.

CalibrationFile — Name of Velodyne calibration XML file
character vector | string scalar

This property is read-only.

Name of the Velodyne calibration XML file, specified as a character vector or string
scalar. This calibration file is included with every sensor.

NumberOfFrames — Total number of point clouds
positive integer

This property is read-only.

Total number of point clouds in the file, specified as a positive integer.

Duration — Total duration of file in seconds
duration scalar

This property is read-only.

Total duration of the file in seconds, specified as a duration scalar.

StartTime — Time of first point cloud reading
duration scalar

This property is read-only.

 velodyneFileReader

2-737

Time of the first point cloud, specified as a duration scalar in seconds.

Start and end times are specified relative to the previous whole hour. For instance, if the
file is recorded for 7 minutes from 1:58 p.m. to 2:05 p.m., then:

• StartTime = 58 min × 60 s = 3840 s
• EndTime = StartTime + 7 min × 60 s = 3900 s

EndTime — Time of last point cloud reading
duration scalar

This property is read-only.

Time of the last point cloud reading, specified as a duration scalar.

Start and end times are specified relative to the previous whole hour. For instance, if the
file is recorded for 7 minutes from 1:58 PM to 2:05 PM, then:

• StartTime = 58 min × 60 s = 3840 s
• EndTime = StartTime + 7 min × 60 s = 3900 s

CurrentTime — Time of current point cloud reading
duration scalar

Time for the current point cloud reading in seconds, specified as a duration scalar. As
you read point clouds using readFrame, this property is updated with the most recent
point cloud reading time. You can use reset to reset the value of this property to the
default value. The default value matches the StartTime property.

Object Functions
hasFrame Determine if another Velodyne point cloud is available
readFrame Read Velodyne point cloud from file
reset Reset the CurrentTime property of velodyneFileReader object to the default

value

Examples

2 Alphabetical List

2-738

Display Point Clouds from Velodyne PCAP File

Use the velodyneFileReader to read a packet capture (PCAP) file from a Velodyne®
sensor. View point clouds using pcplayer.

Read in point clouds by using a Velodyne® file reader. Specify the PCAP file to read and
the Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

The first point cloud of interest is captured at 0.3 second into the file. Set the
CurrentTime property to that time to being reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 10 seconds. Remove the last while condition to
display the full stream.

Use hasFrame to check if a new frame is available. Iterate through the file by calling
readFrame to read in point clouds. Display them using the point cloud player. Remove
the last while condition to display the full stream.

while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.StartTime + seconds(10)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

 velodyneFileReader

2-739

See Also
hasFrame | pcplayer | pcread | pcshow | pointCloud | readFrame | reset

2 Alphabetical List

2-740

External Websites
Velodyne Manuals

Introduced in R2018a

 velodyneFileReader

2-741

http://www.velodynelidar.com/downloads.html#manuals

hasFrame
Determine if another Velodyne point cloud is available

Syntax
isAvailable = hasFrame(veloReader)

Description
isAvailable = hasFrame(veloReader) determines if another point cloud is
available in the packet capture (PCAP) file of the input Velodyne file reader. As you read
point clouds using readFrame, the point clouds are read sequentially until this function
returns false.

Examples

Check for Next Point Cloud in Velodyne PCAP File

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file
and check for available frames using hasFrame.

Read in a point cloud by using a Velodyne® file reader. Specify the PCAP file to be read
and Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Check if the file reader has a point cloud to read.

disp(hasFrame(veloReader));

 1

Read the last frame of the file.

ptCloudObj = readFrame(veloReader,veloReader.NumberOfFrames);

2 Alphabetical List

2-742

Check again if the file reader has another point cloud available.

disp(hasFrame(veloReader));

 0

Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

Output Arguments
isAvailable — Indicator if frame is available
true | false

Indicator if frame is available, returned as true or false.

See Also
pcplayer | pcshow | pointCloud | readFrame | reset | velodyneFileReader

External Websites
Velodyne Manuals

Introduced in R2018a

 hasFrame

2-743

http://www.velodynelidar.com/downloads.html#manuals

readFrame
Read Velodyne point cloud from file

Syntax
ptCloud = readFrame(veloReader)
ptCloud = readFrame(veloReader,frameNumber)
ptCloud = readFrame(veloReader,frameTime)

Description
ptCloud = readFrame(veloReader) reads the next point cloud in sequence from the
Velodyne PCAP file and returns a pointCloud object.

ptCloud = readFrame(veloReader,frameNumber) reads the point cloud with the
specific frame number from the file.

ptCloud = readFrame(veloReader,frameTime) reads the first point cloud recorded
at or after the given frameTime.

Examples

Read Point Cloud from File Using Time Duration

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file
and select specific point clouds using a duration scalar.

Read in point clouds by using a Velodyne® file reader. Specify the PCAP file to read and
the Velodyne® device model.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Create a duration scalar that represents three seconds after the first point cloud
reading.

2 Alphabetical List

2-744

timeDuration = veloReader.StartTime + duration(0,0,3,'Format','s');

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Display the point cloud using pcshow.

figure
pcshow(ptCloudObj)

 readFrame

2-745

Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

frameNumber — Frame number of desired point cloud in the file
positive integer

Frame number of the desired point cloud in file, specified as a positive integer. Frame
numbers are sequential.

frameTime — Frame time of desired point cloud in file
duration scalar

Frame time of the desired point cloud in the file, specified as a duration scalar in
seconds. The first frame available at or after frameTime is given.

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

See Also
hasFrame | pcplayer | pcshow | pointCloud | reset | velodyneFileReader

External Websites
Velodyne Manuals

Introduced in R2018a

2 Alphabetical List

2-746

http://www.velodynelidar.com/downloads.html#manuals

reset
Reset the CurrentTime property of velodyneFileReader object to the default value

Syntax
reset(veloReader)

Description
reset(veloReader) resets the CurrentTime property of velodyneFileReader to
the default value. The default value is the StartTime property of
velodyneFileReader.

Examples

Reset the velodyneFileReader object

Construct velodyneFileReader object.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','PuckLITE');

Inspect the properties of the velodyneFileReader object to know the CurrentTime.
The default value of CurrentTime is the value of StartTime.

veloReader

veloReader =
 velodyneFileReader with properties:

 FileName: 'B:\matlab\toolbox\vision\visiondata\lidarData_ConstructionRoad.pcap'
 DeviceModel: 'PuckLITE'
 CalibrationFile: 'B:\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\PuckLITE.xml'
 NumberOfFrames: 1238
 Duration: 61.845 sec
 StartTime: 1145.1 sec

 reset

2-747

 EndTime: 1206.9 sec
 CurrentTime: 1145.1 sec

Use readFrame to read a pointcloud sequence from the object veloReader. Specify
frame number corresponding to the pointcloud sequence as 1000.

ptCloud = readFrame(veloReader,1000);

Inspect the CurrentTime property of velodyneFileReader object. The value of
CurrentTime is changed to 1195 sec with reference to the pointcloud sequence read.

veloReader.CurrentTime

ans = duration
 1195 sec

Reset the CurrentTime property of velodyneFileReader object.

reset(veloReader)

Inspect the CurrentTime property and verify that its value is reset to the default value.

veloReader.CurrentTime

ans = duration
 1145.1 sec

Input Arguments
veloReader — Velodyne file reader
velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

See Also
hasFrame | readFrame | velodyneFileReader

2 Alphabetical List

2-748

External Websites
Velodyne Manuals

Introduced in R2018a

 reset

2-749

http://www.velodynelidar.com/downloads.html#manuals

changeFilePaths
Change file paths in data source and pixel label data of ground truth object

Syntax
unresolvedPaths = changeFilePaths(gTruth,alterPaths)

Description
unresolvedPaths = changeFilePaths(gTruth,alterPaths) changes file paths in
the data source and pixel label data of a groundTruth object or array of groundTruth
objects, gTruth, to the specified file paths in alterPaths. You can use this function to
change the file paths of ground truth data that cannot be found. The function returns the
file paths from ground truth data as unresolvedPaths, when:

• One or more file paths in the data source or pixel label data of gTruth cannot be
found.

• One or more file paths in the data source or pixel label data of gTruth cannot be
resolved using the alternative file paths specified in alterPaths. In this case, the
alternative file paths cannot be found.

Examples

Change File Paths in Data Source and Pixel Label Data of Ground Truth Object

Load a file containing a ground truth object into the workspace. The data source and pixel
label data of the ground truth object contains file paths corresponding to an image
sequence. If the ground truth object contains file paths that cannot be found, a warning
message is displayed.

load('gTruthSeq.mat')

Warning: The data source points to a directory that cannot be found.
'C:\CFP\building'
Update the DataSource using using changeFilePaths method.

2 Alphabetical List

2-750

Display the data source of the ground truth object to view the file path.

gTruth.DataSource

ans =
'C:\CFP\building'

Specify an alternative file path to replace the current file path stored in the data source of
the ground truth object.

oldPathDataSource = "C:\CFP\building";
newPathDataSource = fullfile(matlabroot,"toolbox\vision\visiondata\building");

Display the pixel label data of the ground truth object to view the file path.

gTruth.LabelData.PixelLabelData

ans = 5×1 cell array
 {'C:\CFP\building\PixelLabelData\Label_1.png'}
 {'C:\CFP\building\PixelLabelData\Label_2.png'}
 {'C:\CFP\building\PixelLabelData\Label_3.png'}
 {'C:\CFP\building\PixelLabelData\Label_4.png'}
 {'C:\CFP\building\PixelLabelData\Label_5.png'}

Specify an alternative file path to replace the current file path stored in the pixel label
data of the ground truth object.

oldPathPixelLabel = "C:\CFP\building\PixelLabelData";
newPathPixelLabel = fullfile(matlabroot,"toolbox\vision\visiondata\building");

Create a cell array of both the current and alternative file paths for the data source and
pixel label data. Use this cell array as the input of the changeFilePaths function to
change the specified file paths in ground truth.

alterPaths = {[oldPathDataSource newPathDataSource];[oldPathPixelLabel newPathPixelLabel]};

Change the current file paths to the alternative file paths. The function updates these file
paths in the data source and pixel label data of the ground truth object. If the any of the
ground truth data is still not found using the alternative file paths, the function returns
the corresponding original file paths from data source as unresolved file paths.

unresolvedPaths = changeFilePaths(gTruth,alterPaths)

unresolvedPaths = 5×1 string array
 "C:\CFP\building\PixelLabelData\Label_1.png"

 changeFilePaths

2-751

 "C:\CFP\building\PixelLabelData\Label_2.png"
 "C:\CFP\building\PixelLabelData\Label_3.png"
 "C:\CFP\building\PixelLabelData\Label_4.png"
 "C:\CFP\building\PixelLabelData\Label_5.png"

Change the unresolved file path by specifying a different alternative path for
replacement. If the ground truth data is found using this different alternative file path,
the function returns unresolvedPaths as an empty string array.

oldPathPixelLabel = "C:\CFP\building\PixelLabelData";
newPathPixelLabel = fullfile(matlabroot,"toolbox\vision\visiondata\buildingPixellabels");
alterPaths = {[oldPathPixelLabel newPathPixelLabel]};
unresolvedPaths = changeFilePaths(gTruth,alterPaths)

unresolvedPaths =

 0×0 empty string array

Display the data source of the ground truth object to verify that the file paths were
changed.

gTruth.DataSource

ans =
groundTruthDataSource for a video as an image sequence with properties

 Source: {
 ' ...\matlab\toolbox\vision\visiondata\building\building1.JPG';
 ' ...\matlab\toolbox\vision\visiondata\building\building2.JPG';
 ' ...\matlab\toolbox\vision\visiondata\building\building3.JPG'
 ... and 2 more
 }
 TimeStamps: [5×1 duration]

Display the pixel label data of the ground truth object to verify that the file paths were
changed.

gTruth.LabelData.PixelLabelData

ans = 5×1 cell array
 {'Y:\jobarchive\Bdoc18b\2018_07_17_h18m13s56_job913679_pass\matlab\toolbox\vision\visiondata\buildingPixellabels\Label_1.png'}
 {'Y:\jobarchive\Bdoc18b\2018_07_17_h18m13s56_job913679_pass\matlab\toolbox\vision\visiondata\buildingPixellabels\Label_2.png'}
 {'Y:\jobarchive\Bdoc18b\2018_07_17_h18m13s56_job913679_pass\matlab\toolbox\vision\visiondata\buildingPixellabels\Label_3.png'}
 {'Y:\jobarchive\Bdoc18b\2018_07_17_h18m13s56_job913679_pass\matlab\toolbox\vision\visiondata\buildingPixellabels\Label_4.png'}

2 Alphabetical List

2-752

 {'Y:\jobarchive\Bdoc18b\2018_07_17_h18m13s56_job913679_pass\matlab\toolbox\vision\visiondata\buildingPixellabels\Label_5.png'}

Input Arguments
gTruth — Ground truth data
groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or an array of groundTruth
objects. The gTruth object contains the data source, label definitions, and label data
which includes pixel label data related to the ground truth.

alterPaths — Alternative file paths
cell array of string vectors

Alternative file paths, specified as a cell array of string vectors. Each string vector must
be of size 1-by-2 and of the form [current alternative], where:

• current is the current file path that you want to change. This file path is typically one
from the data source or pixel label data of gTruth that cannot be found.

• alternative is the desired file path to change the current file path to.

If you specify gTruth as an array of groundTruth objects, the same alternative file
paths apply to all groundTruth objects in the array.
Example: {[oldPath_1 newPath_1];[oldPath_2 newPath_2]} changes file path
oldPath_1 to newPath_1 and, similarly, oldPath_2 to newPath_2.

Output Arguments
unresolvedPaths — Unresolved file paths
string array

Unresolved file paths, returned as a string array. The returned strings are file paths from
the data source and pixel label data of gTruth that cannot be found or are not resolved
with the alternative file paths specified in alterPaths. The function returns
unresolvedPaths as an empty string array if all the file paths of the ground truth data
are found or resolved with the specified alternative file paths.

 changeFilePaths

2-753

See Also
groundTruth | groundTruthDataSource

Topics
“Share and Store Labeled Ground Truth Data”
“How Labeler Apps Store Exported Pixel Labels”

Introduced in R2018b

2 Alphabetical List

2-754

labelDefinitionCreator
Object for storing, modifying and creating label definitions table

Description
The labelDefinitionCreator object stores definitions of labels, sublabels, and
attributes for labeling ground truth data. Use “Object Functions” on page 2-756 to add,
remove, modify, or display label definitions. Using the create object function, you can
create label definitions table from the labelDefinitionCreator object. You can use
this label definitions table with the Ground Truth Labeler (requires Automated Driving
Toolbox), Image Labeler, and Video Labeler apps.

Creation

Syntax
ldc = labelDefinitionCreator()
ldc = labelDefinitionCreator(labelDefs)

Description
ldc = labelDefinitionCreator() creates an empty label definition creator object,
ldc. Add label definitions by using “Object Functions” on page 2-756. The details of the
stored labels, sublabels, and attributes can be inspected using the info object function.

ldc = labelDefinitionCreator(labelDefs) creates a label definition creator
object ldc and stores definitions from the label definitions table labelDefs. Use “Object
Functions” on page 2-756 to add new label definitions or modify the existing label
definitions. The details of the stored labels, sublabels, and attributes can be inspected
using the info object function.

 labelDefinitionCreator

2-755

Input Arguments
labelDefs — Label definitions
table

Label definitions, specified as a table with up to five columns. The possible columns are
Name, Type, PixelLabelID, Description, and Hierarchy. This table specifies the definitions
of labels, sublabels, and attributes for labeling ground truth data. For more details, see
“LabelDefinitions” on page 2-0 .

Output Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, returned as a labelDefinitionCreator object that contains
information about label definitions associated with ground truth data.

Note The labelDefinitionCreator supports the Ground Truth Labeler, Image
Labeler, and Video Labeler. Use of the Ground Truth Labeler requires Automated
Driving Toolbox.

Object Functions
addLabel Add label to label definition creator object
addSublabel Add sublabel to label in label definition creator object
addAttribute Add attributes to label or sublabel in label definition creator object
removeLabel Remove label from label definition creator object
removeSublabel Remove sublabel from label in label definition creator object
removeAttribute Remove attribute from label or sublabel in label definition creator

object
editLabelGroup Modify a label group name
editGroupName Change group name
editLabelDescription Modify description of label or sublabel in label definition

creator object
editAttributeDescription Modify description of attribute in label definition creator

object
create Create label definitions table from the label definition creator object

2 Alphabetical List

2-756

info Display information about a label, sublabel, or attribute stored in label definition
creator object

Examples

Create Label Definition Creator Object and Add Label Definitions

Create an empty label definition creator object.

ldc = labelDefinitionCreator()

ldc =

labelDefinitionCreator with 0 labels. Use the addLabel method to add a label.

Add a label with the name "Vehicle" and specify the type of label as a rectangle.

addLabel(ldc,'Vehicle',labelType.Rectangle)

Add a sublabel with the name "Wheel" and an attribute with the name "Color" to the label
"Vehicle" stored in ldc. Specify the type of sublabel as a rectangle and the attribute type
as a string with value 'Red'.

addSublabel(ldc,'Vehicle','Wheel',labelType.Rectangle)
addAttribute(ldc,'Vehicle','Color',attributeType.String,'Red')

Display the details of the label definition creator object.

ldc

ldc =

labelDefinitionCreator contains the following labels:

 Vehicle with 1 sublabels and 1 attributes. (info)

For more details about attributes and sublabels, use the info method.

Create Label Definition Creator Object from Existing Label Definitions Table

Load an existing label definitions table into the workspace.

 labelDefinitionCreator

2-757

labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld =

 struct with fields:

 labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table. Display the details
of the label definition creator object.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc =

labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Objects
attributeType | groundTruth | labelType

Introduced in R2018b

2 Alphabetical List

2-758

addLabel
Add label to label definition creator object

Syntax
addLabel(ldc,labelName,typeOfLabel)
addLabel(___ ,Name,Value)

Description
addLabel(ldc,labelName,typeOfLabel) adds a label with the specified name and
type to the label definition creator object ldc.

addLabel(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

Examples

Add Label Using Label Definition Creator

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator();

Add a label named 'Car'.

addLabel(ldc,'Car',labelType.Rectangle);

Inspect the label.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 addLabel

2-759

 Car with 0 sublabels and 0 attributes and belongs to None group. (info)

For more details about attributes and sublabels, use the info method.

Add another label named 'StopSign' in a group named 'TrafficSign'. Add a description.

addLabel(ldc,'StopSign','Rectangle','Group','TrafficSign','Description','Bounding boxes for stop signs');

Inspect the labels.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Car with 0 sublabels and 0 attributes and belongs to None group. (info)
 StopSign with 0 sublabels and 0 attributes and belongs to TrafficSign group. (info)

For more details about attributes and sublabels, use the info method.

Add Labels Related to Driving Scene to Label Definition Creator Object

Create an empty label definition creator object.

ldc = labelDefinitionCreator()

ldc =
labelDefinitionCreator

Add label "Vehicle" to the label definition creator object. Specify the type of label as a
rectangle.

addLabel(ldc,'Vehicle',labelType.Rectangle)

Add label "StopSign" to the label definition creator object. Specify the type of label as a
rectangle and add a description to the label.

addLabel(ldc,'StopSign',labelType.Rectangle,'Description','Bounding boxes for stop signs')

Display the details of the label definition creator object.

ldc

2 Alphabetical List

2-760

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 0 attributes. (info)
 StopSign with 0 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "Vehicle" using the object function info.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Rectangle
 Attributes: []
 Sublabels: []
 Description: ' '

Display information about the label "StopSign" using the object function info.

info(ldc,'StopSign')

 Name: "StopSign"
 Type: Rectangle
 Attributes: []
 Sublabels: []
 Description: 'Bounding boxes for stop signs'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the
label to be added.

typeOfLabel — Type of label
labelType enumeration | character vector | string scalar

 addLabel

2-761

Type of label, specified as one of these values:

• labelType enumeration — You can use any of these labelType enumerators to
specify the type of label: Rectangle, Line, PixelLabel, Scene, or Custom.

Example: addLabel(ldc,'Car',labelType.Rectangle);

• Character vector or string scalar — This value must partially or fully match one of the
labelType enumerators.

Example: addLabel(ldc,'Car','Rec');

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: addLabel(ldc,'Car',labelType.Rectangle,'Description','Type of
Vehicle');

Group — Group name
' None' (default) | character vector | string scalar

Group name, specified as a comma-separated pair consisting of 'Group' and a character
vector or string scalar. Use this name-value pair to specify a name for a group of labels.

Description — Label description
' ' (default) | character vector | string scalar

Label description, specified as a comma-separated pair consisting of 'Description'
and a character vector or string scalar. Use this name-value pair to describe the label.

See Also
Objects
labelDefinitionCreator | labelType

Functions
addAttribute | addSublabel | editLabelDescription | removeLabel

2 Alphabetical List

2-762

Introduced in R2018b

 addLabel

2-763

addSublabel
Add sublabel to label in label definition creator object

Syntax
addSublabel(ldc,labelName,sublabelName,typeOfSublabel)
addSublabel(___ ,Name,Value)

Description
addSublabel(ldc,labelName,sublabelName,typeOfSublabel) adds a sublabel
with the specified name and type to the indicated label. The sublabel is added under the
hierarchy for the specified label in the label definition creator object ldc.

addSublabel(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

Examples

Add Sublabels to Labels in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('labelDefsTable.mat')

Create a label definition creator object from the the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 Car with 0 sublabels and 0 attributes. (info)
 TrafficLight with 0 sublabels and 0 attributes. (info)

2 Alphabetical List

2-764

For more details about attributes and sublabels, use the info method.

Add sublabel "Wheel" to the label "Car". Specify the label type for sublabel as a rectangle
and add description to the sublabel.

addSublabel(ldc,'Car','Wheel',labelType.Rectangle,'Description','Bounding box for the wheel')

Add sublabels "RedLight" and "Greenlight" to the label "TrafficLight". Specify the label
type for the sublabels as rectangle.

addSublabel(ldc,'TrafficLight','RedLight',labelType.Rectangle)
addSublabel(ldc,'TrafficLight','GreenLight',labelType.Rectangle)

Display the details of the label definition creator object.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Car with 1 sublabels and 0 attributes. (info)
 TrafficLight with 2 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the sublabels under the label "Car" using the info object
function.

info(ldc,'Car')

 Name: "Car"
 Type: Rectangle
 Attributes: []
 Sublabels: "Wheel"
 Description: 'Bounding box for car'

Display information about the sublabels under the label "TrafficLight" using the info
object function.

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []

 addSublabel

2-765

 Sublabels: ["RedLight" "GreenLight"]
 Description: 'Bounding boxes for traffic light'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the
label to which the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel
to be added.

typeOfSublabel — Type of sublabel
labelType enumeration | character vector | string scalar

Type of sublabel, specified as one of these values:

• labelType enumeration — The type of sublabel must be one of these labelType
enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel',labelType.Rectangle)

• Character vector or string scalar — This value must partially or fully match one of
these labelType enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel','Rec')

Note The labelType enumerators PixelLabel, Scene, and Custom are not supported
as values for the type of sublabel in Ground Truth Labeler and Video Labeler apps.
Hence, they cannot be assigned for a sublabel.

2 Alphabetical List

2-766

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: addSublabel(ldc,'Car','Wheel','Rect','Description','Bounding
box for Wheel');

Description — Sublabel description
' ' (default) | character vector | string scalar

Sublabel description, specified as a comma-separated pair consisting of 'Description'
and a character vector or string scalar. Use this name-value pair to describe the sublabel.

See Also
Objects
labelDefinitionCreator | labelType

Functions
addAttribute | addLabel | removeSublabel

Introduced in R2018b

 addSublabel

2-767

addAttribute
Add attributes to label or sublabel in label definition creator object

Syntax
addAttribute(ldc,labelName,attributeName,typeOfAttribute,
attributeDefault)
addAttribute(___ ,Name,Value)

Description
addAttribute(ldc,labelName,attributeName,typeOfAttribute,
attributeDefault) adds an attribute with specified name and type to the indicated
label or sublabel. The attribute is added under the hierarchy for the specified label or
sublabel in the label definition creator object ldc.

addAttribute(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

Examples

Add Attributes to Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('sublabelDefsTable.mat')

Create a label definition creator object from the the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

2 Alphabetical List

2-768

 Car with 1 sublabels and 0 attributes. (info)
 TrafficLight with 2 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Add attribute "Color" to the label "Car". Specify the attribute type as a string with value
'Red'.

addAttribute(ldc,'Car','Color',attributeType.String,'Red')

Display information about the sublabels under the label "TrafficLight".

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: ["RedLight" "GreenLight"]
 Description: 'Bounding boxes for traffic light'

Add attribute "IsOn" to the label "TrafficLight/RedLight". Specify the attribute type as
logical with value true.

addAttribute(ldc,'TrafficLight/RedLight','IsOn','logical',true)

Display the details of the label definition creator object.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Car with 1 sublabels and 1 attributes. (info)
 TrafficLight with 2 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the attributes under the label "Car" using the info object
function.

info(ldc,'Car')

 Name: "Car"
 Type: Rectangle
 Attributes: "Color"

 addAttribute

2-769

 Sublabels: "Light"
 Description: 'Bounding box for vehicle'

Display information about the attributes for sublabel "RedLight" under the label
"TrafficLight" using the info object function.

info(ldc,'TrafficLight/RedLight')

 Name: "RedLight"
 Type: Rectangle
 Attributes: "IsOn"
 Sublabels: []
 Description: ' '

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely
identifies the label or sublabel to which the attribute is to be added.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the

attribute associates to the sublabel.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the
attribute to be added to the label or sublabel.

typeOfAttribute — Type of attribute
attributeType enumeration | character vector | string scalar

Type of attribute, specified as one of these values:

2 Alphabetical List

2-770

• attributeType enumeration — The type of attribute must be one of these
enumerators in attributeType enumeration: Numeric, Logical, String, or List.

Example: addAttribute(ldc,'Car','Color',attributeType.String,'Red');

• Character vector or string scalar — This value must partially or fully match one of the
enumerators in attributeType enumeration.

Example: addAttribute(ldc,'Car','Color','Str','Red');

attributeDefault — Default value of attribute
numeric scalar | logical scalar | character vector | string scalar | cell array of character
vectors | cell array of string scalars

Default value of the attribute, specified as one of these values:

• Numeric scalar — Specify this value when typeOfAttribute is Numeric.
• Logical scalar — Specify this value when typeOfAttribute is Logical.
• Character vector or string scalar — Specify this value when typeOfAttribute is

String.
• Cell array of character vectors or cell array of string scalars — Specify this value when

typeOfAttribute is List.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: addAttribute(ldc,'Car/
Wheel','Outsidediameter',attributeType.Numeric,740,'Description','Ou
tside diameter in mm');

Description — Attribute description
' ' (default) | character vector | string scalar

Attribute description, specified as a comma-separated pair consisting of 'Description'
and a character vector or string scalar. Use this name-value pair to describe the attribute.

 addAttribute

2-771

See Also
Objects
attributeType | labelDefinitionCreator

Functions
addLabel | addSublabel | editAttributeDescription | removeAttribute

Introduced in R2018b

2 Alphabetical List

2-772

removeLabel
Remove label from label definition creator object

Syntax
removeLabel(ldc,labelName)

Description
removeLabel(ldc,labelName) removes the specified label from the label definition
creator object ldc.

Note Removing a label also removes any attributes or sublabels associated with that
label.

Examples

Remove Label from Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
 labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 removeLabel

2-773

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Remove the label "Vehicle" from the label definition creator object.

removeLabel(ldc,'Vehicle')

Display the details of the label definition creator object to confirm that "Vehicle" is
removed from the label definitions.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the
label to be removed from the label definition creator object.

2 Alphabetical List

2-774

See Also
Objects
labelDefinitionCreator

Functions
addLabel | removeAttribute | removeSubLabel

Introduced in R2018b

 removeLabel

2-775

removeSublabel
Remove sublabel from label in label definition creator object

Syntax
removeSublabel(ldc,labelName,sublabelName)

Description
removeSublabel(ldc,labelName,sublabelName) removes the specified sublabel
from the indicated label. This label must be in the label definition creator object ldc.

Note Removing a sublabel also removes any attributes associated with that sublabel.

Examples

Remove Sublabel from Label in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
 labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

2 Alphabetical List

2-776

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight" defined in the label definition creator
object.

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Remove the sublabel "Light" from the label "TrafficLight".

removeSublabel(ldc,'TrafficLight','Light')

Display the details of the label definition creator object to confirm that a sublabel is
removed from the label "TrafficLight".

ldc

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 0 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight". Confirm that the sublabel "Light" is
removed.

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []

 removeSublabel

2-777

 Sublabels: []
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the
label to which the sublabel is associated.

sublabelName — Sublabel name
character vector | string scalar

Sublabel name, specified as a character vector or string scalar that identifies the sublabel
to be removed from the indicated label labelName.

See Also
Objects
labelDefinitionCreator

Functions
addLabel | addSublabel | removeAttribute | removeLabel

Introduced in R2018b

2 Alphabetical List

2-778

removeAttribute
Remove attribute from label or sublabel in label definition creator object

Syntax
removeAttribute(ldc,labelName,attributeName)

Description
removeAttribute(ldc,labelName,attributeName) removes the specified attribute
from the indicated label or sublabel in the label definition creator object ldc.

Examples

Remove Attributes from Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
 labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)

 removeAttribute

2-779

 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

Remove an Attribute from a Label

Display information about the label "Vehicle" defined in the label definition creator object.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Rectangle
 Attributes: ["Class" "Color" "View"]
 Sublabels: []
 Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

Remove the attribute "Color" from the label "Vehicle".

removeAttribute(ldc,'Vehicle','Color')

Display information about the label "Vehicle". Confirm that the attribute "Color" is
removed.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Rectangle
 Attributes: ["Class" "View"]
 Sublabels: []
 Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

Remove an Attribute from a Sublabel

Display information about the label "TrafficLight" defined in the label definition creator
object.

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Display information about the sublabel "Light" under the label "TrafficLight".

2 Alphabetical List

2-780

info(ldc,'TrafficLight/Light')

 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'

Remove the attribute "Active" from the sublabel "TrafficLight/Light".

removeAttribute(ldc,'TrafficLight/Light','Active')

Display information about the sublabel "TrafficLight/Light". Confirm that the attribute
"Active" is removed.

info(ldc,'TrafficLight/Light')

 Name: "Light"
 Type: Rectangle
 Attributes: "Color"
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely
identifies the label or sublabel from which the attribute is to be removed.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the

attribute associates to the sublabel.

attributeName — Attribute name
character vector | string scalar

 removeAttribute

2-781

Attribute name, specified as a character vector or string scalar that identifies the
attribute to be removed from the indicated label or sublabel labelName.

See Also
Objects
labelDefinitionCreator

Functions
addAttribute | addLabel | removeLabel

Introduced in R2018b

2 Alphabetical List

2-782

editLabelDescription
Modify description of label or sublabel in label definition creator object

Syntax
editLabelDescription(ldc,labelName,description)

Description
editLabelDescription(ldc,labelName,description) modifies the description of
a label or sublabel identified by labelName. The label or sublabel must be in the label
definition creator object ldc.

Examples

Modify Description of Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

load('editlabelDefs.mat')

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

 editLabelDescription

2-783

Modify the Description of a Label

Display information about the label "LaneMarker".

info(ldc,'LaneMarker')

 Name: "LaneMarker"
 Type: Line
 Attributes: ["BoundaryType" "Location_wrt_Ego"]
 Sublabels: []
 Description: ''

Modify the description for the label "LaneMarker".

editLabelDescription(ldc,'LaneMarker','Use 5 or more points for curved lane lines.')

Display information about the label "LaneMarker" to verify the modified label description.

info(ldc,'LaneMarker')

 Name: "LaneMarker"
 Type: Line
 Attributes: ["BoundaryType" "Location_wrt_Ego"]
 Sublabels: []
 Description: 'Use 5 or more points for curved lane lines.'

Modify the Description of a Sublabel

Display information about the label "TrafficLight".

info(ldc,'TrafficLight')

 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Bounding box for the traffic light. Use sublabels to mark each individual light.'

Display information about the sublabel "Light" under the label "TrafficLight".

info(ldc,'TrafficLight/Light')

 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]

2 Alphabetical List

2-784

 Sublabels: []
 Description: 'lights'

Modify the description for the sublabel "Light".

editLabelDescription(ldc,'TrafficLight/Light','Mark a tight bounding box around each light.')

Display information about the sublabel "Light" to verify the modified sublabel description.

info(ldc,'TrafficLight/Light')

 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely
identifies the label or sublabel for which the description is to be updated.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains the new
description for the label or sublabel identified by labelName.

 editLabelDescription

2-785

See Also
Objects
groundTruth | labelDefinitionCreator

Functions
editAttributeDescription

Introduced in R2018b

2 Alphabetical List

2-786

editLabelGroup
Modify a label group name

Syntax
editLabelGroup(ldc,labelName,groupName)

Description
editLabelGroup(ldc,labelName,groupName) modifies the group name that
corresponds to the label identified by labelName. The label must be in the label
definition creator object ldc.

Examples

Modify Group Name for Labels

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator();

Add a rectangle label named Car in a group named Vehicle.

addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');

Add a rectangle label named Truck in a group named FourWheeler.

addLabel(ldc,'Truck',labelType.Rectangle,'Group','FourWheeler');

Move the Car label into the FourWheeler group.

editLabelGroup(ldc,'Car','FourWheeler');

Inspect the labels.

ldc

 editLabelGroup

2-787

ldc =
labelDefinitionCreator contains the following labels:

 Car with 0 sublabels and 0 attributes and belongs to FourWheeler group. (info)
 Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group. (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar that uniquely identifies the
label that corresponds to the groupName you want to modify.

groupName — Group name
character vector | string scalar

Group name, specified as a character vector or string scalar that identifies the group you
want to modify, which corresponds to the label specified by labelName.

See Also
Objects
labelDefinitionCreator

Functions
editGroupName | editLabelDescription

Introduced in R2019a

2 Alphabetical List

2-788

editGroupName
Change group name

Syntax
editGroupName(ldc,oldname,newname)

Description
editGroupName(ldc,oldname,newname) changes the group name from oldname to
newname. This function changes the group name in all the label definitions that have the
oldname.

Examples

Rename Label Group Created with labelDefinitionCreator

Create a labelDefinitionCreator.

ldc = labelDefinitionCreator();

Add labels named Car and Truck in a group named Vehicle.

addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');
addLabel(ldc,'Truck',labelType.Rectangle,'Group','Vehicle');

Change the Vehicle group name FourWheeler.

editGroupName(ldc,'Vehicle','FourWheeler');

Inspect the labels.

ldc

ldc =
labelDefinitionCreator contains the following labels:

 editGroupName

2-789

 Car with 0 sublabels and 0 attributes and belongs to FourWheeler group. (info)
 Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group. (info)

For more details about attributes and sublabels, use the info method.

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

oldname — Old group name
character vector | string scalar

Old group name, specified as a character vector or string scalar that uniquely identifies
group name you want to modify.

newname — New group name
character vector | string scalar

New group name, specified as a character vector or string scalar that uniquely identifies
the new group name.

See Also
Objects
labelDefinitionCreator

Functions
editLabelDescription | editLabelGroup

Introduced in R2019a

2 Alphabetical List

2-790

editAttributeDescription
Modify description of attribute in label definition creator object

Syntax
editAttributeDescription(ldc,labelName,attributeName,description)

Description
editAttributeDescription(ldc,labelName,attributeName,description)
modifies the description of an attribute under the label or sublabel identified by
labelName. The label or sublabel must be in the label definition creator object ldc.

Examples

Modify Description of Attributes in Label Definition Creator Object

Load an existing label definitions table into the workspace.

labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)

ld = struct with fields:
 labelDefs: [4x4 table]

Create a label definition creator object from the label definitions table.

ldc = labelDefinitionCreator(ld.labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes and belongs to None group. (info)
 Pedestrian with 0 sublabels and 0 attributes and belongs to None group. (info)

 editAttributeDescription

2-791

 LaneMarker with 0 sublabels and 2 attributes and belongs to None group. (info)
 TrafficLight with 1 sublabels and 0 attributes and belongs to None group. (info)

For more details about attributes and sublabels, use the info method.

Modify the Description of Attribute Under a Label

Display information about the label "Vehicle".

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Rectangle
 Group: "None"
 Attributes: ["Class" "Color" "View"]
 Sublabels: []
 Description: 'Draw a tight bounding box around the vehicle. Use this label for cars, buses and trailers.'

Display information about the attribute "Color" under the label "Vehicle".

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: ""
 Description: 'Color of the vehicle, specified as a string, such as red, blue, white.'

Modify the description of the attribute "Color" under the label "Vehicle".

editAttributeDescription(ldc,'Vehicle','Color','Color of the vehicle, specified as a string, e.g. "red".')

Display information about the label "Vehicle" to verify the modified attribute description.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: ""
 Description: 'Color of the vehicle, specified as a string, e.g. "red".'

Modify the Description of Attribute Under a Sublabel

Display information about the label "TrafficLight".

info(ldc,'TrafficLight')

2 Alphabetical List

2-792

 Name: "TrafficLight"
 Type: Rectangle
 Group: "None"
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Display information about the sublabel "Light" under the label "TrafficLight".

info(ldc,'TrafficLight/Light')

 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'

Display information about the attribute "Active" under the sublabel "TrafficLight/Light".

info(ldc,'TrafficLight/Light/Active')

 Name: "Active"
 Type: Logical
 DefaultValue: 0
 Description: 'Mark true if this light is active and false if not.'

Modify the description of the attribute "Active" under the sublabel "TrafficLight/Light".

editAttributeDescription(ldc,'TrafficLight/Light','Active','Is Active: true (DefaultValue: 1), false (DefaultValue: 0)')

Display information about the attribute "Active" to verify the modified attribute
description.

info(ldc,'TrafficLight/Light/Active')

 Name: "Active"
 Type: Logical
 DefaultValue: 0
 Description: 'Is Active: true (DefaultValue: 1), false (DefaultValue: 0)'

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

 editAttributeDescription

2-793

Label definition creator, specified as a labelDefinitionCreator object.

labelName — Label or sublabel name
character vector | string scalar

Label or sublabel name, specified as a character vector or string scalar that uniquely
identifies the label or sublabel to which the attribute is associated.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the

attribute is associated with the sublabel.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the
attribute for which the description is to be updated.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar that contains the new
description for the attribute identified by attributeName.

See Also
Objects
labelDefinitionCreator

Functions
editLabelDescription

Introduced in R2018b

2 Alphabetical List

2-794

create
Create label definitions table from the label definition creator object

Syntax
labelDefs = create(ldc)

Description
labelDefs = create(ldc) creates a label definitions table, labelDefs, from the
label definition creator object ldc. You can import the labelDefs table into the Ground
Truth Labeler (requires Automated Driving Toolbox), Image Labeler, and Video
Labeler apps to label ground truth data.

Examples

Create Label Definitions Table from Label Definition Creator Object

Create an empty label definition creator object.

ldc = labelDefinitionCreator()

ldc =
labelDefinitionCreator

Add a label "Vehicle" to the label definition creator object. Specify the type of label as a
rectangle and add a description to the label.

addLabel(ldc,'Vehicle','Rectangle','Description','Bounding box for the vehicle. Use this label for cars and buses.')

Add an attribute "IsCar" to the label "Vehicle". Specify the type of attribute as logical with
value true and add description to the attribute.

addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')

 create

2-795

Add an attribute "IsBus" to the label "Vehicle". Specify the type of attribute as logical with
value false and add description to the attribute.

addAttribute(ldc,'Vehicle','IsBus','logical',false,'Description','Type of vehicle')

Create a label definitions table from the definitions stored in the label definition creator
object.

labelDefs = create(ldc)

labelDefs=1×4 table
 Name Type Description Hierarchy
 _________ _________ __ ____________

 'Vehicle' Rectangle 'Bounding box for the vehicle. Use this label for cars and buses.' [1×1 struct]

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object. The object
ldc defines the labels, sublabels, and attributes used for generating the label definitions
table labelDefs.

Output Arguments
labelDefs — Label definitions
table

Label definitions, returned as a table with up to five columns. The possible columns are
Name, Type, PixelLabelID, Description, and Hierarchy.

Label
Definition

Description

Name Character vector identifying the name of the label specified by,
labelName.

2 Alphabetical List

2-796

Label
Definition

Description

Type labelType enumeration that identifies the label type specified by,
typeOfLabel

PixelLabelID A scalar, a column vector, or an M-by-3 matrix of integer-valued label
IDs. PixelLabelID specifies the pixel label values used to represent a
label. PixelLabelID values must be between 0 and 255. The function
creates this column, when typeOfLabel is labelType.PixelLabel.

Description Character vector that describes the label. The default value is ' '.
Hierarchy A "nested" struct containing the sublabels and the attributes. The

hierarchy column is generated, when the label definition creator object
contains label definitions with one or more sublabels and attributes.
The function adds the sublabel as a struct with name sublabelName
under the associated label. The sublabel type specified in,
typeOfSublabel and the sublabel description are added as members
of this struct. Similarly, an attribute is added as struct with name
attributeName under the associated label or sublabel. The attribute
value specified in, attributeDefault and the attribute description
are added as members of the attribute struct.

For example, this figure demonstrates the organization of the label definitions table
created from the label definition creator object ldc.

 create

2-797

Note The sublabel and the attribute properties are allowed only for label definitions table
associated with the Ground Truth Labeler and the Video Labeler apps. Hence, the
Hierarchy field exists only in label definitions table associated with the Ground Truth
Labeler and the Video Labeler app.

See Also
Objects
labelDefinitionCreator

2 Alphabetical List

2-798

Functions
addAttribute | addLabel | addSublabel | info

Introduced in R2018b

 create

2-799

info
Display information about a label, sublabel, or attribute stored in label definition creator
object

Syntax
info(ldc,name)
infoStruct = info(ldc,name)

Description
info(ldc,name) displays information about the specified label, sublabel or attribute
stored in the label definition creator object ldc.

infoStruct = info(ldc,name) returns the information as a structure.

Examples

Display Information About Definitions Stored in Label Definition Creator Object

Load an existing label definitions table into the workspace. Create a label definition
creator object.

FilePath = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
Ld = load(FilePath);
ldc = labelDefinitionCreator(Ld.labelDefs)

ldc =
labelDefinitionCreator contains the following labels:

 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)

2 Alphabetical List

2-800

For more details about attributes and sublabels, use the info method.

Get information about the label "TrafficLight" as a structured data.

trafficStruct = info(ldc,'TrafficLight')

trafficStruct = struct with fields:
 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabels to mark each individual light'

Get information about the sublabel "Light" under the label "TrafficLight" as a structured
data.

lightStruct = info(ldc,'TrafficLight/Light')

lightStruct = struct with fields:
 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'

Get information about the attribute "Color" under the sublabel "TrafficLight/Light" as a
structured data.

colorStruct = info(ldc,'TrafficLight/Light/Color')

colorStruct = struct with fields:
 Name: "Color"
 Type: List
 ListItems: {3×1 cell}
 Description: 'Specify the color of the light as one of Red, Yellow (amber) or Green.'

Display the ListItems field of the structure colorStruct.

colorStruct.ListItems

ans = 3×1 cell array
 {'Red' }

 info

2-801

 {'Yellow'}
 {'Green' }

Input Arguments
ldc — Label definition creator
labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

name — Name of label, sublabel, or attribute
character vector | string scalar

Name of label, sublabel, or attribute in the ldc object, specified as a character vector or
string scalar whose form depends on the type of name you specify.

• To specify a label, use the form 'labelName'.
• To specify a sublabel, use the form 'labelName/sublabelName'.
• To specify an attribute, use the form 'labelName/sublabelName/attributeName'.

Output Arguments
infoStruct — Information structure
structure

Information structure, returned as a structure that contains the fields Name, Type,
Attributes (when pertinent), Sublabels (when pertinent), and Description. If name
specifies an attribute, then infoStruct also contains the fields DefaultValue and
ListItems (for List attributes).

See Also
Objects
labelDefinitionCreator

2 Alphabetical List

2-802

Functions
addLabel | create

Introduced in R2018b

 info

2-803

vision.DeployableVideoPlayer
Package: vision

Display video

Description
The DeployableVideoPlayer object displays video frames. This player is capable of
displaying high definition video at high frame rates. This video player object supports C
code generation.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Creation

Syntax
depVideoPlayer = vision.DeployableVideoPlayer
depVideoPlayer = vision.DeployableVideoPlayer(Name,Value)

Description
depVideoPlayer = vision.DeployableVideoPlayer returns a video player
depVideoPlayer, for displaying video frames. This object, unlike the
vision.VideoPlayer object, can generate C code.

depVideoPlayer = vision.DeployableVideoPlayer(Name,Value) sets
properties using one or more name-value pairs. Enclose each property name in quotes.
For example, depVideoPlayer =
vision.DeployableVideoPlayer('Name','Caption title')

2 Alphabetical List

2-804

Properties
Location — Bottom left corner of video window
[] (default) | two-element vector

Location of bottom left corner of video frame, specified as a two-element vector. The first
and second elements are specified in pixels and represent the horizontal and vertical
coordinates respectively. The coordinates [0 0] represent the bottom left corner of the
screen. The default location depends on the screen resolution, and will result in a window
positioned in the center of the screen.

Name — Video window title bar caption
'Deployable Video Player'

Video window title bar caption, specified as the comma-separated pair consisting of
'Name' and a character vector.

Size — Size of video display window
True size (1:1) (default) | Full-screen | Custom

Size of video display window, specified as the comma-separated pair consisting of 'Size'
and Full-screen, True size (1:1) or Custom. When this property is set to Full-
screen, use the Esc key to exit out of full-screen mode.

CustomSize — Custom size for video player window
[300 410] (default) | two-element vector

Custom size for video player window, specified as the comma-separated pair consisting of
'CustomSize' and a two-element vector. The first and second elements are specified in
pixels and represent the horizontal and vertical components respectively. The video data
will be resized to fit the window. This property applies when you set the Size property to
Custom.

InputColorFormat — Color format of input signal
RGB (default) | 'YCbCr 4:2:2'

Color format of input signal, specified as the comma-separated pair consisting of
'InputColorFormat' and 'RGB' or 'YCbCr 4:2:2'. The number of columns in the Cb
and Cr components must be half the number of columns in Y.

 vision.DeployableVideoPlayer

2-805

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
depVideoPlayer(videoFrame)
depVideoPlayer(videoFrame,Y,Cb,Cr)

Description
depVideoPlayer(videoFrame) displays one grayscale or truecolor RGB video frame in
the video player.

depVideoPlayer(videoFrame,Y,Cb,Cr) displays one frame of YCbCr 4:2:2 video in
the color components Y, Cb, and Cr when you set the InputColorFormat property to
YCbCr 4:2:2. The number of columns in the Cb and Cr components must be half the
number of columns in the Y component.

Input Arguments
videoFrame — Video frame
truecolor | 2-D grayscale image

Video frame, specified as a truecolor or 2-D grayscale image.

Y,Cb,Cr — YCbCr color format
'YCbCr 4:2:2'

YCbCr color format, returned in the YCbCr 4:2:2 format.

2 Alphabetical List

2-806

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to vision.DeployableVideoPlayer
isOpen Visible or hidden status for player

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Play a Video From a File

Set up System objects to read and view a video file.

videoFReader = vision.VideoFileReader('atrium.mp4');
depVideoPlayer = vision.DeployableVideoPlayer;

Continue to read frames of video until the last frame is read. Exit the loop if user closes
the video player window.

cont = ~isDone(videoFReader);
 while cont
 videoFrame = videoFReader();
 depVideoPlayer(videoFrame);
 cont = ~isDone(videoFReader) && isOpen(depVideoPlayer);
 end

Release System objects.

release(videoFReader);
release(depVideoPlayer);

 vision.DeployableVideoPlayer

2-807

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code for this function uses a precompiled platform-specific shared library.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
vision.VideoFileReader | vision.VideoFileWriter | vision.VideoPlayer

Introduced in R2012a

2 Alphabetical List

2-808

https://www.mathworks.com/support/sysreq.html

Functions Alphabetical

3

selectLabelsByGroup
Select ground truth data for set of labels by group

Syntax
gtLabel = selectLabelsByGroup(gTruth,groups)

Description
gtLabel = selectLabelsByGroup(gTruth,groups) returns gtLabel, a
groundTruth object or an array of groundTruth objects, containing any labels from
gTruth that match those specified by groups.

Examples

Select Ground Truth Data By Group

Load data to create a ground truth object. Add the image folder to the path.

data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)

imageFilenames = 2x1 cell array
 {'stopSignImages/image001.jpg'}
 {'stopSignImages/image002.jpg'}

imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);

Define labels for identifying ground truth data.

names = {'stopSign';'carRear'};
types = [
 labelType('Rectangle')

3 Functions Alphabetical

3-2

 labelType('Rectangle')
];
groups = {'TrafficSigns';'Vehicles'};

labelDefs = table(names,types,groups,'VariableNames', {'Name','Type','Group'})

labelDefs=2×3 table
 Name Type Group
 __________ _________ ______________

 'stopSign' Rectangle 'TrafficSigns'
 'carRear' Rectangle 'Vehicles'

Initialize label data for rectangle ROIs.

numRows = numel(imageFilenames);
stopSignTruth = {[856 318 39 41]; [445 523 52 54]};
carRearTruth = {[398 378 315 210]; [332 633 691 287]};

Construct a table containing label data.

labelData = table(stopSignTruth,carRearTruth,'VariableNames',names)

labelData=2×2 table
 stopSign carRear
 ____________ ____________

 [1x4 double] [1x4 double]
 [1x4 double] [1x4 double]

Create a groundTruth object.

gTruth = groundTruth(dataSource,labelDefs,labelData)

gTruth =
 groundTruth with properties:

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [2x3 table]
 LabelData: [2x2 table]

Select labels by group.

 selectLabelsByGroup

3-3

vehicleGroundTruth = selectLabelsByGroup(gTruth, 'Vehicles')

vehicleGroundTruth =
 groundTruth with properties:

 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [1x3 table]
 LabelData: [2x1 table]

Input Arguments
gTruth — Ground truth labels
groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or an array of groundTruth
objects.

groups — Group names
cell array of character vectors | string array of character vectors

Group names, specified as a cell or string array of character vectors.

Output Arguments
gtLabel — Ground truth with only specified labels
groundTruth object | array of groundTruth objects

Ground truth with only specified labels, returned as a groundTruth object or an array of
groundTruth objects, containing any labels from gTruth that match those specified by
groups.

See Also
Objects
groundTruth | groundTruthDataSource

3 Functions Alphabetical

3-4

Functions
selectLabelsByName | selectLabelsByType

Introduced in R2019a

 selectLabelsByGroup

3-5

selectLabelsByType
Select ground truth data for a set of labels by type

Syntax
gtLabel = selectLabelsByType(gTruth,labelTypes)

Description
gtLabel = selectLabelsByType(gTruth,labelTypes) returns gtLabel a
groundTruth object or an array of groundTruth objects, containing any labels from
gTruth that match those specified by labelTypes..

Examples

Select Ground Truth Data by Types

Add the image directory to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
 addpath(imageDir);

Load the groundTruth object.

load('stopSignsAndCarsGroundTruth.mat');

View the label definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
 Name Type Group
 __________ _________ ______

 'stopSign' Rectangle 'None'

3 Functions Alphabetical

3-6

 'carRear' Rectangle 'None'
 'carFront' Rectangle 'None'

Obtain the ground truth data for Rectangle labelType.

rectGroundTruth = selectLabelsByType(stopSignsAndCarsGroundTruth,labelType.Rectangle);

Remove the image directory from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth labels
groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth
objects.

labelTypes — Label types
enumeration

Label types, specified as an enumeration.

Output Arguments
gtLabel — Ground truth with only specified labels
groundTruth object | array of groundTruth objects

Ground truth with only specified labels, returned as a groundTruth object or an array of
groundTruth objects, containing any labels from gTruth that match those specified by
labelTypes.

See Also
Objects
groundTruth | groundTruthDataSource

 selectLabelsByType

3-7

Functions
selectLabelsByGroup | selectLabelsByName

Introduced in R2019a

3 Functions Alphabetical

3-8

selectLabelsByName
Select ground truth data by name

Syntax
gtLabel = selectLabelsByName(gTruth,labelNames)

Description
gtLabel = selectLabelsByName(gTruth,labelNames) returns gtLabel, a
groundTruth object or an array of groundTruth objects, containing any labels from
gTruth that match those specified by labelNames.

Examples

Select Ground Truth Data By Name

Add the image directory to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);

Load the groundTruth object.

load('stopSignsAndCarsGroundTruth.mat');

View the label definitions.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
 Name Type Group
 __________ _________ ______

 'stopSign' Rectangle 'None'

 selectLabelsByName

3-9

 'carRear' Rectangle 'None'
 'carFront' Rectangle 'None'

Obtain the ground truth data for StopSign label name.

stopSignGroundTruth = selectLabelsByName(stopSignsAndCarsGroundTruth, ...
 'stopSign');

Obtain ground truth data for carRear and carFront.

carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth, ...
 {'carRear','carFront'});

Remove the image directory from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth labels
groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth
objects.

labelNames — Label names
cell array of character vectors | string array of character vectors

Label names, specified as a cell or string array of character vectors.

Output Arguments
gtLabel — Ground truth with only specified labels
groundTruth object | array of groundTruth objects

Ground truth with only specified labels, returned as a groundTruth object or an array of
groundTruth objects, containing any labels from gTruth that match those specified by
labelNames.

3 Functions Alphabetical

3-10

See Also
Objects
groundTruth | groundTruthDataSource

Functions
selectLabelsByGroup | selectLabelsByName

Introduced in R2019a

 selectLabelsByName

3-11

correct
Package: vision

Correction of measurement, state, and state estimation error covariance

Syntax
[z_corr,x_corr,P_corr] = correct(kalmanFilter,z)

Description
[z_corr,x_corr,P_corr] = correct(kalmanFilter,z) returns the correction of
measurement, state, and state estimation error covariance. The correction is based on the
current measurement z. The object overwrites the internal state and covariance of the
Kalman filter with corrected values.

Examples

Tracking Objects

Use the predict and correct functions based on detection results.

When the tracked object is detected, use the predict and correct functions with the
Kalman filter object and the detection measurement. Call the functions in the following
order:

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

When the tracked object is not detected, call the predict function, but not the correct
method. When the tracked object is missing or occluded, no measurement is available.
Set the functions up with the following logic:

[...] = predict(kalmanFilter);
If measurement exists

3 Functions Alphabetical

3-12

 [...] = correct(kalmanFilter,measurement);
end

If the tracked object becomes available after missing for the past t-1 contiguous time
steps, you can call the predict function t times. This syntax is particularly useful to
process asynchronous video.. For example,

for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)

Input Arguments
kalmanFilter — Kalman filter object
object

Kalman filter object.

z — Current measurement
N-element vector

Current measurement, specified as an N-element vector.

See Also
assignDetectionsToTracks | configureKalmanFilter

Introduced in R2012b

 correct

3-13

distance
Package: vision

Confidence value of measurement

Syntax
d = distance(kalmanFilter,zmatrix)

Description
d = distance(kalmanFilter,zmatrix) computes a distance between the location of
a detected object and the predicted location by the Kalman filter object. This distance
computation takes into account the covariance of the predicted state and the process
noise. The distance function can only be called after the predict function.

Use the distance function to find the best matches. The computed distance values
describe how a set of measurements matches the Kalman filter. You can thus select a
measurement that best fits the filter. This strategy can be used for matching object
detections against object tracks in a multiobject tracking problem. This distance
computation takes into account the covariance of the predicted state and the process
noise.

Examples

Track Location of An Object

Track the location of a physical object moving in one direction.

Generate synthetic data which mimics the 1-D location of a physical object moving at a
constant speed.

detectedLocations = num2cell(2*randn(1,40) + (1:40));

3 Functions Alphabetical

3-14

Simulate missing detections by setting some elements to empty.

detectedLocations{1} = [];
 for idx = 16: 25
 detectedLocations{idx} = [];
 end

Create a figure to show the location of detections and the results of using the Kalman
filter for tracking.

figure;
hold on;
ylabel('Location');
ylim([0,50]);
xlabel('Time');
xlim([0,length(detectedLocations)]);

 distance

3-15

Create a 1-D, constant speed Kalman filter when the physical object is first detected.
Predict the location of the object based on previous states. If the object is detected at the
current time step, use its location to correct the states.

kalman = [];
for idx = 1: length(detectedLocations)
 location = detectedLocations{idx};
 if isempty(kalman)
 if ~isempty(location)

 stateModel = [1 1;0 1];
 measurementModel = [1 0];
 kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'MeasurementNoise',4);
 kalman.State = [location, 0];

3 Functions Alphabetical

3-16

 end
 else
 trackedLocation = predict(kalman);
 if ~isempty(location)
 plot(idx, location,'k+');
 d = distance(kalman,location);
 title(sprintf('Distance:%f', d));
 trackedLocation = correct(kalman,location);
 else
 title('Missing detection');
 end
 pause(0.2);
 plot(idx,trackedLocation,'ro');
 end
 end
legend('Detected locations','Predicted/corrected locations');

 distance

3-17

Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean
Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian
noise with standard deviation of 0.1.

x = 1;
len = 100;
z = x + 0.1 * randn(1,len);

3 Functions Alphabetical

3-18

Remove noise from the signal by using a Kalman filter. The state is expected to be
constant, and the measurement is the same as state.

stateTransitionModel = 1;
measurementModel = 1;
obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'ProcessNoise',1e-5,'MeasurementNoise',1e-2);

z_corr = zeros(1,len);
for idx = 1: len
 predict(obj);
 z_corr(idx) = correct(obj,z(idx));
end

Plot results.

figure, plot(x * ones(1,len),'g-');
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');

 distance

3-19

Input Arguments
kalmanFilter — Kalman filter object
object

Kalman filter object.

zmatrix — Location of a detected object
N-column matrix

3 Functions Alphabetical

3-20

Location of a detected object, specified as an N-column matrix. Each row matrix contains
a measurement vector. The distance function returns a row vector where each distance
element corresponds to the measurement input.

Definitions

Distance Equation

d(z) = (z − Hx)T∑−1 (z − Hx) + ln ∑
Where Σ = HPHT + R and Σ is the determinant of Σ. You can then find the best matches
by examining the returned distance values.

See Also
assignDetectionsToTracks | configureKalmanFilter

Introduced in R2012b

 distance

3-21

vision.KalmanFilter.predict
Package: vision

Prediction of measurement

Syntax
[z_pred,x_pred,P_pred] = predict(kalmanFilter)
[z_pred,x_pred,P_pred] = predict(kalmanFilter,u)

Description
[z_pred,x_pred,P_pred] = predict(kalmanFilter) returns the prediction of
measurement, state, and state estimation error covariance at the next time step (e.g., the
next video frame). The object overwrites the internal state and covariance of the Kalman
filter with the prediction results.

[z_pred,x_pred,P_pred] = predict(kalmanFilter,u) additionally lets you
specify the control input, u. This syntax applies when you set the control model, B.

Examples

Tracking Objects

Use the predict and correct functions based on detection results.

When the tracked object is detected, use the predict and correct functions with the
Kalman filter object and the detection measurement. Call the functions in the following
order:

[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

3 Functions Alphabetical

3-22

When the tracked object is not detected, call the predict function, but not the correct
method. When the tracked object is missing or occluded, no measurement is available.
Set the functions up with the following logic:

[...] = predict(kalmanFilter);
If measurement exists
 [...] = correct(kalmanFilter,measurement);
end

If the tracked object becomes available after missing for the past t-1 contiguous time
steps, you can call the predict function t times. This syntax is particularly useful to
process asynchronous video.. For example,

for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)

Input Arguments
kalmanFilter — Kalman filter object
object

Kalman filter object.

u — Control input
L-element vector

Control input, specified as an L-element vector.

See Also
assignDetectionsToTracks | configureKalmanFilter

Introduced in R2012b

 vision.KalmanFilter.predict

3-23

pcregistercpd
Register two point clouds using CPD algorithm

Syntax
tform = pcregistercpd(moving,fixed)
[tform,movingReg] = pcregistercpd(moving,fixed)
[___ ,rmse] = pcregistercpd(moving,fixed)
[___] = pcregistercpd(moving,fixed,Name,Value)

Description
tform = pcregistercpd(moving,fixed) returns a transformation that registers a
moving point cloud with a fixed point cloud using the coherent point drift (CPD) algorithm
[1].

Note Consider downsampling point clouds using pcdownsample before using
pcregistercpd to improve the efficiency of registration.

[tform,movingReg] = pcregistercpd(moving,fixed) also returns the
transformed point cloud that aligns with the fixed point cloud.

[___ ,rmse] = pcregistercpd(moving,fixed) also returns the root mean square
error of the Euclidean distance between the aligned point clouds, using any of the
preceding syntaxes.

[___] = pcregistercpd(moving,fixed,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

3 Functions Alphabetical

3-24

Align Two Point Clouds Using CPD Algorithm

Load point cloud data into the workspace. Extract the moving and the fixed point clouds
from the point cloud data in workspace.

handData = load('hand3d.mat');
moving = handData.moving;
fixed = handData.fixed;

To improve the efficiency and accuracy of the CPD registration algorithm, downsample
the moving and the fixed point clouds.

movingDownsampled = pcdownsample(moving,'gridAverage',0.03);
fixedDownsampled = pcdownsample(fixed,'gridAverage',0.03);

Display the downsampled point clouds before registration.

figure
pcshowpair(movingDownsampled,fixedDownsampled,'MarkerSize',50)
xlabel('X')
xlabel('Y')
zlabel('Z')
title('Point clouds before registration')
legend('Moving point cloud','Fixed point cloud')
legend('Location','southoutside')

 pcregistercpd

3-25

Perform non-rigid registration using the CPD algorithm.

tform = pcregistercpd(movingDownsampled,fixedDownsampled);
movingReg = pctransform(movingDownsampled,tform);

Display the downsampled point clouds after registration.

figure
pcshowpair(movingReg,fixedDownsampled,'MarkerSize',50)
xlabel('X')
xlabel('Y')
zlabel('Z')
title('Point clouds after registration')
legend('Moving point cloud','Fixed point cloud')
legend('Location','southoutside')

3 Functions Alphabetical

3-26

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

 pcregistercpd

3-27

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxIterations',20 stops the CPD algorithm after 20 iterations.

Transform — Type of transformation
'Nonrigid' (default) | 'Rigid' | 'Affine'

Type of transformation, specified as the comma-separated pair consisting of
'Transform' and the 'Nonrigid', 'Rigid', or 'Affine' character vectors or string
scalars.
Data Types: char | string

OutlierRatio — Expected percentage of outliers
0.1 (default) | scalar in the range [0, 1)

Expected percentage of outliers with respect to a normal distribution, specified as the
comma-separated pair consisting of 'OutlierRatio' and a scalar in the range [0, 1).
Increasing this value reduces the influence of outliers and noise.
Data Types: single | double

MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations before CPD stops, specified as the comma-separated pair
consisting of 'MaxIterations' and a positive integer.
Data Types: single | double

Tolerance — Tolerance between consecutive CPD iterations
1e-5 (default) | scalar

Tolerance between consecutive CPD iterations, specified as the comma-separated pair
consisting of 'Tolerance' and a scalar. The algorithm stops when absolute percentage
change in the values of the log likelihood function measured between consecutive
iterations reaches or falls below the specified tolerance value. Decreasing this value
increases the likelihood of a better alignment.

3 Functions Alphabetical

3-28

Data Types: single | double

InteractionSigma — Interaction between points
2.0 (default) | positive scalar

Interaction between points, specified as the comma-separated pair consisting of
'InteractionSigma' and a positive scalar that represents standard deviation of a
Gaussian filter. Typical values are in the range [1.5,3]. Increasing this value increases
interaction between the points in point cloud. As a result, you can observe coherent
motion in the point cloud and every point undergoes the same displacement. Alternatively,
decreasing this value reduces interaction between the points in point cloud. As a result,
you can observe localized displacement of points and the output displacement field
exhibits localized deformation.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

Data Types: single | double

SmoothingWeight — Motion smoothing weight
3.0 (default) | positive scalar

Motion smoothing weight, specified as the comma-separated pair consisting of
'SmoothingWeight' and a positive scalar. Typical values are in the range [0.1,10].
Increase this value to produce a more coherent motion in the output displacement field.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

Data Types: single | double

Verbose — Display progress information
false (default) | true

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and a logical scalar. Set 'Verbose' to true to display progress information.
Data Types: logical

Note Both 'MaxIterations' and 'Tolerance' are used as stopping criteria. The
algorithm stops when it satisfies either of the stopping conditions, i.e., when the number

 pcregistercpd

3-29

of iteration reaches MaxIterations or the absolute percentage change in log likelihood
function is less than or equal to Tolerance.

Output Arguments
tform — Transformation
affine3d object | displacement field

Transformation, returned as an affine3d object or a displacement field. tform is the 3-
D transformation that registers the moving point cloud, moving to the fixed point cloud,
fixed. When 'Transform' is 'Nonrigid', pcregistercpd returns a displacement
field. The returned displacement field is a numeric matrix of same size and datatype as
the Location property of moving point cloud object, moving.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud
is aligned with the fixed point cloud, fixed.

rmse — Root mean square error
positive real number

Root mean square error, returned as a positive real number. rmse is the Euclidean
distance between the aligned point clouds.
Data Types: double

References
[1] Myronenko, A., and X. Song. "Point Set Registration: Coherent Point Drift.

"Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI). Vol 32, Number 12, December 2010, pp. 2262–2275.

3 Functions Alphabetical

3-30

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | pcdenoise | pcdownsample | pcmerge | pcregistericp |
pcregisterndt | pcshow | pcshowpair | pctransform | pointCloud

Introduced in R2018b

 pcregistercpd

3-31

initializeObject
System object: vision.HistogramBasedTracker
Package: vision

Set object to track

Syntax
initializeObject(H,I,R)

Description
Use the initializeObject method to set the object to track, and to set the initial
search window. Use this method before calling the step method.

initializeObject(H,I,R) sets the object to track by extracting it from the [x y width
height] region R located in the 2-D input image, I. The input image, I, can be any 2-D
feature map that distinguishes the object from the background. For example, the image
can be a hue channel of the HSV color space. Typically, I will be the first frame in which
the object appears. The region, R, is also used for the initial search window, in the next
call to the step method. For best results, the object must occupy the majority of the
region, R.

initializeObject(H,I,R,N) additionally, lets you specify N, the number of histogram
bins. By default, N is set to 16. Increasing N enhances the ability of the tracker to
discriminate the object. However, this approach also narrows the range of changes to the
object's visual characteristics that the tracker can accommodate. Consequently, this
narrow range increases the likelihood of losing track.

3 Functions Alphabetical

3-32

hide
Package:

Hide player figure

Syntax
hide(player)

Description
hide(player) hides the figure. To redisplay the player, use show on page 3-
37(player).

Examples

Hide and Show 3-D Point Cloud Figure

Load point cloud.

ptCloud = pcread('teapot.ply');

Create the player and customize player axis labels.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

 hide

3-33

Hide figure.

hide(player)

Show figure.

show(player)
view(player,ptCloud);

3 Functions Alphabetical

3-34

Input Arguments
player — Player
player object

 hide

3-35

Player for data, specified as a pcplayer or vision.VideoPlayer object.

Introduced in R2015b

3 Functions Alphabetical

3-36

show
Package:

Show player

Syntax
show(player)

Description
show(player) makes the player figure visible again after closing or hiding it.

Examples

Hide and Show 3-D Point Cloud Figure

Load point cloud.

ptCloud = pcread('teapot.ply');

Create the player and customize player axis labels.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);

 show

3-37

Hide figure.

hide(player)

Show figure.

show(player)
view(player,ptCloud);

3 Functions Alphabetical

3-38

Input Arguments
player — Player
object

 show

3-39

Player for visualizing data streams, specified as a pcplayer or a vision.VideoPlayer
object. Use this method to view the figure after you have removed it from display. For
example, after you x-out of a figure and you want to view it again. This is particularly
useful to use after a while loop that contains display code ends.

Introduced in R2015b

3 Functions Alphabetical

3-40

initializeObject
Set object to track

Syntax
initializeObject(hbtracker,I,R)
initializeObject(hbtracker,I,R,N)

Description
initializeObject(hbtracker,I,R) sets the object to track by extracting it from the
[x y width height] region R located in the 2-D input image, I. The input image, I, can be
any 2-D feature map that distinguishes the object from the background. For example, the
image can be a hue channel of the HSV color space. Typically, I will be the first frame in
which the object appears. The region, R, is also used for the initial search window, in the
next call to the step method. For best results, the object must occupy the majority of the
region, R.

initializeObject(hbtracker,I,R,N) additionally, lets you specify N, the number of
histogram bins.

Examples

Track a Face

Track and display a face in each frame of an input video.

Create System objects for reading and displaying video and for drawing a bounding box of
the object.

videoFileReader = vision.VideoFileReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
 'CustomBorderColor',[1 0 0]);

 initializeObject

3-41

Read the first video frame, which contains the object. Convert the image to HSV color
space. Then define and display the object region.

objectFrame = videoFileReader();
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);

figure
imshow(objectImage)
title('Red box shows object region')

(Optionally, you can select the object region using your mouse. The object must occupy
the majority of the region. Use the following command.)

figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);

Track and display the object in each video frame. The while loop reads each image frame,
converts the image to HSV color space, then tracks the object in the hue channel where it
is distinct from the background. Finally, the example draws a box around the object and
displays the results.

while ~isDone(videoFileReader)
 frame = videoFileReader();

3 Functions Alphabetical

3-42

 hsv = rgb2hsv(frame);
 bbox = tracker(hsv(:,:,1));

 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end

Release the video reader and player.

release(videoPlayer);
release(videoFileReader);

 initializeObject

3-43

Input Arguments
hbtracker — Histogram based tracker
vision.HistogramBasedTracker object

Histogram based tracker, specified as a vision.HistogramBasedTracker object.

I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

R — Initial search window
[x y width height]

3 Functions Alphabetical

3-44

Initial search window, specified in the format [x y width height].

N — Number of histogram bins
16 (default) | integer

Number of histogram bins, specified as an integer. Increasing the number of bins
enhances the ability of the tracker to discriminate the object. However, this approach also
narrows the range of changes to the object's visual characteristics that the tracker can
accommodate. Consequently, this narrow range increases the likelihood of losing track.

Introduced in R2012a

 initializeObject

3-45

initialize
Initialize video frame and points to track

Syntax
initialize(pointTracker,points,I)

Description
initialize(pointTracker,points,I) initializes points to track and sets the initial
video frame. The function sets the M-by-2 points array of [x y] coordinates with the
points to track, and sets the initial video frame, I.

If you want to use the point tracker as a persistent variable, you must call initialize
only during creation. If you call initialize in a loop, the previous state is lost and
therefore, the tracker cannot maintain tracking.

Examples

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of
the object.

videoFileReader = vision.VideoFileReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = videoFileReader();
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a
mouse. The object must occupy the majority of the region:

3 Functions Alphabetical

3-46

figure; imshow(objectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');

Detect interest points in the object region.

points = detectMinEigenFeatures(rgb2gray(objectFrame),'ROI',objectRegion);

 initialize

3-47

Display the detected points.

pointImage = insertMarker(objectFrame,points.Location,'+','Color','white');
figure;
imshow(pointImage);
title('Detected interest points');

Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);

3 Functions Alphabetical

3-48

Read, track, display points, and results in each video frame.

while ~isDone(videoFileReader)
 frame = videoFileReader();
 [points,validity] = tracker(frame);
 out = insertMarker(frame,points(validity, :),'+');
 videoPlayer(out);
end

 initialize

3-49

Release the video reader and player.

release(videoPlayer);
release(videoFileReader);

3 Functions Alphabetical

3-50

Input Arguments
pointTracker — Point tracker
PointTracker object

 initialize

3-51

Point tracker, specified as a vision.PointTracker object.

points — Points
M-by-2 array

Points, specified as an M-by-2 array of [x y] coordinates that correspond to the locations
of the points in the input frame, I.

I — Video frame
grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB) and must be the same size as the
images read into the tracker.

Introduced in R2012b

3 Functions Alphabetical

3-52

fcnLayers
Create fully convolutional network layers for semantic segmentation

Syntax
lgraph = fcnLayers(imageSize,numClasses)
lgraph = fcnLayers(imageSize,numClasses,'Type',type)

Description
lgraph = fcnLayers(imageSize,numClasses) returns a fully convolutional network
(FCN), configured as FCN 8s, for semantic segmentation. The FCN is preinitialized using
layers and weights from the VGG-16 network.

fcnLayers includes a pixelClassificationLayer to predict the categorical label for
every pixel in an input image. The pixel classification layer only supports RGB images.

This function requires the Deep Learning Toolbox Model for VGG-16 Network support
package. If this support package is not installed, then the vgg16 function provides a
download link.

lgraph = fcnLayers(imageSize,numClasses,'Type',type) returns an FCN
configured as a type specified by type.

Examples

Create Fully Convolutional Network 8s

Define the image size and number of classes, then create the network.

imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses)

Display the network.

 fcnLayers

3-53

plot(lgraph)

Create Fully Convolutional Network 16s

Create a FCN 16s.

imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses,'Type','16s')

Display the network.

plot(lgraph)

Input Arguments
imageSize — Network input image size
2-element vector

Network input image size, specified as a 2-element vector in the format [height, width].
The minimum image size is [224 224] because an FCN is based on the VGG-16 network.

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.

type — Type of FCN model
'8s' (default) | '16s' | '32s'

Type of FCN model, specified as one of the following:

FCN Model Description
'32s' Upsamples the final feature map by a factor of 32. This option

provides coarse segmentation with a lower computational cost.
'16s' Upsamples the final feature map by a factor of 16 after fusing the

feature map from the fourth pooling layer. This additional
information from earlier layers provides medium-grain
segmentation at the cost of additional computation.

3 Functions Alphabetical

3-54

FCN Model Description
'8s' Upsamples the final feature map by a factor of 8 after fusing

feature maps from the third and fourth max pooling layers. This
additional information from earlier layers provides finer-grain
segmentation at the cost of additional computation.

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the FCN network architecture, returned as a layerGraph object.

All transposed convolution layers are initialized using bilinear interpolation weights. All
transposed convolution layer bias terms are fixed to zero.

Tips
• Networks produced by fcnLayers support GPU code generation for deep learning

once they are trained with trainNetwork. See “Deep Learning Code Generation”
(Deep Learning Toolbox) for details and examples.

References
[1] Long, J., E. Shelhamer, and T. Darrell. "Fully Convolutional Networks for Semantic

Segmentation." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.

See Also
layerGraph | pixelClassificationLayer | pixelLabelImageDatastore |
segnetLayers | semanticseg | trainNetwork | unetLayers | vgg16

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

 fcnLayers

3-55

Introduced in R2017b

3 Functions Alphabetical

3-56

segnetLayers
Create SegNet layers for semantic segmentation

Syntax
lgraph = segnetLayers(imageSize,numClasses,model)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value)

Description
lgraph = segnetLayers(imageSize,numClasses,model) returns SegNet layers,
lgraph, that is preinitialized with layers and weights from a pretrained model.

SegNet is a convolutional neural network for semantic image segmentation. The network
uses a pixelClassificationLayer to predict the categorical label for every pixel in an
input image.

Use segnetLayers to create the network architecture for SegNet. You must train the
network using the Deep Learning Toolbox function trainNetwork.

lgraph = segnetLayers(imageSize,numClasses,encoderDepth) returns
uninitialized SegNet layers configured using the specified encoder depth.

lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value)
returns a SegNet layer with additional options specified by one or more Name,Value pair
arguments.

Examples

Train SegNet

Load training images and pixel labels.

 segnetLayers

3-57

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an image datastore holding the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle", "background"];
labelIDs = [255 0];

Create a pixel label datastore holding the ground truth pixel labels for the training
images.

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create SegNet layers.

imageSize = [32 32];
numClasses = 2;
lgraph = segnetLayers(imageSize,numClasses,2)

lgraph =
 LayerGraph with properties:

 Layers: [31x1 nnet.cnn.layer.Layer]
 Connections: [34x2 table]

Create a pixel label image datastore for training a semantic segmentation network.

pximds = pixelLabelImageDatastore(imds,pxds);

Set up training options.

options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
 'MaxEpochs',20,'VerboseFrequency',10);

Train the network.

net = trainNetwork(pximds,lgraph,options)

Training on single CPU.
Initializing input data normalization.

3 Functions Alphabetical

3-58

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:05 | 39.69% | 0.7640 | 0.0010 |
| 10 | 10 | 00:00:52 | 49.87% | 0.7390 | 0.0010 |
| 20 | 20 | 00:01:44 | 66.56% | 0.6911 | 0.0010 |
|==|

net =
 DAGNetwork with properties:

 Layers: [31x1 nnet.cnn.layer.Layer]
 Connections: [34x2 table]

Display the network.

plot(lgraph)

 segnetLayers

3-59

Create SegNet With Custom Encoder-Decoder Depth

Create SegNet layers with an encoder/decoder depth of 4.

imageSize = [480 640 3];
numClasses = 5;
encoderDepth = 4;
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)

lgraph =
 LayerGraph with properties:

3 Functions Alphabetical

3-60

 Layers: [59x1 nnet.cnn.layer.Layer]
 Connections: [66x2 table]

Display network.

figure
plot(lgraph)

 segnetLayers

3-61

Input Arguments
imageSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as a:

• 2-element vector in the format [height, width].
• 3-element vector in the format [height, width, depth]. depth is the number of image

channels. Set depth to 3 for RGB images, 1 for grayscale images, or to the number of
channels for multispectral and hyperspectral images.

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.

model — Pretrained network model
'vgg16' | 'vgg19'

Pretrained network model, specified as 'vgg16' or 'vgg19'. These models have an
encoder depth of 5.

encoderDepth — Encoder depth
positive integer

Encoder depth, specified as a positive integer.

SegNet is composed of an encoder and corresponding decoder subnetwork. The depth of
these networks determines the number of times the input image is downsampled or
upsampled as it is processed. The encoder network downsamples the input image by a
factor of 2D, where D is the value of encoderDepth. The decoder network upsamples the
encoder network output by a factor of 2D.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

3 Functions Alphabetical

3-62

Example: 'NumConvolutionLayers',1

NumConvolutionLayers — Number of convolutional layer sections
2 (default) | positive integer | vector of positive integers

Number of convolutional layers in each encoder and decoder section, specified as a
positive integer or vector of positive integers.

NumConvolutionLayers Description
scalar The same number of layers is used for all encoder and

decoder sections.
vector The kth element of NumConvolutionLayers is the

number of convolution layers in the kth encoder section
and corresponding decoder section. Typical values are
in the range [1, 3].

NumOutputChannels — Number of output channels
64 (default) | positive integer | vector of positive integers

Number of output channels for each section in the SegNet encoder network, specified as
a positive integer or vector of positive integers. segnetLayers sets the number of output
channels in the decoder to match the corresponding encoder section.

NumOutputChannels Description
scalar The same number of output channels is used for all

encoder and decoder sections.
vector The kth element of NumOutputChannels is the

number of output channels of the kth encoder section
and corresponding decoder section.

FilterSize — Convolutional layer filter size
3 (default) | positive odd integer | 2-element row vector of positive odd integers

Convolutional layer filter size, specified as a positive odd integer or a 2-element row
vector of positive odd integers. Typical values are in the range [3, 7].

FilterSize Description
scalar The filter is square.

 segnetLayers

3-63

FilterSize Description
2-element row vector The filter has the size [height width].

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the SegNet network architecture, returned as a layerGraph
object.

Tips
• The sections within the SegNet encoder and decoder subnetworks are made up of

convolutional, batch normalization, and ReLU layers.
• All convolutional layers are configured such that the bias term is fixed to zero.
• Convolution layer weights in the encoder and decoder subnetworks are initialized

using the 'MSRA' weight initialization method. For 'vgg16' or 'vgg19' models, only
the decoder subnetwork is initialized using MSRA.[1]

• Networks produced by segnetLayers support GPU code generation for deep
learning once they are trained with trainNetwork. See “Deep Learning Code
Generation” (Deep Learning Toolbox) for details and examples.

References
[1] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification." Proceedings of the IEEE
International Conference on Computer Vision. 2015, 1026–1034.

[2] Badrinarayanan, V., A. Kendall, and R. Cipolla. "Segnet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation." arXiv. Preprint arXiv:
1511.0051, 2015.

3 Functions Alphabetical

3-64

See Also
DAGNetwork | evaluateSemanticSegmentation | fcnLayers |
pixelClassificationLayer | pixelLabelImageDatastore | semanticseg |
trainNetwork | unetLayers

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

 segnetLayers

3-65

unetLayers
Create U-Net layers for semantic segmentation

Syntax
lgraph = unetLayers(imageSize,numClasses)
lgraph = unetLayers(imageSize,numClasses,Name,Value)

Description
lgraph = unetLayers(imageSize,numClasses) returns a U-Net network.
unetLayers includes a pixelClassificationLayer to predict the categorical label
for every pixel in an input image.

Use unetLayers to create the network architecture for U-Net. You must train the
network using the Deep Learning Toolbox function trainNetwork.

lgraph = unetLayers(imageSize,numClasses,Name,Value)specifies options
using one or more name-value pairs. Enclose each property name in quotes. For example,
unetLayer(imageSize,numClasses,'NumOutputChannels',64) additionally sets
the number of output channels to 64 for the first encoder subsection.

Examples

Create U-Net With Custom Encoder-Decoder Depth

Create U-Net layers with an encoder/decoder depth of 3.

imageSize = [480 640 3];
numClasses = 5;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)

lgraph =
 LayerGraph with properties:

3 Functions Alphabetical

3-66

 Layers: [46x1 nnet.cnn.layer.Layer]
 Connections: [48x2 table]

Display the network.

plot(lgraph)

Train U-Net

Load training images and pixel labels.

 unetLayers

3-67

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an imageDatastore holding the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Create a pixelLabelDatastore holding the ground truth pixel labels for the training
images.

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Create U-Net.

imageSize = [32 32];
numClasses = 2;
lgraph = unetLayers(imageSize, numClasses)

lgraph =
 LayerGraph with properties:

 Layers: [58×1 nnet.cnn.layer.Layer]
 Connections: [61×2 table]

Create data source for training a semantic segmentation network.

ds = pixelLabelImageDatastore(imds,pxds);

Set up training options.

options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
 'MaxEpochs',20,'VerboseFrequency',10);

Train the network.

net = trainNetwork(ds,lgraph,options)

Training on single CPU.
Initializing image normalization.

3 Functions Alphabetical

3-68

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:04 | 5.21% | 15.1044 | 0.0010 |
| 10 | 10 | 00:00:43 | 96.09% | 0.4845 | 0.0010 |
| 20 | 20 | 00:01:25 | 94.38% | 0.7715 | 0.0010 |
|==|

net =
 DAGNetwork with properties:

 Layers: [58×1 nnet.cnn.layer.Layer]
 Connections: [61×2 table]

Input Arguments
imageSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as a:

• 2-element vector in the format [height, width].
• 3-element vector in the format [height, width, depth]. depth is the number of image

channels. Set depth to 3 for RGB images, 1 for grayscale images, or to the number of
channels for multispectral and hyperspectral images.

Note Each encoder section has a 2x2 maxPooling2dLayer that halves the image size.
The height and width of the input image must be a multiple of 2D, where D is the value of
EncoderDepth.

numClasses — Number of classes
integer greater than 1

Number of classes in the semantic segmentation, specified as an integer greater than 1.

 unetLayers

3-69

Name-Value Pair Arguments
Example: 'EncoderDepth',3

EncoderDepth — Encoder depth
4 (default) | positive integer

Encoder depth, specified as a positive integer. U-Net is composed of an encoder and
corresponding decoder subnetwork. The depth of these networks determines the number
of times the input image is downsampled or upsampled as it is processed. The encoder
network downsamples the input image by a factor of 2D, where D is the value of
EncoderDepth. The decoder network upsamples the encoder network output by a factor
of 2D.

NumOutputChannels — Number of output channels
64 (default) | positive integer | vector of positive integers

Number of output channels for the first subsection in the U-Net encoder network,
specified as a positive integer or vector of positive integers. Each of the subsequent
enoder subsections double the number of output channels. unetLayers sets the number
of output channels in the decoder sections to match the corresponding encoder sections.

FilterSize — Convolutional layer filter size
3 (default) | positive odd integer | 2-element row vector of positive odd integers

Convolutional layer filter size, specified as a positive odd integer or a 2-element row
vector of positive odd integers. Typical values are in the range [3, 7].

FilterSize Description
scalar The filter is square.
2-element row vector The filter has the size [height width].

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the U-Net network architecture, returned as a layerGraph object.

3 Functions Alphabetical

3-70

Tips
• The sections within the U-Net encoder subnetworks consist of two sets of

convolutional and ReLU layers, followed by a 2x2 max pooling layer. The decoder
subnetworks consist of a transposed convolution layer for upsampling, followed by two
sets of convolutional and ReLU layers.

• Convolutional layers in unetLayers use 'same' padding, which retains the data size
from input to output and enables a broad set of input image sizes. The original version
by Ronneberger[1] does not use padding and is constrained to a smaller set of input
image sizes.

• The bias term of all convolutional layers is initialized to zero.
• Convolution layer weights in the encoder and decoder subnetworks are initialized

using the 'He' weight initialization method [2].
• Networks produced by unetLayers support GPU code generation for deep learning

once they are trained with trainNetwork. See “Deep Learning Code Generation”
(Deep Learning Toolbox) for details and examples.

References
[1] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for

Biomedical Image Segmentation." Medical Image Computing and Computer-
Assisted Intervention (MICCAI). Vol. 9351, 2015, pp. 234–241.

[2] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification." Proceedings of the IEEE
International Conference on Computer Vision. 2015, 1026–1034.

See Also
evaluateSemanticSegmentation | fcnLayers | layerGraph |
pixelClassificationLayer | pixelLabelImageDatastore | segnetLayers |
semanticseg | trainNetwork

Topics
“Semantic Segmentation of Multispectral Images Using Deep Learning”
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

 unetLayers

3-71

Introduced in R2018b

3 Functions Alphabetical

3-72

countEachLabel
Count occurrence of pixel label for data source images

Syntax
tbl = countEachLabel(datastore)

Description
tbl = countEachLabel(datastore) returns a table containing information about the
pixel labels and count for the datastore.

Examples

Pass Class Weights to Pixel Classification Layer

Set the location of image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create a pixel label image datastore using the ground truth images in imds and the pixel
labeled images in pxds.

imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
pximds = pixelLabelImageDatastore(imds,pxds);

Tabulate pixel label counts in dataset.

tbl = countEachLabel(pximds)

 countEachLabel

3-73

tbl=4×3 table
 Name PixelCount ImagePixelCount
 __________ __________ _______________

 'sky' 3.1485e+05 1.536e+06
 'grass' 1.5979e+05 1.536e+06
 'building' 1.0312e+06 1.536e+06
 'sidewalk' 25313 9.216e+05

Balance classes using uniform prior weighting.

prior = 1/numel(classNames);
uniformClassWeights = prior./tbl.PixelCount

uniformClassWeights = 4×1
10-5 ×

 0.0794
 0.1565
 0.0242
 0.9876

Balance classes using inverse frequency weighting.

totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
invFreqClassWeights = 1./frequency

invFreqClassWeights = 4×1

 4.8632
 9.5827
 1.4848
 60.4900

Balance classes using median frequency weighting.

freq = tbl.PixelCount ./ tbl.ImagePixelCount

freq = 4×1

 0.2050
 0.1040

3 Functions Alphabetical

3-74

 0.6714
 0.0275

medFreqClassWeights = median(freq) ./ freq

medFreqClassWeights = 4×1

 0.7538
 1.4852
 0.2301
 5.6252

Pass the class weights using median frequency weighting to the pixel classification layer.

layer = pixelClassificationLayer('Classes',tbl.Name, ...
 'ClassWeights', medFreqClassWeights)

layer =
 PixelClassificationLayer with properties:

 Name: ''
 Classes: [sky grass building sidewalk]
 ClassWeights: [4x1 double]
 OutputSize: 'auto'

 Hyperparameters
 LossFunction: 'crossentropyex'

Input Arguments
datastore — Datastore
pixelLabelImageDatastore object | PixelLabelDatastore object

Datastore for training a semantic segmentation network, specified as a
pixelLabelImageDatastore or pixelLabelDatastore object.

 countEachLabel

3-75

Output Arguments
tbl — Pixel label information
table

Pixel label information, returned as a table. The table contains three variables:

Variable Description
Name Pixel label class name
PixelCount Number of pixels in class
ImagePixelCount Total number of pixels in images that had

an instance of a class

Tips
The output of countEachLabel can be used to calculate class weights for class
balancing. For example:

• Uniform class balancing weights each class such that each contains a uniform prior
probability:

numClasses = height(tbl)
prior = 1/numClasses;
classWeights = prior./tbl.PixelCount

• Inverse frequency balancing weights each class such that underrepresented classes
are given higher weight:

totalNumberOfPixels = sum(tbl.PixelCount)
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency

• Median frequency balancing weights each class using the median frequency. The
weight for each class is defined as median(imageFreq)/imageFreq(c), where
imageFreq(c) represents the number of pixels of the class divided by the total number
of pixels in images that had an instance of the class (c):

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount
classWeights = median(imageFreq) ./ imageFreq

The calculated class weights can be passed to the pixelClassificationLayer

3 Functions Alphabetical

3-76

See Also
pixelClassificationLayer | pixelLabelImageDatastore | trainNetwork

Introduced in R2017b

 countEachLabel

3-77

reset
Reset pixel label datastore to initial state

Syntax
reset(pxds)

Description
reset(pxds) resets the pixel label datastore specified by pxds to the state where no
data has been read from it. Resetting the pixel label datastore enables you to read from it
again.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

See Also
datastore

Introduced in R2017b

3 Functions Alphabetical

3-78

readimage
Read specified pixel label data file

Syntax
C = readimage(pxds,k)
[C,info] = readimage(pxds,k)

Description
C = readimage(pxds,k) returns the kth file in the pixel label datastore specified by
pxds.

[C,info] = readimage(pxds,k) also returns information about the extracted data in
info, including metadata.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

k — File number
positive integer

File number to read from the pixel label datastore, specified as a positive integer.

Output Arguments
C — Output data
categorical matrix

Output data, returned as a categorical matrix.

 readimage

3-79

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
Filename Fully resolved path containing the path string,

name of the file, and file extension.
FileSize Total file size, in bytes.

See Also
datastore

Introduced in R2017b

3 Functions Alphabetical

3-80

readall
Read all pixel label data

Syntax
data = readall(pxds)

Description
data = readall(pxds) returns all the data contained in the pixel label datastore
specified by pxds.

If all the data in the datastore does not fit in memory, then readall returns an error.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

Output Arguments
data — All data in the pixel label datastore
cell array of categorical matrices

All data in the pixel label datastore, returned as a cell array of categorical matrices.

After the readall function returns all the data, it resets pxds to point to the beginning
of the pixel label datastore.

 readall

3-81

See Also
datastore

Introduced in R2017b

3 Functions Alphabetical

3-82

read
Read next consecutive file from pixel label datastore

Syntax
C = read(pxds)
[C,info] = read(pxds)

Description
C = read(pxds) returns data from a pixel label datastore. Subsequent calls to the read
function continue reading from the endpoint of the previous call.

[C,info] = read(pxds) also returns information about the extracted data in info,
including metadata.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

Output Arguments
C — Output data
categorical matrix | cell array of categorical matrices

Output data, returned as a categorical matrix or a cell array of categorical matrices
(when ReadSize is greater than 1.)

info — Information about read data
structure array

 read

3-83

Information about read data, returned as a structure array. The structure array can
contain the following fields.

Field Name Description
Filename Fully resolved path containing the path string,

name of the file, and file extension. For
PixelLabelDatastore objects whose
ReadSize property is greater than 1,
Filename is a cell array of file names
corresponding to each image.

FileSize Total file size, in bytes. For MAT-files,
FileSize is the total number of key-value
pairs in the file. For PixelLabelDatastore
objects whose ReadSize property is greater
than 1, FileSize is a vector of file sizes
corresponding to each image.

See Also
datastore | pixelLabelDatastore

Introduced in R2017b

3 Functions Alphabetical

3-84

preview
Reads first image from pixel label datastore

Syntax
C = preview(pxds)

Description
C = preview(pxds) reads first pixel labeled from datastore pxds without changing the
current position.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

Output Arguments
C — First pixel label image
categorical matrix

First pixel label image, returned as a categorical matrix.

See Also
datastore

Introduced in R2017b

 preview

3-85

partition
Partition a pixel label datastore

Syntax
subds = partition(pxds,N,index)

subds = partition(pxds,'Files',index)
subds = partition(pxds,'Files',filename)

Description
subds = partition(pxds,N,index) partitions pixel label datastore pxds into N
parts and returns the partition corresponding to index.

subds = partition(pxds,'Files',index) partitions the datastore by files and
returns the partition corresponding to the file of index index in the Files property of
the datastore.

subds = partition(pxds,'Files',filename) partitions the pixel label datastore
by files and returns the partition corresponding to the file specified by filename.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

N — Number of partitions
positive integer

Number of partitions, specified as a positive integer.
Example: 3

3 Functions Alphabetical

3-86

Data Types: double

index — Index
positive integer

Index of a file stored within the Files property of datastore, specified as a positive
integer.
Example: 1
Data Types: double

filename — file name
character vector

File name, specified as a character vector.
Example: 'file1.csv'
Example: '../dir/data/file1.csv'
Example: 'hdfs://myserver:7867/data/file1.txt'
Data Types: char

Output Arguments
subds — Output datastore
datastore object

Output datastore, returned as a datastore object. The output datastore is of the same type
as the input datastore, ds.

See Also
datastore

Introduced in R2017b

 partition

3-87

numpartitions
Number of partitions for pixel label datastore

Syntax
N = numpartitions(pxds)
N = numpartitions(ds,pool)

Description
N = numpartitions(pxds) returns the default number of partitions for the pixel label
datastore pxds.

N = numpartitions(ds,pool) returns the number of partitions needed to parallelize
datastore access over the parallel pool specified by pool. To parallelize datastore access,
you must have Parallel Computing Toolbox installed.

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

ds — Datastore
datastore object

Input datastore, specified as a datastore object.

pool — Parallel pool
parallel pool object

Parallel pool object.
Example: gcp

3 Functions Alphabetical

3-88

See Also
datastore | pixelLabelDatastore

Introduced in R2017b

 numpartitions

3-89

hasdata
Determine if data is available to read from datastore

Syntax
tf = hasdata(pxds)

Description
tf = hasdata(pxds) returns logical 1 (true) if there is data available to read from the
datastore specified by ds. Otherwise, it returns logical 0 (false).

Examples

Determine Pixel Data Available to Read

Check if pixel label data can be read from a datastore.

Set the location of the image and pixel label data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');

Create an image and pixel label datastore.

imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);

While data is available in the datastore, read the data.

3 Functions Alphabetical

3-90

while hasdata(pxds)
 T = read(pxds);
end

Input Arguments
pxds — Input pixel label datastore
PixelLabelDatastore object

Input pixel label datastore, specified as a PixelLabelDatastore object.

See Also
datastore | pixelLabelDatastore

Introduced in R2017b

 hasdata

3-91

semanticseg
Semantic image segmentation using deep learning

Syntax
C = semanticseg(I,network)
[C,score,allScores] = semanticseg(I,network)
[___] = semanticseg(I,network,roi)

pxds = semanticseg(imds,network)

[___] = semanticseg(___ ,Name,Value)

Description
C = semanticseg(I,network) returns a semantic segmentation of the input image
using deep learning. The input network must be either a SeriesNetwork or
DAGNetwork object.

[C,score,allScores] = semanticseg(I,network) returns a semantic
segmentation of the input image with the classification scores for each categorical label
in C. The scores are returned in a categorical array that corresponds to each pixel or
voxel in the input image. allScores contains the scores for all label categories that the
input network can classify.

[___] = semanticseg(I,network,roi) returns a semantic segmentation for a
rectangular subregion of the input image.

pxds = semanticseg(imds,network) returns the semantic segmentation for a
collection of images in imds, an ImageDatastore object.

This function supports parallel computing using multiple MATLAB workers when
processing an ImageDatastore object. You can enable parallel computing using the
“Computer Vision Toolbox Preferences” dialog.

[___] = semanticseg(___ ,Name,Value) returns semantic segmentation with
additional options specified by one or more Name,Value pair arguments.

3 Functions Alphabetical

3-92

Examples

Semantic Image Segmentation

Overlay segmentation results on image and display the results.

Load a pretrained network.

data = load('triangleSegmentationNetwork');
net = data.net

net =
 SeriesNetwork with properties:

 Layers: [10x1 nnet.cnn.layer.Layer]

List the network layers.

net.Layers

ans =
 10x1 Layer array with layers:

 1 'imageinput' Image Input 32x32x1 images with 'zerocenter' normalization
 2 'conv_1' Convolution 64 3x3x1 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'relu_1' ReLU ReLU
 4 'maxpool' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 'conv_2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 6 'relu_2' ReLU ReLU
 7 'transposed-conv' Transposed Convolution 64 4x4x64 transposed convolutions with stride [2 2] and cropping [1 1 1 1]
 8 'conv_3' Convolution 2 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0]
 9 'softmax' Softmax softmax
 10 'classoutput' Pixel Classification Layer Class weighted cross-entropy loss with classes 'triangle' and 'background'

Read and display the test image.

I = imread('triangleTest.jpg');
figure
imshow(I)

 semanticseg

3-93

Perform semantic image segmentation.

[C,scores] = semanticseg(I,net);

Overlay segmentation results on the image and display the results.

B = labeloverlay(I, C);
figure
imshow(B)

3 Functions Alphabetical

3-94

Display the classification scores.

figure
imagesc(scores)
axis square
colorbar

 semanticseg

3-95

Create a binary mask with only the triangles.

BW = C == 'triangle';
figure
imshow(BW)

3 Functions Alphabetical

3-96

Evaluate Semantic Segmentation Test Set

Load a pretrained network.

data = load('triangleSegmentationNetwork');
net = data.net;

Load test images using imageDatastore.

dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImageDir = fullfile(dataDir,'testImages');
imds = imageDatastore(testImageDir)

imds =
 ImageDatastore with properties:

 Files: {
 ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_001.jpg';
 ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_002.jpg';

 semanticseg

3-97

 ' ...\toolbox\vision\visiondata\triangleImages\testImages\image_003.jpg'
 ... and 97 more
 }
 AlternateFileSystemRoots: {}
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage

Load ground truth test labels.

testLabelDir = fullfile(dataDir,'testLabels');
classNames = ["triangle" "background"];
pixelLabelID = [255 0];
pxdsTruth = pixelLabelDatastore(testLabelDir,classNames,pixelLabelID);

Run semantic segmentation on all of the test images.

pxdsResults = semanticseg(imds,net,'WriteLocation',tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Compare results against ground truth.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)

Evaluating semantic segmentation results
---------------------------------------[==] 100%
Elapsed time: 00:00:01
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.90624 0.95085 0.61588 0.87529 0.40652

metrics =
 semanticSegmentationMetrics with properties:

 ConfusionMatrix: [2x2 table]
 NormalizedConfusionMatrix: [2x2 table]

3 Functions Alphabetical

3-98

 DataSetMetrics: [1x5 table]
 ClassMetrics: [2x3 table]
 ImageMetrics: [100x5 table]

Define Custom Pixel Classification Layer with Dice Loss

This example shows how to define and create a custom pixel classification layer that uses
Dice loss.

This layer can be used to train semantic segmentation networks. To learn more about
creating custom deep learning layers, see “Define Custom Deep Learning Layers” (Deep
Learning Toolbox).

Dice Loss

The Dice loss is based on the Sørensen-Dice similarity coefficient for measuring overlap
between two segmented images. The generalized Dice loss [1,2], L, for between one
image Y and the corresponding ground truth T is given by

L = 1 −
2∑k = 1

K wk∑m = 1
M YkmTkm

∑k = 1
K wk∑m = 1

M Ykm
2 + Tkm

2 ,

where K is the number of classes, M is the number of elements along the first two
dimensions of Y, andwk is a class specific weighting factor that controls the contribution
each class makes to the loss. wk is typically the inverse area of the expected region:

wk = 1
∑m = 1

M Tkm
2

This weighting helps counter the influence of larger regions on the Dice score making it
easier for the network to learn how to segment smaller regions.

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines
the structure of a classification layer and includes the functions that define the layer
behavior. The rest of the example shows how to complete the
dicePixelClassificationLayer.

 semanticseg

3-99

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer

 properties
 % Optional properties
 end

 methods

 function loss = forwardLoss(layer, Y, T)
 % Layer forward loss function goes here.
 end

 function dLdY = backwardLoss(layer, Y, T)
 % Layer backward loss function goes here.
 end
 end
end

Declare Layer Properties

By default, custom output layers have the following properties:

• Name – Layer name, specified as a character vector or a string scalar. To include this
layer in a layer graph, you must specify a nonempty unique layer name. If you train a
series network with this layer and Name is set to '', then the software automatically
assigns a name at training time.

• Description – One-line description of the layer, specified as a character vector or a
string scalar. This description appears when the layer is displayed in a Layer array. If
you do not specify a layer description, then the software displays the layer class name.

• Type – Type of the layer, specified as a character vector or a string scalar. The value of
Type appears when the layer is displayed in a Layer array. If you do not specify a
layer type, then the software displays 'Classification layer' or 'Regression
layer'.

Custom classification layers also have the following property:

• Classes – Classes of the output layer, specified as a categorical vector, string array,
cell array of character vectors, or 'auto'. If Classes is 'auto', then the software
automatically sets the classes at training time. If you specify a string array or cell
array of character vectors str, then the software sets the classes of the output layer
to categorical(str,str). The default value is 'auto'.

If the layer has no other properties, then you can omit the properties section.

3 Functions Alphabetical

3-100

The Dice loss requires a small constant value to prevent division by zero. Specify the
property, Epsilon, to hold this value.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;

 end

 ...
end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify
any variables required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

 function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.

 % Set layer name.
 layer.Name = name;

 % Set layer description.
 layer.Description = 'Dice loss';
 end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss
between the predictions made by the network and the training targets. The syntax for
forwardLoss is loss = forwardLoss(layer, Y, T), where Y is the output of the
previous layer and T represents the training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y,
where Y is a 4-D array of size H-by-W-by-K-by-N, where K is the number of classes, and N is
the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same
size as T, you must include a layer that outputs the correct size before the output layer.

 semanticseg

3-101

For example, to ensure that Y is a 4-D array of prediction scores for K classes, you can
include a fully connected layer of size K or a convolutional layer with K filters followed by
a softmax layer before the output layer.

 function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Dice loss between
 % the predictions Y and the training targets T.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 % Compute Dice score.
 dice = numer./denom;

 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;

 end

Create Backward Loss Function

Create the backward loss function that returns the derivatives of the Dice loss with
respect to the predictions Y. The syntax for backwardLoss is loss =
backwardLoss(layer, Y, T), where Y is the output of the previous layer and T
represents the training targets.

The dimensions of Y and T are the same as the inputs in forwardLoss.

 function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

3 Functions Alphabetical

3-102

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 N = size(Y,4);

 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
 end

Completed Layer

The completed layer is provided in dicePixelClassificationLayer.m.

classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
 % This layer implements the generalized dice loss function for training
 % semantic segmentation networks.

 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;
 end

 methods

 function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.

 % Set layer name.
 layer.Name = name;

 % Set layer description.
 layer.Description = 'Dice loss';
 end

 function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Dice loss between
 % the predictions Y and the training targets T.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 semanticseg

3-103

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 % Compute Dice score.
 dice = numer./denom;

 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;

 end

 function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.

 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;

 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);

 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;

 N = size(Y,4);

 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
 end
 end
end

GPU Compatibility

For GPU compatibility, the layer functions must support inputs and return outputs of type
gpuArray. Any other functions used by the layer must do the same.

The MATLAB functions used in forwardLoss, and backwardLoss in
dicePixelClassificationLayer all support gpuArray inputs, so the layer is GPU
compatible.

Check Output Layer Validity

Create an instance of the layer.

3 Functions Alphabetical

3-104

layer = dicePixelClassificationLayer('dice');

Check the layer validity of the layer using checkLayer. Specify the valid input size to be
the size of a single observation of typical input to the layer. The layer expects a H-by-W-by-
K-by-N array inputs, where K is the number of classes, and N is the number of
observations in the mini-batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Running nnet.checklayer.OutputLayerTestCase
..........
Done nnet.checklayer.OutputLayerTestCase

Test Summary:
 17 Passed, 0 Failed, 0 Incomplete, 0 Skipped.
 Time elapsed: 1.6227 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the
dicePixelClassificationLayer.

layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
 convolution2dLayer(1,2)
 softmaxLayer
 dicePixelClassificationLayer('dice')]

layers =
 10x1 Layer array with layers:

 1 '' Image Input 32x32x1 images with 'zerocenter' normalization
 2 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU

 semanticseg

3-105

 4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 6 '' ReLU ReLU
 7 '' Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
 8 '' Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 9 '' Softmax softmax
 10 'dice' Classification Output Dice loss

Load training data for semantic segmentation using imageDatastore and
pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Associate the image and pixel label data using pixelLabelImageDatastore.

ds = pixelLabelImageDatastore(imds,pxds);

Set the training options and train the network.

options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-2, ...
 'MaxEpochs',100, ...
 'LearnRateDropFactor',1e-1, ...
 'LearnRateDropPeriod',50, ...
 'LearnRateSchedule','piecewise', ...
 'MiniBatchSize',128);

net = trainNetwork(ds,layers,options);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:03 | 27.89% | 0.8346 | 0.0100 |
| 50 | 50 | 00:00:34 | 89.67% | 0.6384 | 0.0100 |

3 Functions Alphabetical

3-106

| 100 | 100 | 00:01:09 | 94.35% | 0.5024 | 0.0010 |
|==|

Evaluate the trained network by segmenting a test image and displaying the
segmentation result.

I = imread('triangleTest.jpg');

[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
figure
imshow(imtile({I,B}))

References

1 Crum, William R., Oscar Camara, and Derek LG Hill. "Generalized overlap measures
for evaluation and validation in medical image analysis." IEEE transactions on
medical imaging 25.11 (2006): 1451-1461.

 semanticseg

3-107

2 Sudre, Carole H., et al. "Generalised Dice overlap as a deep learning loss function for
highly unbalanced segmentations." Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support. Springer, Cham, 2017. 240-248.

Semantic Segmentation Using Dilated Convolutions

This example shows how to train a semantic segmentation network using dilated
convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image
that is segmented by class. Applications for semantic segmentation include road
segmentation for autonomous driving and cancer cell segmentation for medical diagnosis.
To learn more, see “Semantic Segmentation Basics”.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated
convolutions (also known as atrous convolutions) because they can increase the receptive
field of the layer (the area of the input which the layers can see) without increasing the
number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32x32 triangle images for illustration purposes. The
dataset includes accompanying pixel label ground truth data. Load the training data using
an imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');

Create an image datastore for the images.

imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)

pxdsTrain =
 PixelLabelDatastore with properties:

3 Functions Alphabetical

3-108

 Files: {200×1 cell}
 ClassNames: {2×1 cell}
 ReadSize: 1
 ReadFcn: @readDatastoreImage
 AlternateFileSystemRoots: {}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated
convolutions.

Create a data source for training data and get the pixel counts for each label.

pximdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)

tbl=2×3 table
 Name PixelCount ImagePixelCount
 ____________ __________ _______________

 'triangle' 10326 2.048e+05
 'background' 1.9447e+05 2.048e+05

The majority of pixel labels are for background. This class imbalance biases the learning
process in favor of the dominant class. To fix this, use class weighting to balance the
classes. There are several methods for computing class weights. One common method is
inverse frequency weighting where the class weights are the inverse of the class
frequencies. This increases weight given to under-represented classes. Calculate the class
weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classificaiton with an image input layer with input size
corresponding to the size of the input images. Next, specify three blocks of convolution,
batch normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3
filters with increasing dilation factors and specify to pad the inputs to be the same size as
the outputs by setting the 'Padding' option to 'same'. To classify the pixels, include a
convolutional layer with K 1-by-1 convolutions, where K is the number of classes, followed
by a softmax layer and a pixelClassificationLayer with the inverse class weights.

 semanticseg

3-109

inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);

layers = [
 imageInputLayer(inputSize)

 convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
 batchNormalizationLayer
 reluLayer

 convolution2dLayer(1,numClasses)
 softmaxLayer
 pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];

Train Network

Specify the training options. Using the SGDM solver, train for 100 epochs, mini-batch size
64, and learn rate 0.001.

options = trainingOptions('sgdm', ...
 'MaxEpochs', 100, ...
 'MiniBatchSize', 64, ...
 'InitialLearnRate', 1e-3);

Train the network using trainNetwork.

net = trainNetwork(pximdsTrain,layers,options);

Training on single GPU.
Initializing image normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
| 1 | 1 | 00:00:00 | 67.54% | 0.7098 | 0.0010 |

3 Functions Alphabetical

3-110

| 17 | 50 | 00:00:03 | 84.60% | 0.3851 | 0.0010 |
| 34 | 100 | 00:00:06 | 89.85% | 0.2536 | 0.0010 |
| 50 | 150 | 00:00:09 | 93.39% | 0.1959 | 0.0010 |
| 67 | 200 | 00:00:11 | 95.89% | 0.1559 | 0.0010 |
| 84 | 250 | 00:00:14 | 97.29% | 0.1188 | 0.0010 |
| 100 | 300 | 00:00:18 | 98.28% | 0.0970 | 0.0010 |
|==|

Test Network

Load the test data. Create an image datastore for the images. Create a
pixelLabelDatastore for the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);

Make predictions using the test data and trained network.

pxdsPred = semanticseg(imdsTest,net,'WriteLocation',tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processing 100 images...
[==] 100%
Elapsed time: 00:00:00
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.98334 0.99107 0.85869 0.97109 0.68197

 semanticseg

3-111

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest.jpg.

imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)

Segment the test image using semanticseg and display the results using
labeloverlay.

C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)

3 Functions Alphabetical

3-112

References

1 Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs." IEEE transactions on pattern analysis and
machine intelligence 40, no. 4 (2018): 834-848.

Input Arguments
I — Input image
numeric array

Input image, specified as one of the following.

 semanticseg

3-113

Image Type Data Format
Single 2-D grayscale image 2-D matrix of size H-by-W
Single 2-D color image or 2-
D multispectral image

3-D array of size H-by-W-by-C. The number of color
channels C is 3 for color images.

Series of P 2-D images 4-D array of size H-by-W-by-C-by-P. The number of color
channels C is 1 for grayscale images and 3 for color
images.

Single 3-D grayscale image
with depth D

3-D array of size H-by-W-by-D

Single 3-D color image or 3-
D multispectral image

4-D array of size H-by-W-by-D-by-C. The number of color
channels C is 3 for color images.

Series of P 3-D images 5-D array of size H-by-W-by-D-by-C-by-P

The input image can also be a gpuArray containing one of the preceding image types
(requires Parallel Computing Toolbox).
Data Types: uint8 | uint16 | int16 | double | single | logical

network — Network
SeriesNetwork object | DAGNetwork object

Network, specified as either a SeriesNetwork or a DAGNetwork object.

roi — Region of interest
4-element numeric vector | 6-element vector

Region of interest, specified as one of the following.

Image Type ROI Format
2-D image 4-element vector of the form [x,y,width,height]
3-D image 6-element vector of the form [x,y,z,width,height,depth]

The vector defines a rectangular or cuboidal region of interest fully contained in the input
image. Image pixels outside the region of interest are assigned the <undefined>
categorical label. If the input image consists of a series of images, then semanticseg
applies the same roi to all images in the series.

imds — Collection of image data
imageDataStore object

3 Functions Alphabetical

3-114

Collection of images, specified as an ImageDatastore object. The function returns the
semantic segmentation as a categorical array that relates a label to each pixel or voxel in
the input image.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ExecutionEnvironment','gpu'

OutputType — Returned segmentation type
'categorical' (default) | 'double' | 'uint8'

Returned segmentation type, specified as either 'categorical', 'double', or
'uint8'. When you select 'double' or 'uint8', the function returns the segmentation
results as a label array containing label IDs. The IDs are integer values that correspond to
the class names defined in the classification layer used in the input network.

The OutputType property cannot be used with an ImageDatastore object input.

MiniBatchSize — Group of images
128 (default) | integer

Group of images, specified as an integer. Images are grouped and processed together as a
batch. They are used for processing a large collection of images and they improve
computational efficiency. Increasing the MiniBatchSize value increases the efficiency,
but it also takes up more memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to process images with a network, specified as 'auto', 'gpu',
or 'cpu'.

 semanticseg

3-115

ExecutionEnvironment Description
'auto' Use a GPU if available. Otherwise, use the CPU. The

use of GPU requires Parallel Computing Toolbox, and a
CUDA enabled NVIDIA GPU with compute capability
3.0 or higher.

'gpu' Use the GPU. If a suitable GPU is not available, the
function returns an error message.

'cpu' Use the CPU.

WriteLocation — Folder location
pwd (current working folder) (default) | string scalar | character vector

Folder location, specified as pwd (your current working folder), a string scalar, or a
character vector. The specified folder must exist and have write permissions.

This property applies only when using an ImageDatastore object input.

NamePrefix — Prefix applied to output file names
'pixelLabel' (default) | string scalar | character vector

Prefix applied to output file names, specified as a string scalar or character vector. The
image files are named as follows:

• prefix_N.png, where N corresponds to the index of the input image file,
imds.Files(N).

This property applies only when using an ImageDatastore object input.

Verbose — Display progress information
'true' (default) | 'false'

Display progress information, specified as 'true' or 'false'.

This property applies only when using an ImageDatastore object input.

Output Arguments
C — Categorical labels
categorical array

3 Functions Alphabetical

3-116

Categorical labels, returned as a categorical array. The elements of the label array
correspond to the pixel or voxel elements of the input image. If you selected an ROI, then
the labels are limited to the area within the ROI. Image pixels and voxels outside the
region of interest are assigned the <undefined> categorical label.

Image Type Categorical Label Format
Single 2-D image 2-D matrix of size H-by-W. Element C(i,j) is the categorical

label assigned to the pixel I(i,j).
Series of P 2-D images 3-D array of size H-by-W-by-P. Element C(i,j,p) is the

categorical label assigned to the pixel I(i,j,p).
Single 3-D image 3-D array of size H-by-W-by-D. Element C(i,j,k) is the

categorical label assigned to the voxel I(i,j,k).
Series of P 3-D images 4-D array of size H-by-W-by-D-by-P. Element C(i,j,k,p) is the

categorical label assigned to the voxel I(i,j,k,p).

score — Classification scores
categorical array

Classification scores for each categorical label in C, returned as a categorical array. The
scores represents the confidence in the predicted labels C.

Image Type Score Format
Single 2-D image 2-D matrix of size H-by-W. Element score(i,j) is the

classification score of the pixel I(i,j).
Series of P 2-D images 3-D array of size H-by-W-by-P. Element score(i,j,p) is the

classification score of the pixel I(i,j,p).
Single 3-D image 3-D array of size H-by-W-by-D. Element score(i,j,k) is the

classification score of the voxel I(i,j,k).
Series of P 3-D images 4-D array of size H-by-W-by-D-by-P. Element score(i,j,k,p)

is the classification score of the voxel I(i,j,k,p).

allScores — Scores for all label categories
numeric array

Scores for all label categories that the input network can classify, returned as a numeric
array. The format of the array is described in the following table, with L representing the
total number of label categories.

 semanticseg

3-117

Image Type All Scores Format
Single 2-D image 3-D array of size H-by-W-by-L. Element allScores(i,j,q) is

the score of the qth label at the pixel I(i,j).
Series of P 2-D images 4-D array of size H-by-W-by-L-by-P. Element

allscores(i,j,q,p) is the score of the qth label at the pixel
I(i,j,p).

Single 3-D image 4-D array of size H-by-W-by-D-by-L. Element
allscores(i,j,k,q) is the score of the qth label at the voxel
I(i,j,k).

Series of P 3-D images 5-D array of size H-by-W-by-D-by-L-by-P. Element
allscores(i,j,k,q,p) is the score of the qth label at the
voxel I(i,j,k,p).

pxds — Semantic segmentation results
PixelLabelDatastore object

Semantic segmentation results, returned as a pixelLabelDatastore object. The object
contains the semantic segmentation results for all the images contained in the imds input
object. The result for each image is saved as separate uint8 label matrices of PNG
images. You can use read(pxds) to return the categorical labels assigned to the images
in imds.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

3 Functions Alphabetical

3-118

See Also
Image Labeler | ImageDatastore | Video Labeler |
evaluateSemanticSegmentation | labeloverlay | pixelLabelDatastore |
trainNetwork

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

External Websites
What is Semantic Segmentation?

Introduced in R2017b

 semanticseg

3-119

https://www.mathworks.com/solutions/deep-learning/semantic-segmentation.html?s_tid=srchtitle

detectKAZEFeatures
Detect KAZE features

Syntax
points = detectKAZEFeatures(I)
points = detectKAZEFeatures(I,Name,Value)

Description
points = detectKAZEFeatures(I) returns a KAZEPoints object containing
information about KAZE keypoints detected in a 2-D grayscale image. The function uses
nonlinear diffusion to construct a scale space for the given image. It then detects
multiscale corner features from the scale space.

points = detectKAZEFeatures(I,Name,Value) returns a KAZEPoints object with
additional options specified by one or more Name,Value pair arguments

Examples

Detect KAZE Feature Points in Image

Detect and plot KAZE feature points.

Read an image.

I = imread('cameraman.tif');

Detect KAZE points in the image.

points = detectKAZEFeatures(I);

Plot the 20 strongest points.

3 Functions Alphabetical

3-120

imshow(I)
hold on
plot(selectStrongest(points,20))
hold off

Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.

Read an image.

I = imread('cameraman.tif');

Detect KAZE features in the image.

points = detectKAZEFeatures(I);

Select and display the last 5 points detected.

 detectKAZEFeatures

3-121

imshow(I);
hold on;
plot(points(end-4:end));
hold off;

Input Arguments
I — Input image
2-D grayscale image

Input image, specified as a 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

3 Functions Alphabetical

3-122

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Diffusion','region'

Diffusion — Method to compute conductivity
'region' (default) | 'sharpedge' | 'edge'

Method to compute conductivity, specified as 'region', 'sharpedge', or 'edge'. The
computation is based on first-order derivatives of a layer in scale space.

Method Selected Features
'region' Large regions. Uses the Perona and Malik conductivity

coefficient, 1/(1 + dL^2/k^2).
'sharpedge' High-contrast edges. Uses the Perona and Malik

conductivity coefficient, exp(-|dL|^2/k^2).
'edge' Smoothing on both sides of an edge rather than across it.

Uses the Weickert conductivity coefficent.

Threshold — Local extrema
0.0001 (default) | scalar

Local extrema, specified as a scalar greater than or equal to 0. Increase this value to
exclude less significant local extrema.

NumOctaves — Multiscale detection factor
3 (default) | positive integer

Multiscale detection factor, specified as a positive integer. Increase this value to detect
larger features. To disable multiscale detection, set NumOctaves to 1. When you set the
value to 1, the function detects at the scale as the input image. Recommended values are
between 1 and 4.

NumScaleLevels — Scale levels
4 (default) | integer

 detectKAZEFeatures

3-123

Scale levels, specified as an integer in the range [3,10]. Increase this value to achieve
smoother scale changes. Increasing this value also provides additional intermediate
scales between octaves. Recommended values are between 1 and 4.

ROI — Rectangular region size
[1 1 size(I,2) size(I,1)] (default) | 4-element vector

Rectangular region size for corner detection, specified as a 4-element vector in the format
[y x width height]. The [y x] values are measured from the upper left corner of the
rectangle.

Output Arguments
points — KAZE points object
KAZEpoints object

KAZE points, returned as a KAZEPoints object. The object contains information about
the feature points detected in the 2-D grayscale input image.

References
[1] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features." ECCV 2012, Part VI,

LNCS 7577. 2012, p. 214

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

3 Functions Alphabetical

3-124

See Also
KAZEPoints | MSERRegions | SURFPoints | cornerPoints | detectBRISKFeatures
| detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectSURFFeatures | extractFeatures |
matchFeatures

Introduced in R2017b

 detectKAZEFeatures

3-125

selectUniform
Select uniformly distributed subset of feature points

Syntax
pointsOut = selectUniform(points,N,imageSize)

Description
pointsOut = selectUniform(points,N,imageSize) returns N uniformly
distributed points from pointsIn points of an image of size imageSize.

Examples

Select Uniformly Distributed Subset of KAZE Features

Detect and plot a subset of uniformly distributed KAZE features from an image.

Read an image.

im = imread('yellowstone_left.png');

Detect and display KAZE features.

points1 = detectKAZEFeatures(rgb2gray(im))

points1 =
 7070x1 KAZEPoints array with properties:

 Location: [7070x2 single]
 Metric: [7070x1 single]
 Count: 7070
 Scale: [7070x1 single]
 Orientation: [7070x1 single]

3 Functions Alphabetical

3-126

subplot(1,2,1)
imshow(im)
hold on
plot(points1)
hold off
title('Original Points')

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im))

points2 =
 100x1 KAZEPoints array with properties:

 Location: [100x2 single]
 Metric: [100x1 single]
 Count: 100
 Scale: [100x1 single]
 Orientation: [100x1 single]

subplot(1,2,2)
imshow(im)
hold on
plot(points2)
hold off
title('Uniformly Distributed Points')

 selectUniform

3-127

Select A Uniformly Distributed Subset of Features From an Image

Load an image.

im = imread('yellowstone_left.png');

Detect many corners by reducing the quality threshold.

points1 = detectHarrisFeatures(rgb2gray(im), 'MinQuality', 0.05);

Plot image with detected corners.

3 Functions Alphabetical

3-128

subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

 selectUniform

3-129

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

Select A Uniformly Distributed Subset of Features From an Image

Load an image.

im = imread('yellowstone_left.png');

3 Functions Alphabetical

3-130

Detect many corners by reducing the quality threshold.

points1 = detectBRISKFeatures(rgb2gray(im), 'MinQuality', 0.05);

Plot image with detected corners.

subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Select a uniformly distributed subset of points.

 selectUniform

3-131

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

3 Functions Alphabetical

3-132

Select A Uniformly Distributed Subset of Features From an Image

Load an image.

im = imread('yellowstone_left.png');

Detect and display SURF features.

points1 = detectSURFFeatures(rgb2gray(im));
subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

 selectUniform

3-133

Select a uniformly distributed subset of points.

numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));

Plot images showing original and subset of points.

subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');

3 Functions Alphabetical

3-134

Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| ORBPoints object

Points object, specified as a points object. The object contains information about the
feature points detected in the input image. To obtain points, use the appropriate detect
function.

N — Number of points
integer

Number of uniformly distributed points to select, specified as an integer.

imageSize — Size of image
2-element vector | 3-element vector

Size of image, specified as a 2-element vector for grayscale images or a 3-element vector
for truecolor images.

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
cornerPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectKAZEFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | extractFeatures | matchFeatures

Introduced in R2012a

 selectUniform

3-135

size
Return the size of a points object

Syntax
size(points)
sz = size(points)
sz = size(points,1)
sz = size(points,dimension)
[M,N] = size(points)

Description
size(points) returns the size of the points object.

sz = size(points) returns the vector [length(points), 1].

sz = size(points,1) returns the length of points.

sz = size(points,dimension) returns the length of the dimension.

[M,N] = size(points) returns length(points) for M and 1 for N

Examples

Find Size of Points Object

Read an image.

I = imread('cameraman.tif');

Detect corner features.

featurePoints = detectHarrisFeatures(I);

3 Functions Alphabetical

3-136

Find the size of the feature points object.

sz = size(featurePoints)

sz = 1×2

 184 1

Plot feature image with detected features.

imshow(I); hold on;
plot(featurePoints);

 size

3-137

Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the
feature points detected in the input image. To obtain points, use the appropriate detect
function.

dimension — Dimension
integer

Dimension, returned as an integer. For dim >= 2, the object returns 1.

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
binaryFeatures | cornerPoints

Introduced in R2012a

3 Functions Alphabetical

3-138

selectStrongest
Select points with strongest metrics

Syntax
strongestPoints = selectStrongest(points,N)

Description
strongestPoints = selectStrongest(points,N) returns N number of points that
have the strongest metrics.

Examples

Select Strongest KAZE Features

Create a KAZEPoints object holding 50 points.

points = KAZEPoints(ones(50,2),'Metric',1:50);

Keep the two strongest features.

points = selectStrongest(points,2)

points =
 2x1 KAZEPoints array with properties:

 Location: [2x2 single]
 Metric: [2x1 single]
 Count: 2
 Scale: [2x1 single]
 Orientation: [2x1 single]

 selectStrongest

3-139

Input Arguments
points — Points
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| ORBPoints object

Points, specified as a points object. The object contains information about the feature
points detected in the 2-D grayscale input image.

N — Number of points
integer

Number of strongest points to select, specified as an integer.

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
binaryFeatures | cornerPoints

Introduced in R2017b

3 Functions Alphabetical

3-140

plot
Plot points

Syntax
plot(points)
plot(points,ax)
plot(points,ax,Name,Value)

Description
plot(points) plots points in the current axis.

plot(points,ax) plots points in the specified axis.

plot(points,ax,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, plot('ShowOrientation',true)

Examples

Plot KAZE Points

Detect, extract, and plot KAZE points, including their orientation.

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Extract KAZE features from the detected points.

[features,valid_points] = extractFeatures(I,points);

 plot

3-141

Plot the 10 strongest points and show their orientations.

imshow(I)
hold on
strongestPoints = selectStrongest(valid_points,10);
plot(strongestPoints,'showOrientation',true)
hold off

Plot SURF features

Extract SURF features from an image.

I = imread('cameraman.tif');
points = detectSURFFeatures(I);
[features, valid_points] = extractFeatures(I,points);

3 Functions Alphabetical

3-142

Visualize 10 strongest SURF features, including their scales and orientation which were
determined during the descriptor extraction process.

imshow(I);
hold on;
strongestPoints = valid_points.selectStrongest(10);
strongestPoints.plot('showOrientation',true);

Plot Corner Features

Read an image.

 I = imread('cameraman.tif');

Detect corner features.

 featurePoints = detectHarrisFeatures(I);

 plot

3-143

Plot feature image with detected features.

 imshow(I); hold on;
 plot(featurePoints);

Input Arguments
points — Points
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| MSERRegions object | ORBPoints object

Points, specified as a points object. The object contains information about the feature
points detected in the 2-D grayscale input image.

ax — Axes handle
handle

3 Functions Alphabetical

3-144

Handle to use for display. You can set the handle using gca.

Name-Value Pair Arguments
Example: 'ShowOrientation','true'

ShowScale — Display scaled circle
true (default) | false

Display scaled circle, specified as true or false. When you set this value to true, the
object draws a circle proportional to the scale of the detected feature, with the feature
point located at its center. When you set this value to false, the object turns the display
of the circle off.

The algorithm represents the scale of the feature with a circle of 6*Scale radius. The
algorithm uses this equivalent size of circular area to compute the orientation of the
feature.

ShowOrientation — Display orientation line
true (default) | false

Display feature point orientation, specified as true or false. When you set this value to
true, the object draws a line corresponding to the point's orientation. The object draws
the line from the feature point location to the edge of the circle, indicating the scale.

See Also
BRISKPoints | KAZEPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints
| binaryFeatures | cornerPoints

Introduced in R2011b

 plot

3-145

length
Number of stored points

Syntax
length(points)

Description
length(points) returns the number of stored points in the points object.

Examples

Check Number of Stored Points

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Find number of stored points.

numPoints = length(points)

numPoints = 702

Extract KAZE features from the detected points.

[features,validPoints] = extractFeatures(I,points);

Plot the ten strongest valid extracted points and show their orientations.

imshow(I)
hold on

3 Functions Alphabetical

3-146

strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off

Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the
feature points detected in the input image. To obtain points, use the appropriate detect
function.

 length

3-147

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
cornerPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |
extractFeatures | matchFeatures

Introduced in R2017b

3 Functions Alphabetical

3-148

isempty
Determine if points object is empty

Syntax
isempty(points)

Description
isempty(points) returns a true value, if the points object is empty.

Examples

Check if Points Object is Empty

Read an image.

I = imread('cameraman.tif');

Detect KAZE points from the image.

points = detectKAZEFeatures(I);

Check for points.

if isempty(points)
 return;
end

Extract KAZE features from the detected points.

[features,validPoints] = extractFeatures(I,points);

Plot the ten strongest valid extracted points and show their orientations.

 isempty

3-149

imshow(I)
hold on
strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off

Input Arguments
points — Points object
KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object
| MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the
feature points detected in the input image. To obtain points, use the appropriate detect
function.

3 Functions Alphabetical

3-150

See Also
BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints |
cornerPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |
extractFeatures | matchFeatures

Introduced in R2017b

 isempty

3-151

gather
Retrieve cornerPoints from the GPU

Syntax
pointsCPU = gather(pointsGPU)

Description
pointsCPU = gather(pointsGPU) returns a cornerPoints object with data
gathered from the GPU for the Location and Metric properties.

Examples

Find and Plot Corner Points in Image

Read an image.

I = imread('cameraman.tif')

I = 256×256 uint8 matrix

 156 159 158 155 158 156 159 158 157 158 158 159 160 160 160 158 163 161 162 160 164 160 165 163 161 163 161 164 165 162 161 165 165 164 166 165 164 166 167 165 165 164 170 166 167 167 170 168 169 166
 160 154 157 158 157 159 158 158 158 160 155 156 159 158 160 157 165 159 161 158 162 162 161 163 159 162 164 163 164 165 169 164 163 165 161 163 165 168 167 165 164 163 169 169 169 170 170 169 170 170
 156 159 158 155 158 156 159 158 157 158 158 159 160 160 160 158 163 161 162 160 164 160 165 163 161 163 161 164 165 162 161 165 165 164 166 165 164 166 167 165 165 164 170 166 167 167 170 168 169 166
 160 154 157 158 157 159 158 158 158 160 155 156 159 158 160 157 165 159 161 158 162 162 161 163 159 162 164 163 164 165 169 164 163 165 161 163 165 168 167 165 164 163 169 169 169 170 170 169 170 170
 156 153 155 159 159 155 156 155 155 157 155 154 154 158 162 157 157 158 157 159 161 160 161 157 157 156 159 160 161 164 158 161 163 158 164 165 165 162 160 160 166 169 166 164 164 167 167 164 168 164
 155 155 155 157 156 159 152 158 156 158 152 153 159 156 157 161 160 158 161 159 159 159 161 162 162 160 165 160 162 159 164 163 165 164 167 167 167 164 169 166 166 172 165 166 169 170 169 169 170 170
 156 153 157 156 153 155 154 155 157 156 155 156 155 157 158 160 157 160 161 162 162 159 161 158 155 159 160 162 161 158 163 166 165 161 164 167 165 168 168 170 165 166 168 169 168 169 169 170 170 166
 159 159 156 158 156 159 157 161 162 157 157 159 161 156 163 158 159 161 158 163 163 163 157 162 159 166 163 159 168 167 165 162 168 168 167 171 170 169 167 170 170 171 172 172 172 170 174 172 172 176
 158 155 158 154 156 160 162 155 159 161 156 161 160 155 158 161 162 162 161 163 158 156 165 160 164 160 164 161 167 167 167 168 167 170 167 171 174 169 170 171 175 170 171 168 168 168 171 171 174 170
 155 154 157 158 160 160 159 160 158 161 160 160 158 161 158 160 162 159 163 161 156 159 158 159 159 161 161 162 165 163 165 167 167 169 164 169 167 168 166 166 168 165 166 168 167 169 169 171 168 171
 ⋮

3 Functions Alphabetical

3-152

Create a GPU array object.

I = gpuArray(I);

Find and display Harris features in the image.

pointsGPU = detectHarrisFeatures(I);
imshow(I);
hold on;
plot(pointsGPU.selectStrongest(50));

Copy the corner points to the CPU for further processing.

pointsCPU = gather(pointsGPU);

 gather

3-153

Input Arguments
pointsGPU — GPU points
points object (default)

GPU points, specified as a points object.

See Also
cornerPoints

Introduced in R2012a

3 Functions Alphabetical

3-154

plot
Plot MSER regions

Syntax
plot(points)
plot(points,ax)
plot(points,ax,Name,Value)

Description
plot(points) plots points in the current axis.

plot(points,ax) plots points in the specified axis.

plot(points,ax,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, plot('ShowOrientation',true)

Examples

Plot MSER Regions

Extract MSER features and plot the regions.

Read image and extract MSER features.

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);
imshow(I); hold on;
plot(regions);

 plot

3-155

Plot MSER Regions.

figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false);
hold off;

3 Functions Alphabetical

3-156

Input Arguments
points — Points
MSERRegions object

Points, specified as a points object. The object contains information about the feature
points detected in the 2-D grayscale input image.

ax — Axes handle
handle

Handle to use for display. You can set the handle using gca.

Name-Value Pair Arguments
Example: 'ShowOrientation','true'

 plot

3-157

showEllipses — Display ellipsis
true (default) | false

Display ellipsis around feature, specified as true or false. When you set this value to
true, the object draws an ellipse with the same 2nd order moments as the region. When
you set this value to false, only the ellipses centers are plotted.

ShowOrientation — Display orientation line
true (default) | false

Display feature point orientation, specified as true or false. When you set this value to
true, the object draws a line corresponding to the point's orientation. The object draws
the line from the feature point location to the edge of the circle, indicating the scale.

showPixelList — Display regions using JET colormap
true (default) | false

Display regions using JET colormap, specified as true or false.

See Also
detectMSERFeatures

Introduced in R2012a

3 Functions Alphabetical

3-158

assignDetectionsToTracks
Assign detections to tracks for multiobject tracking

Syntax
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix,costOfNonAssignment)
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix, unassignedTrackCost,
unassignedDetectionCost)

Description
[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix,costOfNonAssignment) assigns
detections to tracks in the context of multiple object tracking using the James Munkres's
variant of the Hungarian assignment algorithm. It also determines which tracks are
missing and which detections should begin new tracks. It returns the indices of assigned
and unassigned tracks, and unassigned detections. The costMatrix must be an M-by-N
matrix. In this matrix, M represents the number of tracks, and N is the number of
detections. Each value represents the cost of assigning the Nth detection to the Mth track.
The lower the cost, the more likely that a detection gets assigned to a track. The
costOfNonAssignment scalar input represents the cost of a track or a detection
remaining unassigned.

[assignments,unassignedTracks,unassignedDetections] =
assignDetectionsToTracks(costMatrix, unassignedTrackCost,
unassignedDetectionCost) specifies the cost of unassigned tracks and detections
separately. The unassignedTrackCost must be a scalar value, or an M-element vector,
where M represents the number of tracks. For the M-element vector, each element
represents the cost of not assigning any detection to that track. The
unassignedDetectionCost must be a scalar value or an N-element vector, where N
represents the number of detections.

 assignDetectionsToTracks

3-159

Examples

Assign Detections to Tracks in a Single Video Frame

This example shows you how to assign a detection to a track for a single video frame.

Set the predicted locations of objects in the current frame. Obtain predictions using the
Kalman filter System object.

predictions = [1,1;2,2];

Set the locations of the objects detected in the current frame. For this example, there are
2 tracks and 3 new detections. Thus, at least one of the detections is unmatched, which
can indicate a new track.

detections = [1.1,1.1;2.1,2.1;1.5,3];

Preallocate a cost matrix.

cost = zeros(size(predictions,1),size(detections,1));

Compute the cost of each prediction matching a detection. The cost here, is defined as the
Euclidean distance between the prediction and the detection.

for i = 1:size(predictions, 1)
 diff = detections - repmat(predictions(i,:),[size(detections,1),1]);
 cost(i, :) = sqrt(sum(diff .^ 2,2));
end

Associate detections with predictions. Detection 1 should match to track 1, and detection
2 should match to track 2. Detection 3 should be unmatched.

[assignment,unassignedTracks,unassignedDetections] = ...
 assignDetectionsToTracks(cost,0.2);
 figure;
 plot(predictions(:,1),predictions(:,2),'*',detections(:,1),...
 detections(:,2),'ro');
 hold on;
 legend('predictions','detections');
 for i = 1:size(assignment,1)
 text(predictions(assignment(i, 1),1)+0.1,...
 predictions(assignment(i,1),2)-0.1,num2str(i));
 text(detections(assignment(i, 2),1)+0.1,...

3 Functions Alphabetical

3-160

 detections(assignment(i,2),2)-0.1,num2str(i));
 end
 for i = 1:length(unassignedDetections)
 text(detections(unassignedDetections(i),1)+0.1,...
 detections(unassignedDetections(i),2)+0.1,'unassigned');
 end
 xlim([0,4]);
 ylim([0,4]);

 assignDetectionsToTracks

3-161

Input Arguments
costMatrix — Cost of assigning detection to track
M-by-N matrix

Cost of assigning a detection to a track, specified as an M-by-N matrix, where M
represents the number of tracks, and N is the number of detections. The cost matrix value
must be real, nonsparse, and numeric. The lower the cost, the more likely that a detection
gets assigned to a track. Each value represents the cost of assigning the Nth detection to
the Mth track. If there is no likelihood of an assignment between a detection and a track,
the costMatrix input is set to Inf. Internally, this function pads the cost matrix with
dummy rows and columns to account for the possibility of unassigned tracks and
detections. The padded rows represent detections not assigned to any tracks. The padded
columns represent tracks not associated with any detections. The function applies the
Hungarian assignment algorithm to the padded matrix.

3 Functions Alphabetical

3-162

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

costOfNonAssignment — Cost of not assigning detection to any track or track to
any detection
scalar | finite

Cost of not assigning detection to any track or track to detection. You can specify this
value as a scalar value representing the cost of a track or a detection remaining
unassigned. An unassigned detection may become the start of a new track. If a track is
unassigned, the object does not appear. The higher the costOfNonAssignment value,
the higher the likelihood that every track will be assigned a detection.

 assignDetectionsToTracks

3-163

Internally, this function pads the cost matrix with dummy rows and columns to account
for the possibility of unassigned tracks and detections. The padded rows represent
detections not assigned to any tracks. The padded columns represent tracks not
associated with any detections. To apply the same value to all elements in both the rows
and columns, use the syntax with the costOfNonAssignment input. To vary the values
for different detections or tracks, use the syntax with the unassignedTrackCost and
unassignedDetectionCost inputs.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

unassignedTrackCost — Cost or likelihood of an unassigned track
M-element vector | scalar | finite

3 Functions Alphabetical

3-164

Cost or likelihood of an unassigned track. You can specify this value as a scalar value, or
an M-element vector, where M represents the number of tracks. For the M-element
vector, each element represents the cost of not assigning any detection to that track. A
scalar input represents the same cost of being unassigned for all tracks. The cost may
vary depending on what you know about each track and the scene. For example, if an
object is about to leave the field of view, the cost of the corresponding track being
unassigned should be low.

Internally, this function pads the cost matrix with dummy rows and columns to account
for the possibility of unassigned tracks and detections. The padded rows represent
detections not assigned to any tracks. The padded columns represent tracks not
associated with any detections. To vary the values for different detections or tracks, use
the syntax with the unassignedTrackCost and unassignedDetectionCost inputs. To
apply the same value to all elements in both the rows and columns, use the syntax with
the costOfNonAssignment input.

 assignDetectionsToTracks

3-165

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

unassignedDetectionCost — Cost of unassigned detection
N-element vector | scalar | finite

Cost of unassigned detection, specified as a scalar value or an N-element vector, where N
represents the number of detections. For the N- element vector, each element represents
the cost of starting a new track for that detection. A scalar input represents the same cost
of being unassigned for all tracks. The cost may vary depending on what you know about
each detection and the scene. For example, if a detection appears close to the edge of the
image, it is more likely to be a new object.

Internally, this function pads the cost matrix with dummy rows and columns to account
for the possibility of unassigned tracks and detections. The padded rows represent
detections not assigned to any tracks. The padded columns represent tracks not

3 Functions Alphabetical

3-166

associated with any detections. To vary the values for different detections or tracks, use
the syntax with the unassignedTrackCost and unassignedDetectionCost inputs. To
apply the same value to all elements in both the rows and columns, use the syntax with
the costOfNonAssignment input.

 assignDetectionsToTracks

3-167

3 Functions Alphabetical

3-168

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double

Output Arguments
assignments — Index pairs of tracks and corresponding detections
L-by-2 matrix

Index pairs of tracks and corresponding detections. This value is returned as an L-by-2
matrix of index pairs, with L number of pairs. The first column represents the track index
and the second column represents the detection index.
Data Types: uint32

unassignedTracks — Unassigned tracks
P-element vector

Unassigned tracks, returned as a P-element vector. P represents the number of
unassigned tracks. Each element represents a track to which no detections are assigned.
Data Types: uint32

unassignedDetections — Unassigned detections
Q-element vector

Unassigned detections, returned as a Q-element vector, where Q represents the number
of unassigned detections. Each element represents a detection that was not assigned to
any tracks. These detections can begin new tracks.
Data Types: uint32

References
[1] Miller, Matt L., Harold S. Stone, and Ingemar J. Cox, “Optimizing Murty's Ranked

Assignment Method,” IEEE Transactions on Aerospace and Electronic Systems,
33(3), 1997.

[2] Munkres, James, “Algorithms for Assignment and Transportation Problems,” Journal of
the Society for Industrial and Applied Mathematics, Volume 5, Number 1, March,
1957.

 assignDetectionsToTracks

3-169

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
configureKalmanFilter | vision.KalmanFilter

Topics
“Multiple Object Tracking”

External Websites
Munkres' Assignment Algorithm Modified for Rectangular Matrices

Introduced in R2012b

3 Functions Alphabetical

3-170

http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html

bbox2points
Convert rectangle to corner points list

Syntax
points = bbox2points(rectangle)

Description
points = bbox2points(rectangle) converts the input rectangle, specified as [x y
width height] into a list of four [x y] corner points. The rectangle input must be either a
single bounding box or a set of bounding boxes.

Examples

Convert Bounding Box to List of Points and Apply Rotation

Define a bounding box.

bbox = [10,20,50,60];

Convert the bounding box to a list of four points.

points = bbox2points(bbox);

Define a rotation transformation.

theta = 10;
tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);

Apply the rotation.

points2 = transformPointsForward(tform,points);

Close the polygon for display.

 bbox2points

3-171

points2(end+1,:) = points2(1,:);

Plot the rotated box.

plot(points2(:,1),points2(:,2), '*-');

Input Arguments
rectangle — Bounding box
4-element vector | M-by-4 matrix

3 Functions Alphabetical

3-172

Bounding box, specified as a 4-element vector, [x y width height], or a set of bounding
boxes, specified as an M-by-4 matrix.
Data Types: single | double | int16 | int32 | uint16 | uint32

Output Arguments
points — Rectangle corner coordinates
4-by-2 matrix | 4-by-2-by-M array

List of rectangle corners, returned as a 4-by-2 matrix of [x,y] coordinates, or a 4-by-2-by-
M array of [x,y] coordinates. The output points for the rectangle are listed
counterclockwise starting from the upper-left corner.

• For a single input bounding box, the function returns the 4-by-2 matrix.
• For multiple input bounding boxes, the function returns the 4-by-2-M array for M

bounding boxes.

Data Types: single | double | int16 | int32 | uint16 | uint32

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
affine2d | projective2d

Introduced in R2014b

 bbox2points

3-173

bboxOverlapRatio
Compute bounding box overlap ratio

Syntax
overlapRatio = bboxOverlapRatio(bboxA,bboxB)
overlapRatio = bboxOverlapRatio(bboxA, bboxB, ratioType)

Description
overlapRatio = bboxOverlapRatio(bboxA,bboxB) returns the overlap ratio
between each pair of bounding boxes bboxA and bboxB. The function returns the
overlapRatio value between 0 and 1, where 1 implies a perfect overlap.

overlapRatio = bboxOverlapRatio(bboxA, bboxB, ratioType) additionally lets
you specify the method to use for computing the ratio. You must set the ratioType to
either 'Union' or 'Min'.

Examples

Compute the Overlap Ratio Between Two Bounding Boxes

Define two bounding boxes in the format [x y width height].

bboxA = [150,80,100,100];
bboxB = bboxA + 50;

Display the bounding boxes on an image.

I = imread('peppers.png');
RGB = insertShape(I,'FilledRectangle',bboxA,'Color','green');
RGB = insertShape(RGB,'FilledRectangle',bboxB,'Color','yellow');
imshow(RGB)

3 Functions Alphabetical

3-174

Compute the overlap ratio between the two bounding boxes.

overlapRatio = bboxOverlapRatio(bboxA,bboxB)

overlapRatio = 0.0833

Compute Overlap Ratio Between Each Pair of Bounding Boxes

Randomly generate two sets of bounding boxes.

bboxA = 10*rand(5,4);
bboxB = 10*rand(10,4);

 bboxOverlapRatio

3-175

Ensure that the width and height of the boxes are positive.

bboxA(:,3:4) = bboxA(:,3:4) + 10;
bboxB(:,3:4) = bboxB(:,3:4) + 10;

Compute the overlap ratio between each pair.

overlapRatio = bboxOverlapRatio(bboxA,bboxB)

overlapRatio = 5×10

 0.2431 0.2329 0.3418 0.5117 0.7972 0.1567 0.1789 0.4339 0.0906 0.5766
 0.3420 0.1655 0.7375 0.5188 0.2786 0.3050 0.2969 0.4350 0.2477 0.2530
 0.4844 0.3290 0.3448 0.1500 0.1854 0.4976 0.5629 0.4430 0.5027 0.2685
 0.3681 0.0825 0.3499 0.0840 0.0658 0.5921 0.6498 0.1930 0.7433 0.0676
 0.3752 0.1114 0.3114 0.0696 0.0654 0.5408 0.6234 0.2046 0.7557 0.0717

Input Arguments
bboxA — Bounding box
M-by-4 matrix

Bounding box, specified as an M-by-4 matrix. Each row of bboxA contains a vector in the
format [x y width height], where x and y correspond to the upper left corner of the
bounding box. Bounding boxes inputs bboxA and bboxB must be real, finite, and
nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

bboxB — Bounding box
M-by-4 matrix

Bounding box, specified as an M-by-4 matrix. Each row of bboxB contains a vector in the
format [x y width height], where x and y correspond to the upper left corner of the
bounding box. Bounding boxes inputs bboxA and bboxB must be real, finite, and
nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ratioType — Ratio type
'Union' (default) | 'Min'

3 Functions Alphabetical

3-176

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the minimum area of the two bounding boxes.

bboxA

bboxB

(A

U

B)

(AUB)

area

area
Union:

Min:
(A

U

B)

(A), (B)

area

area area()min

Data Types: char

Output Arguments
overlapRatio — Overlap ratio between two bounding boxes
M-by-N matrix

Overlap ratio between two bounding boxes, returned as an M-by-N matrix. Each (I, J)
element in the output matrix corresponds to the overlap ratio between row I in bboxA
and row J in bboxB. The function returns overlapRatio in the between 0 and 1, where 1
implies a perfect overlap. If either bboxA or bboxB is double, then the function returns
overlapRatio as double. Otherwise, the function returns it as single.

The function computes the overlap ratio based on the ratio type. You can set ratioType
to 'Union' or 'Min':

bboxA

bboxB

(A

U

B)

(AUB)

area

area
Union:

Min:
(A

U

B)

(A), (B)

area

area area()min

Data Types: single | double

 bboxOverlapRatio

3-177

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bboxPrecisionRecall | selectStrongestBbox

Topics
“Multiple Object Tracking”

Introduced in R2014b

3 Functions Alphabetical

3-178

bboxPrecisionRecall
Compute bounding box precision and recall against ground truth

Syntax
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes)
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes,
threshold)

Description
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes)
measures the accuracy of bounding box overlap between bboxes and
groundTruthBboxes. Precision is a ratio of true positive instances to all positive
instances of objects in the detector, based on the ground truth. Recall is a ratio of true
positive instances to the sum of true positives and false negatives in the detector, based
on the ground truth.

If the bounding box is associated with a class label, precision and recall contain
metrics for each class. If the bounding box is also associated with a confidence score for
ranking, use the evaluateDetectionPrecision function.

[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes,
threshold) specifies the overlap threshold for assigning a given box to a ground truth
box.

Examples

Evaluate Bounding Box Overlap Accuracy

Create two ground truth boxes.

groundTruthBoxes = [2 2 10 20; 80 80 30 40];

 bboxPrecisionRecall

3-179

Create three boxes for evaluation.

boundingBoxes = [4 4 10 20; 50 50 30 10; 90 90 40 50];

Plot the boxes.

figure
hold on
for i=1:2
 rectangle('Position',groundTruthBoxes(i,:),'EdgeColor','r');
end
for i=1:3
 rectangle('Position',boundingBoxes(i,:),'EdgeColor','b');
end

3 Functions Alphabetical

3-180

Evaluate the overlap accuracy against the ground truth data.

[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthBoxes)

precision = 0.3333

recall = 0.5000

Evaluate Bounding Box Overlap For Three Classes

Define class names.

classNames = ["A","B","C"];

Create bounding boxes for evaluation.

predictedLabels = {...
 categorical("A",classNames); ...
 categorical(["C";"B"],classNames)};
bboxes = {...
 [10 10 20 30]; ...
 [60 18 20 10; 120 120 5 10]};
boundingBoxes = table(bboxes,predictedLabels,'VariableNames',...
 {'PredictedBoxes','PredictedLabels'});

Create ground truth boxes.

A = {[10 10 20 28]; []};
B = {[]; [118 120 5 10]};
C = {[]; [59 19 20 10]};
groundTruthData = table(A,B,C);

Evaluate overlap accuracy against ground truth data.

[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthData)

precision = 3×1

 1
 0
 1

 bboxPrecisionRecall

3-181

recall = 3×1

 1
 0
 1

Input Arguments
bboxes — Bounding boxes
M-by-4 matrix | table with M rows

Bounding boxes, specified as one of the following. M is the number of bounding boxes.

• For single-class bounding boxes, bboxes can be an M-by-4 matrix, or a table with M
rows and one column. Each row of the matrix or element in the table represents a
bounding box, specified in the format [x y width height], where x and y correspond to
the upper left corner of the bounding box.

• For multi-class bounding boxes, bboxes is a table with M rows and two columns. Each
element in the first column represents a bounding box, specified in the format [x y
width height]. The second column contains the predicted label for each box. The label
must be a categorical type defined by the variable (column) names of the
groundTruthBboxes table.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

groundTruthBboxes — Ground truth bounding boxes
M-by-4 matrix | table with M rows

Ground truth bounding boxes, specified as one of the following. M is the number of
ground truth bounding boxes.

• For single-class bounding boxes, groundTruthBboxes can be an M-by-4 matrix, or a
table with M rows and one column. Each row of the matrix or element in the table
represents a bounding box, specified in the format [x y width height], where x and y
correspond to the upper left corner of the bounding box.

• For multi-class bounding boxes, groundTruthBboxes is a table with M rows and
multiple columns. Each column represents a different class, and the column name
specifies the class label. Each element in the table has the format [x y width height].

3 Functions Alphabetical

3-182

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

threshold — Overlap threshold
0.5 | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric
scalar. The overlap ratio is computed as the intersection over union.

Output Arguments
precision — Precision values from each detection
numeric scalar | numeric vector

Precision values from each detection, returned as a numeric scalar for single-class
bounding boxes. For multi-class bounding boxes, precision is returned as a numeric
vector consisting of metrics for each class. The class order follows the same column order
as the groundTruthBboxes table.

recall — Recall values from each detection
numeric scalar | numeric vector

Recall values from each detection, returned as a numeric scalar for single-class bounding
boxes. For multi-class bounding boxes, recall is returned as a numeric vector consisting
of metrics for each class. The class order follows the same column order as the
groundTruthBboxes table.

See Also
bboxOverlapRatio | evaluateDetectionPrecision

Introduced in R2018a

 bboxPrecisionRecall

3-183

bundleAdjustment
Refine camera poses and 3-D points

Syntax
[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints,
pointTracks,cameraPoses,cameraParams)
[___ ,reprojectionErrors] = bundleAdjustment(___)
[___] = bundleAdjustment(___ ,Name,Value)

Description
[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints,
pointTracks,cameraPoses,cameraParams) returns the refined 3-D points and
camera poses that minimize reprojection errors. The refinement procedure is a variant of
the Levenberg-Marquardt algorithm.

[___ ,reprojectionErrors] = bundleAdjustment(___) additionally returns
reprojection errors for each 3-D world point using the arguments from the previous
syntax.

[___] = bundleAdjustment(___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. Unspecified properties have default values.

Code Generation Support:
Supports Code Generation: No
Supports MATLAB Function block: No
“Code Generation Support, Usage Notes, and Limitations”

Examples

Refine Camera Poses and 3-D Points

Load data for initialization.

3 Functions Alphabetical

3-184

load('sfmGlobe');

Refine the camera poses and points.

[xyzRefinedPoints,refinedPoses] = ...
 bundleAdjustment(xyzPoints,pointTracks,cameraPoses,cameraParams);

Display the refined camera poses and 3-D world points.

cameraSize = 0.1;
for j = 1:height(refinedPoses)
 id = refinedPoses.ViewId(j);
 loc = refinedPoses.Location{j};
 orient = refinedPoses.Orientation{j};
 plotCamera('Location',loc,'Orientation',orient,'Size',...
 cameraSize,'Color','r','Label',num2str(id),'Opacity',.5);
 hold on
end
pcshow(xyzRefinedPoints,'VerticalAxis','y','VerticalAxisDir',...
 'down','MarkerSize',45);
grid on

 bundleAdjustment

3-185

Input Arguments
xyzPoints — Unrefined 3-D points
M-by-3 matrix

Unrefined 3-D points, specified as an M-by-3 matrix of [x,y,z] locations.

pointTracks — Matching points across multiple images
N-element array of pointTrack objects

Matching points across multiple images, specified as an N-element array of pointTrack
objects. Each element contains two or more matching points across multiple images.

3 Functions Alphabetical

3-186

cameraPoses — Camera pose information
three-column table

Camera pose ViewId, Orientation, and Location information, specified as a three-
column table. The view IDs relate to the IDs in the pointTracks object. The orientations
are specified as 3-by-3 rotation matrices. The locations are specified as a three-element
vectors.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxIterations', '50'

MaxIterations — Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations before the Levenberg-Marquardt algorithm stops,
specified as the comma-separated pair consisting of 'MaxIterations' and a positive
integer.

AbsoluteTolerance — Absolute termination tolerance
1.0 (default) | positive scalar

Absolute termination tolerance of the mean squared reprojection error in pixels, specified
as the comma-separated pair consisting of 'AbsoluteTolerance' and a positive scalar.

RelativeTolerance — Relative termination tolerance
1e-5 (default) | positive scalar

 bundleAdjustment

3-187

Relative termination tolerance of the reduction in reprojection error between iterations,
specified as the comma-separated pair consisting of 'RelativeTolerance' and a positive
scalar.

PointsUndistorted — Flag to indicate lens distortion
false (default) | true

Flag to indicate lens distortion, specified as the comma-separated pair consisting of
'PointsUndistorted' and either false or true. When you set PointsUndistorted
to false, the 2-D points in pointTracks must be from images with lens distortion. To
use undistorted points, use the undistortImage function first, then set
PointsUndistorted to true.

FixedViewIDs — View IDs for fixed camera pose
[] (default) | vector of nonnegative integers

View IDs for fixed camera pose, specified as the comma-separated pair consisting of
'FixedViewIDs' and a vector of nonnegative integers. Each ID corresponds to the
ViewId of a fixed camera pose in cameraPoses. An empty value for FixedViewIDs
means that all camera poses are optimized.

Verbose — Display progress information
False (default) | true

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and either false or true.

Output Arguments
xyzRefinedPoints — 3-D locations of refined world points
M-by-3 matrix

3-D locations of refined world points, returned as an M-by-3 matrix of [x,y, z] locations.
Data Types: single | double

refinedPoses — Refined camera poses
three-column table

Refined camera poses, returned as a table. The table contains three columns for
'ViewId', 'Orientation', and 'Location'.

3 Functions Alphabetical

3-188

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. The function projects each world point
back into each camera. Then in each image, the function calculates the reprojection error
as the distance between the detected and the reprojected point. The
reprojectionErrors vector contains the average reprojection error for each world
point.

reprojection error

3-D point reprojected

into the image

point detected

in the image

ed
3-D 3-3-3-D

tointo

References
[1] Lourakis, M.I.A., and A.A. Argyros. "SBA: A Software Package for Generic Sparse

Bundle Adjustment." ACM Transactions on Mathematical Software. 2009.

[2] Hartley, R., and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2003.

[3] Triggs, B., P. McLauchlan, R. Hartley, and A. Fitzgibbon. "Bundle Adjustment: A
Modern Synthesis." Proceedings of the International Workshop on Vision
Algorithms. Springer-Verlag. 1999, pp. 298-372.

See Also
cameraIntrinsics | cameraMatrix | cameraParameters | pointTrack |
relativeCameraPose | triangulateMultiview | undistortImage |
undistortPoints | viewSet

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

 bundleAdjustment

3-189

“Code Generation for Depth Estimation From Stereo Video”
“Structure from Motion”

Introduced in R2016a

3 Functions Alphabetical

3-190

OCR Trainer
Train an optical character recognition model to recognize a specific set of characters

Description
The OCR Trainer app allows you to label character data for OCR training interactively
and to generate an OCR language data file for use with the ocr function.

Open the OCR Trainer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the app icon.
• MATLAB command prompt: Enter ocrTrainer.

Programmatic Use
ocrTrainer opens the OCR Trainer app.

ocrTrainer(sessionFile) opens the app and loads a saved OCR training session.
sessionFile is the path to the MAT file containing the saved session.

See Also
ocr

Topics
“Train Optical Character Recognition for Custom Fonts”

Introduced in R2016a

 OCR Trainer

3-191

listTrueTypeFonts
List available TrueType fonts

Syntax
fontNames = listTrueTypeFonts

Description
fontNames = listTrueTypeFonts returns a cell array of sorted TrueType font names
installed on the system.

Examples

List Available TrueType Fonts

listTrueTypeFonts

ans = 390x1 cell array
 {'Agency FB' }
 {'Agency FB Bold' }
 {'Algerian' }
 {'Arial' }
 {'Arial Black' }
 {'Arial Bold' }
 {'Arial Bold Italic' }
 {'Arial Italic' }
 {'Arial Narrow' }
 {'Arial Narrow Bold' }
 {'Arial Narrow Bold Italic' }
 {'Arial Narrow Italic' }
 {'Arial Rounded MT Bold' }
 {'Arial Unicode MS' }
 {'Baskerville Old Face' }
 {'Bauhaus 93' }

3 Functions Alphabetical

3-192

 {'Bell MT' }
 {'Bell MT Bold' }
 {'Bell MT Italic' }
 {'Berlin Sans FB' }
 {'Berlin Sans FB Bold' }
 {'Berlin Sans FB Demi Bold' }
 {'Bernard MT Condensed' }
 {'Blackadder ITC' }
 {'Bodoni MT' }
 {'Bodoni MT Black' }
 {'Bodoni MT Black Italic' }
 {'Bodoni MT Bold' }
 {'Bodoni MT Bold Italic' }
 {'Bodoni MT Condensed' }
 {'Bodoni MT Condensed Bold' }
 {'Bodoni MT Condensed Bold Italic' }
 {'Bodoni MT Condensed Italic' }
 {'Bodoni MT Italic' }
 {'Bodoni MT Poster Compressed' }
 {'Book Antiqua' }
 {'Book Antiqua Bold' }
 {'Book Antiqua Bold Italic' }
 {'Book Antiqua Italic' }
 {'Bookman Old Style' }
 {'Bookman Old Style Bold' }
 {'Bookman Old Style Bold Italic' }
 {'Bookman Old Style Italic' }
 {'Bookshelf Symbol 7' }
 {'Bradley Hand ITC' }
 {'Britannic Bold' }
 {'Broadway' }
 {'Brush Script MT Italic' }
 {'Buxton Sketch' }
 {'Calibri' }
 {'Calibri Bold' }
 {'Calibri Bold Italic' }
 {'Calibri Italic' }
 {'Calibri Light' }
 {'Calibri Light Italic' }
 {'Californian FB' }
 {'Californian FB Bold' }
 {'Californian FB Italic' }
 {'Calisto MT' }
 {'Calisto MT Bold' }

 listTrueTypeFonts

3-193

 {'Calisto MT Bold Italic' }
 {'Calisto MT Italic' }
 {'Cambria' }
 {'Cambria Bold' }
 {'Cambria Bold Italic' }
 {'Cambria Italic' }
 {'Cambria Math' }
 {'Candara' }
 {'Candara Bold' }
 {'Candara Bold Italic' }
 {'Candara Italic' }
 {'Castellar' }
 {'Centaur' }
 {'Century' }
 {'Century Gothic' }
 {'Century Gothic Bold' }
 {'Century Gothic Bold Italic' }
 {'Century Gothic Italic' }
 {'Century Schoolbook' }
 {'Century Schoolbook Bold' }
 {'Century Schoolbook Bold Italic' }
 {'Century Schoolbook Italic' }
 {'Chiller' }
 {'Colonna MT' }
 {'Comic Sans MS' }
 {'Comic Sans MS Bold' }
 {'Comic Sans MS Bold Italic' }
 {'Comic Sans MS Italic' }
 {'Consolas' }
 {'Consolas Bold' }
 {'Consolas Bold Italic' }
 {'Consolas Italic' }
 {'Constantia' }
 {'Constantia Bold' }
 {'Constantia Bold Italic' }
 {'Constantia Italic' }
 {'Cooper Black' }
 {'Copperplate Gothic Bold' }
 {'Copperplate Gothic Light' }
 {'Corbel' }
 {'Corbel Bold' }
 {'Corbel Bold Italic' }
 {'Corbel Italic' }
 {'Courier New' }

3 Functions Alphabetical

3-194

 {'Courier New Bold' }
 {'Courier New Bold Italic' }
 {'Courier New Italic' }
 {'Curlz MT' }
 {'Ebrima' }
 {'Ebrima Bold' }
 {'Edwardian Script ITC' }
 {'Elephant' }
 {'Elephant Italic' }
 {'Engravers MT' }
 {'Eras Bold ITC' }
 {'Eras Demi ITC' }
 {'Eras Light ITC' }
 {'Eras Medium ITC' }
 {'FZDengXian Regular' }
 {'Felix Titling' }
 {'Footlight MT Light' }
 {'Forte' }
 {'Franklin Gothic Book' }
 {'Franklin Gothic Book Italic' }
 {'Franklin Gothic Demi' }
 {'Franklin Gothic Demi Cond' }
 {'Franklin Gothic Demi Italic' }
 {'Franklin Gothic Heavy' }
 {'Franklin Gothic Heavy Italic' }
 {'Franklin Gothic Medium' }
 {'Franklin Gothic Medium Cond' }
 {'Franklin Gothic Medium Italic' }
 {'Freestyle Script' }
 {'French Script MT' }
 {'Gabriola' }
 {'Gadugi' }
 {'Gadugi Bold' }
 {'Garamond' }
 {'Garamond Bold' }
 {'Garamond Italic' }
 {'Georgia' }
 {'Georgia Bold' }
 {'Georgia Bold Italic' }
 {'Georgia Italic' }
 {'Gigi' }
 {'Gill Sans MT' }
 {'Gill Sans MT Bold' }
 {'Gill Sans MT Bold Italic' }

 listTrueTypeFonts

3-195

 {'Gill Sans MT Condensed' }
 {'Gill Sans MT Ext Condensed Bold' }
 {'Gill Sans MT Italic' }
 {'Gill Sans Ultra Bold' }
 {'Gill Sans Ultra Bold Condensed' }
 {'Gloucester MT Extra Condensed' }
 {'Goudy Old Style' }
 {'Goudy Old Style Bold' }
 {'Goudy Old Style Italic' }
 {'Goudy Stout' }
 {'Haettenschweiler' }
 {'Harlow Solid Italic' }
 {'Harrington' }
 {'High Tower Text' }
 {'High Tower Text Italic' }
 {'Holo MDL2 Assets' }
 {'Impact' }
 {'Imprint MT Shadow' }
 {'Informal Roman' }
 {'Javanese Text' }
 {'Jokerman' }
 {'Juice ITC' }
 {'Kristen ITC' }
 {'Kunstler Script' }
 {'Leelawadee' }
 {'Leelawadee Bold' }
 {'Leelawadee UI' }
 {'Leelawadee UI Bold' }
 {'Leelawadee UI Semilight' }
 {'Lucida Bright' }
 {'Lucida Bright Demibold' }
 {'Lucida Bright Demibold Italic' }
 {'Lucida Bright Italic' }
 {'Lucida Calligraphy Italic' }
 {'Lucida Console' }
 {'Lucida Fax Demibold' }
 {'Lucida Fax Demibold Italic' }
 {'Lucida Fax Italic' }
 {'Lucida Fax Regular' }
 {'Lucida Handwriting Italic' }
 {'Lucida Sans Demibold Italic' }
 {'Lucida Sans Demibold Roman' }
 {'Lucida Sans Italic' }
 {'Lucida Sans Regular' }

3 Functions Alphabetical

3-196

 {'Lucida Sans Typewriter Bold' }
 {'Lucida Sans Typewriter Bold Oblique'}
 {'Lucida Sans Typewriter Oblique' }
 {'Lucida Sans Typewriter Regular' }
 {'Lucida Sans Unicode' }
 {'LucidaBrightDemiBold' }
 {'LucidaBrightDemiItalic' }
 {'LucidaBrightItalic' }
 {'LucidaBrightRegular' }
 {'LucidaSansDemiBold' }
 {'LucidaSansRegular' }
 {'LucidaTypewriterBold' }
 {'LucidaTypewriterRegular' }
 {'MS Gothic' }
 {'MS Outlook' }
 {'MS PGothic' }
 {'MS Reference Sans Serif' }
 {'MS Reference Specialty' }
 {'MS UI Gothic' }
 {'MT Extra' }
 {'MV Boli' }
 {'Magneto Bold' }
 {'Maiandra GD' }
 {'Malgun Gothic' }
 {'Malgun Gothic Bold' }
 {'Malgun Gothic SemiLight' }
 {'Matura MT Script Capitals' }
 {'Microsoft Himalaya' }
 {'Microsoft JhengHei' }
 {'Microsoft JhengHei Bold' }
 {'Microsoft JhengHei Light' }
 {'Microsoft JhengHei UI' }
 {'Microsoft JhengHei UI Bold' }
 {'Microsoft JhengHei UI Light' }
 {'Microsoft MHei' }
 {'Microsoft MHei Bold' }
 {'Microsoft NeoGothic' }
 {'Microsoft NeoGothic Bold' }
 {'Microsoft New Tai Lue' }
 {'Microsoft New Tai Lue Bold' }
 {'Microsoft PhagsPa' }
 {'Microsoft PhagsPa Bold' }
 {'Microsoft Sans Serif' }
 {'Microsoft Tai Le' }

 listTrueTypeFonts

3-197

 {'Microsoft Tai Le Bold' }
 {'Microsoft Uighur' }
 {'Microsoft Uighur Bold' }
 {'Microsoft YaHei' }
 {'Microsoft YaHei Bold' }
 {'Microsoft YaHei Light' }
 {'Microsoft YaHei UI' }
 {'Microsoft YaHei UI Bold' }
 {'Microsoft YaHei UI Light' }
 {'Microsoft Yi Baiti' }
 {'MingLiU-ExtB' }
 {'MingLiU_HKSCS-ExtB' }
 {'Mistral' }
 {'Modern No. 20' }
 {'Mongolian Baiti' }
 {'Monotype Corsiva' }
 {'Myanmar Text' }
 {'Myanmar Text Bold' }
 {'NSimSun' }
 {'Niagara Engraved' }
 {'Niagara Solid' }
 {'Nirmala UI' }
 {'Nirmala UI Bold' }
 {'Nirmala UI Semilight' }
 {'OCR A Extended' }
 {'Old English Text MT' }
 {'Onyx' }
 {'PMingLiU-ExtB' }
 {'Palace Script MT' }
 {'Palatino Linotype' }
 {'Palatino Linotype Bold' }
 {'Palatino Linotype Bold Italic' }
 {'Palatino Linotype Italic' }
 {'Papyrus' }
 {'Parchment' }
 {'Perpetua' }
 {'Perpetua Bold' }
 {'Perpetua Bold Italic' }
 {'Perpetua Italic' }
 {'Perpetua Titling MT Bold' }
 {'Perpetua Titling MT Light' }
 {'Playbill' }
 {'Poor Richard' }
 {'Pristina' }

3 Functions Alphabetical

3-198

 {'Rage Italic' }
 {'Ravie' }
 {'Rockwell' }
 {'Rockwell Bold' }
 {'Rockwell Bold Italic' }
 {'Rockwell Condensed' }
 {'Rockwell Condensed Bold' }
 {'Rockwell Extra Bold' }
 {'Rockwell Italic' }
 {'Script MT Bold' }
 {'Segoe MDL2 Assets' }
 {'Segoe Marker' }
 {'Segoe Print' }
 {'Segoe Print Bold' }
 {'Segoe Script' }
 {'Segoe Script Bold' }
 {'Segoe UI' }
 {'Segoe UI Black' }
 {'Segoe UI Black Italic' }
 {'Segoe UI Bold' }
 {'Segoe UI Bold Italic' }
 {'Segoe UI Emoji' }
 {'Segoe UI Historic' }
 {'Segoe UI Italic' }
 {'Segoe UI Light' }
 {'Segoe UI Light Italic' }
 {'Segoe UI Semibold' }
 {'Segoe UI Semibold Italic' }
 {'Segoe UI Semilight' }
 {'Segoe UI Semilight Italic' }
 {'Segoe UI Symbol' }
 {'Segoe WP' }
 {'Segoe WP Black' }
 {'Segoe WP Bold' }
 {'Segoe WP Light' }
 {'Segoe WP SemiLight' }
 {'Segoe WP Semibold' }
 {'Showcard Gothic' }
 {'SimSun' }
 {'SimSun-ExtB' }
 {'Sitka Banner' }
 {'Sitka Banner Bold' }
 {'Sitka Banner Bold Italic' }
 {'Sitka Banner Italic' }

 listTrueTypeFonts

3-199

 {'Sitka Display' }
 {'Sitka Display Bold' }
 {'Sitka Display Bold Italic' }
 {'Sitka Display Italic' }
 {'Sitka Heading' }
 {'Sitka Heading Bold' }
 {'Sitka Heading Bold Italic' }
 {'Sitka Heading Italic' }
 {'Sitka Small' }
 {'Sitka Small Bold' }
 {'Sitka Small Bold Italic' }
 {'Sitka Small Italic' }
 {'Sitka Subheading' }
 {'Sitka Subheading Bold' }
 {'Sitka Subheading Bold Italic' }
 {'Sitka Subheading Italic' }
 {'Sitka Text' }
 {'Sitka Text Bold' }
 {'Sitka Text Bold Italic' }
 {'Sitka Text Italic' }
 {'SketchFlow Print' }
 {'Snap ITC' }
 {'Stencil' }
 {'Sylfaen' }
 {'Symbol' }
 {'Tahoma' }
 {'Tahoma Bold' }
 {'Tempus Sans ITC' }
 {'Times New Roman' }
 {'Times New Roman Bold' }
 {'Times New Roman Bold Italic' }
 {'Times New Roman Italic' }
 {'Trebuchet MS' }
 {'Trebuchet MS Bold' }
 {'Trebuchet MS Bold Italic' }
 {'Trebuchet MS Italic' }
 {'Tw Cen MT' }
 {'Tw Cen MT Bold' }
 {'Tw Cen MT Bold Italic' }
 {'Tw Cen MT Condensed' }
 {'Tw Cen MT Condensed Bold' }
 {'Tw Cen MT Condensed Extra Bold' }
 {'Tw Cen MT Italic' }
 {'Verdana' }

3 Functions Alphabetical

3-200

 {'Verdana Bold' }
 {'Verdana Bold Italic' }
 {'Verdana Italic' }
 {'Viner Hand ITC' }
 {'Vivaldi Italic' }
 {'Vladimir Script' }
 {'Webdings' }
 {'Wide Latin' }
 {'Wingdings' }
 {'Wingdings 2' }
 {'Wingdings 3' }
 {'Yu Gothic Bold' }
 {'Yu Gothic Light' }
 {'Yu Gothic Medium' }
 {'Yu Gothic Regular' }
 {'Yu Gothic UI Bold' }
 {'Yu Gothic UI Light' }
 {'Yu Gothic UI Regular' }
 {'Yu Gothic UI Semibold' }
 {'Yu Gothic UI Semilight' }
 {'YuGothic' }
 {'YuGothic Bold' }

List All TrueType 'Lucida' Fonts

fontNames = listTrueTypeFonts;
LucidaFonts = fontNames(~cellfun(@isempty,regexp(fontNames,'^Lucida')))

LucidaFonts = 28x1 cell array
 {'Lucida Bright' }
 {'Lucida Bright Demibold' }
 {'Lucida Bright Demibold Italic' }
 {'Lucida Bright Italic' }
 {'Lucida Calligraphy Italic' }
 {'Lucida Console' }
 {'Lucida Fax Demibold' }
 {'Lucida Fax Demibold Italic' }
 {'Lucida Fax Italic' }
 {'Lucida Fax Regular' }
 {'Lucida Handwriting Italic' }
 {'Lucida Sans Demibold Italic' }

 listTrueTypeFonts

3-201

 {'Lucida Sans Demibold Roman' }
 {'Lucida Sans Italic' }
 {'Lucida Sans Regular' }
 {'Lucida Sans Typewriter Bold' }
 {'Lucida Sans Typewriter Bold Oblique'}
 {'Lucida Sans Typewriter Oblique' }
 {'Lucida Sans Typewriter Regular' }
 {'Lucida Sans Unicode' }
 {'LucidaBrightDemiBold' }
 {'LucidaBrightDemiItalic' }
 {'LucidaBrightItalic' }
 {'LucidaBrightRegular' }
 {'LucidaSansDemiBold' }
 {'LucidaSansRegular' }
 {'LucidaTypewriterBold' }
 {'LucidaTypewriterRegular' }

Output Arguments
fontNames — Available TrueType fonts on system
cell array

Available TrueType fonts on system, returned as a cell array of sorted TrueType font
names.

See Also
insertObjectAnnotation | insertText | listfonts

Introduced in R2015b

3 Functions Alphabetical

3-202

pcfromkinect
Point cloud from Kinect for Windows

Syntax
ptCloud = pcfromkinect(depthDevice,depthImage)
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage)
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment)

Description
ptCloud = pcfromkinect(depthDevice,depthImage) returns a point cloud from a
Kinect depth image. The depthDevice input can be either a videoinput object or an
imaq.VideoDevice object configured for Kinect (Versions 1 and 2) for Windows.

This function requires the Image Acquisition Toolbox™ software, which supports Kinect
for Windows.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage) adds color to
the returned point cloud, specified by the colorImage input.

The Kinect for Windows system, designed for gaming, produces depthImage and
colorImage as mirror images of the scene. The returned point cloud is corrected to
match the actual scene.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment)
additionally returns the color point cloud with the origin specified at the center of the
depth camera.

Examples

 pcfromkinect

3-203

Plot Color Point Cloud from Kinect for Windows

Plot a color point cloud from Kinect images. This example requires the Image Acquisition
Toolbox software and the Kinect camera and a connection to the camera.

Create a System object for the color device.

colorDevice = imaq.VideoDevice('kinect',1)

Create a System object for the depth device.

depthDevice = imaq.VideoDevice('kinect',2)

Initialize the camera.

step(colorDevice);
step(depthDevice);

Load one frame from the device.

colorImage = step(colorDevice);
depthImage = step(depthDevice);

Extract the point cloud.

ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);

Initialize a point cloud player to visualize 3-D point cloud data. The axis is set
appropriately to visualize the point cloud from Kinect.

player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits,...
 'VerticalAxis','y','VerticalAxisDir','down');

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

Acquire and view 500 frames of live Kinect point cloud data.

for i = 1:500
 colorImage = step(colorDevice);
 depthImage = step(depthDevice);

 ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);

3 Functions Alphabetical

3-204

 view(player,ptCloud);
end

 pcfromkinect

3-205

3 Functions Alphabetical

3-206

Release the objects.

release(colorDevice);
release(depthDevice);

Input Arguments
depthDevice — Input video object
videoinput object | imaq.VideoDevice object

Input video object, specified as either a videoinput object or an imaq.VideoDevice
object configured for Kinect for Windows.

depthImage — Depth image
M-by-N matrix

Depth image, specified as an M-by-N pixel matrix. The original images, depthImage and
colorImage, from Kinect are mirror images of the scene.

The Kinect depth camera has limited range. The limited range of the Kinect depth camera
can cause pixel values in the depth image to not have corresponding 3-D coordinates.
These missing pixel values are set to NaN in the Location property of the returned point
cloud.
Data Types: uint16

colorImage — Color image
M-by-N-by-3 RGB truecolor image

Color image, specified as an M-by-N-by-3 RGB truecolor image that the Kinect returns.
The original images, depthImage and colorImage, from Kinect are mirror images of the
scene.
Data Types: uint8

alignment — Direction of the image coordinate system
'colorCentric' (default) | 'depthCentric'

Direction of the image coordinate system, specified as the character vector
'colorCentric' or 'depthCentric'. Set this value to 'colorCentric' to align
depthImage with colorImage. Set alignment to 'depthCentric' to align
colorImage with depthImage.

 pcfromkinect

3-207

The origin of a right-handed world coordinate system is at the center of the depth
camera. The x-axis of the coordinate system points to the right, the y-axis points
downward, and the z-axis points from the camera.

X

Y

Z

colorCentric depthCentric

point (x, y, z)

point (xcolor, ycolor)

point (xdepth, ydepth)

Note For consistency across Computer Vision Toolbox use of coordinates systems, the
coordinate system defined by this function is different from the one defined by Kinect
Skeletal metadata.

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object. The origin of the coordinate system of the
returned point cloud is at the center of the depth camera.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshow | pcwrite | planeModel | plot3 | pointCloud |
reconstructScene | scatter3 | triangulate

3 Functions Alphabetical

3-208

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2015b

 pcfromkinect

3-209

Camera Calibrator
Estimate geometric parameters of a single camera

Description
The Camera Calibrator app allows you to estimate camera intrinsics, extrinsics, and
lens distortion parameters. You can use these camera parameters for various computer
vision applications. These applications include removing the effects of lens distortion from
an image, measuring planar objects, or reconstructing 3-D scenes from multiple cameras.

Open the Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the app icon.
• MATLAB command prompt: Enter cameraCalibrator.

Examples

Open Camera Calibrator App

This example shows you the two ways to open the Camera Calibrator app.

Type cameraCalibrator on the MATLAB command line or select it from the MATLAB
desktop Apps tab.

• “Evaluating the Accuracy of Single Camera Calibration”
• “Measuring Planar Objects with a Calibrated Camera”
• “Structure From Motion From Two Views”
• “Structure From Motion From Multiple Views”
• “Depth Estimation From Stereo Video”

3 Functions Alphabetical

3-210

Programmatic Use
cameraCalibrator opens the Camera Calibrator app, which enables you to compute
parameters needed to remove the effects of lens distortion from an image.

cameraCalibrator(imageFolder,squareSize) invokes the camera calibration app
and loads calibration images from the imageFolder. The squareSize input must be a
scalar in millimeters that specifies the size of the checkerboard square in the calibration
pattern.

cameraCalibrator(sessionFile) invokes the app and loads a saved camera
calibration session. Set the sessionFile to the name of the saved session file. The name
must include the path to the MAT file containing the saved session.

See Also
Apps
Stereo Camera Calibrator

Classes
cameraParameters | stereoParameters

Functions
detectCheckerboardPoints | estimateCameraParameters | extrinsics |
generateCheckerboardPoints | rectifyStereoImages | showExtrinsics |
showReprojectionErrors | triangulate | undistortImage

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Measuring Planar Objects with a Calibrated Camera”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2013b

 Camera Calibrator

3-211

Stereo Camera Calibrator
Estimate geometric parameters of a stereo camera

Description
The Stereo Camera Calibrator app allows you to estimate the intrinsic and extrinsic
parameters of each camera in a stereo pair. You can also use the app to estimate the
translation and rotation between the two cameras.

Open the Stereo Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the app icon.
• MATLAB command prompt: Enter stereoCameraCalibrator.

Examples

Open Stereo Camera Calibrator App

This example shows you the two ways to open the Stereo Camera Calibrator app.

Type stereocameraCalibrator on the MATLAB command line or select it from the
MATLAB desktop Apps tab.

• “Evaluating the Accuracy of Single Camera Calibration”
• “Measuring Planar Objects with a Calibrated Camera”
• “Structure From Motion From Two Views”
• “Structure From Motion From Multiple Views”
• “Depth Estimation From Stereo Video”

3 Functions Alphabetical

3-212

Programmatic Use
stereoCameraCalibrator opens the Stereo Camera Calibrator app. You can use this
app to estimate the intrinsic and extrinsic parameters of each camera in a stereo pair. You
can also use the app to estimate the translation and rotation between the two cameras.

stereoCameraCalibrator(folder1,folder2,squareSize) opens the Stereo
Camera Calibrator app and loads the stereo calibration images. The app uses the
checkerboard square size specified by the squareSize input. It also uses folder1
images for camera 1 and folder2 for camera 2.

stereoCameraCalibrator(folder1,folder2,squareSize,squareSizeUnits)
additionally specifies the units of the square size. If you do not specify units, the app sets
squareSizeUnits to 'millimeters'. Units can be 'millimeters',
'centimeters', or 'inches'.

stereoCameraCalibrator(sessionFile) opens the app and loads a saved stereo
calibration session. Set the sessionFile to the name of the saved session MAT-file.

See Also
Camera Calibrator | cameraParameters | detectCheckerboardPoints |
estimateCameraParameters | generateCheckerboardPoints | showExtrinsics |
showReprojectionErrors | stereoParameters | undistortImage

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Measuring Planar Objects with a Calibrated Camera”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2014b

 Stereo Camera Calibrator

3-213

cameraMatrix
Camera projection matrix

Syntax
camMatrix = cameraMatrix(cameraParams,rotationMatrix,
translationVector)

Description
camMatrix = cameraMatrix(cameraParams,rotationMatrix,
translationVector) returns a 4-by-3 camera projection matrix. You can use this
matrix to project 3-D world points in homogeneous coordinates into an image.

Examples

Compute Camera Matrix

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric
coordinate system, with the upper-left corner at (0,0). The square size is in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

3 Functions Alphabetical

3-214

I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Load image at new location.

imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
 'calibration','slr','image9.jpg'));
figure; imshow(imOrig);
title('Input Image');

Undistort image.

im = undistortImage(imOrig,cameraParams);

 cameraMatrix

3-215

Find reference object in new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compute new extrinsics.

[rotationMatrix,translationVector] = extrinsics(...
 imagePoints,worldPoints,cameraParams);

Calculate camera matrix

P = cameraMatrix(cameraParams,rotationMatrix,translationVector)

P =

 1.0e+05 *

 0.0157 -0.0271 0.0000
 0.0404 -0.0046 -0.0000
 0.0199 0.0387 0.0000
 8.9399 9.4399 0.0072

Input Arguments
cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix using the
extrinsics function. You can also obtain the matrix using the relativeCameraPose
function by transposing its orientation output. The rotationMatrix and
translationVector inputs must be real, nonsparse, and of the same class.

3 Functions Alphabetical

3-216

translationVector — Translation of camera
1-by-3 vector

Translation of camera, specified as a 1-by-3 vector. The translation vector describes the
transformation from the world coordinates to the camera coordinates. You can obtain this
vector using the extrinsics function. You can also obtain the vector using the
location and orientation outputs of the relativeCameraPose function:

• translationVector = -relativeLocation * relativeOrientation'

The translationVector inputs must be real, nonsparse, and of the same class.

Output Arguments
camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, returned as a 4-by-3 matrix. The matrix contains the 3-D world
points in homogenous coordinates that are projected into the image. When you set
rotationMatrix and translationVector to double, the function returns
camMatrix as double. Otherwise it returns camMatrix as single.

The function computes camMatrix as follows:

camMatrix = [rotationMatrix; translationVector] × K.
K: the intrinsic matrix

Then, using the camera matrix and homogeneous coordinates, you can project a world
point onto the image.

w × [x,y,1] = [X,Y,Z,1] × camMatrix.

(X,Y,Z): world coordinates of a point
(x,y): coordinates of the corresponding image point
w: arbitrary scale factor
Data Types: single | double

 cameraMatrix

3-217

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Camera Calibrator | estimateCameraMatrix | estimateCameraParameters |
extrinsics | relativeCameraPose | triangulate

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Depth Estimation From Stereo Video”
“Code Generation for Depth Estimation From Stereo Video”
“What Is Camera Calibration?”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2014b

3 Functions Alphabetical

3-218

cameraPose
Compute relative rotation and translation between camera poses

Syntax
cameraPose

Description
cameraPose returns the camera extrinsics.

Note cameraPose was renamed to relativeCameraPose. Please use the new function
in place of cameraPose.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

Introduced in R2015b

 cameraPose

3-219

relativeCameraPose
Compute relative rotation and translation between camera poses

Syntax
[relativeOrientation,relativeLocation] = relativeCameraPose(M,
cameraParams,inlierPoints1,inlierPoints2)
[relativeOrientation,relativeLocation] = relativeCameraPose(M,
cameraParams1,cameraParams2,inlierPoints1,inlierPoints2)
[relativeOrientation,relativeLocation,validPointsFraction] =
relativeCameraPose(M, ___)

Description
[relativeOrientation,relativeLocation] = relativeCameraPose(M,
cameraParams,inlierPoints1,inlierPoints2) returns the orientation and location
of a calibrated camera relative to its previous pose. The two poses are related by M, which
must be either a fundamental, essential, or projective2d matrix. The function
computes the camera location up to scale and returns relativeLocation as a unit
vector.

[relativeOrientation,relativeLocation] = relativeCameraPose(M,
cameraParams1,cameraParams2,inlierPoints1,inlierPoints2) returns the
orientation and location of the second camera relative to the first one.

[relativeOrientation,relativeLocation,validPointsFraction] =
relativeCameraPose(M, ___) additionally returns the fraction of the inlier points
that project in front of both cameras.

Input Arguments
M — Fundamental, essential, or homography matrix
3-by-3 matrix

3 Functions Alphabetical

3-220

Fundamental, essential matrix, or a homography matrix, specified as a 3-by-3 matrix or a
projective2d object containing a homography matrix. You can obtain the 3-by-3 matrix
using one of the following functions:

• estimateFundamentalMatrix for the fundamental matrix.
• estimateEssentialMatrix for the essential matrix
• estimateGeometricTransform for the projective 2-D object.

Data Types: single | double

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

cameraParams1 — Camera parameters for camera 1
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 1, specified as a cameraParameters or
cameraIntrinsics object. You can return the cameraParameters object using the
estimateCameraParameters function. The cameraParameters object contains the
intrinsic, extrinsic, and lens distortion parameters of a camera.

cameraParams2 — Camera parameters for camera 2
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 2, specified as a cameraParameters or
cameraIntrinsics object. You can return the cameraParameters object using the
estimateCameraParameters function. The cameraParameters object contains the
intrinsic, extrinsic, and lens distortion parameters of a camera.

inlierPoints1 — Coordinates of corresponding points in view 1
SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in view 1, specified as an M-by-2 matrix of M number
of [x,y] coordinates, or as a SURFPoints, MSERRegions, or cornerPoints object. You
can obtain these points using the estimateFundamentalMatrix function or the
estimateEssentialMatrix.

 relativeCameraPose

3-221

inlierPoints2 — Coordinates of corresponding points in view 2
SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in view 2, specified as an M-by-2 matrix of M number
of [x,y] coordinates, or as a SURFPoints, MSERRegions, or cornerPoints object. You
can obtain these points using the estimateFundamentalMatrix function or the
estimateEssentialMatrix.

Output Arguments
relativeOrientation — Orientation of camera
3-by-3 matrix

Orientation of camera, returned as a 3-by-3 matrix. If you use only one camera, the matrix
describes the orientation of the second camera pose relative to the first camera pose. If
you use two cameras, the matrix describes the orientation of camera 2 relative to camera
1.
Data Types: single | double

relativeLocation — Location of camera
1-by-3 vector

Location of camera, returned as a 1-by-3 unit vector. If you use only one camera, the
vector describes the location of the second camera pose relative to the first camera pose.
If you use two cameras, the vector describes the location of camera 2 relative to camera
1.
Data Types: single | double

validPointsFraction — Fraction of valid inlier points
scalar

Fraction of valid inlier points that project in front of both cameras, returned as a scalar. If
validPointsFraction is too small, e.g. less than 0.9, it can indicate that the
fundamental matrix is incorrect.

3 Functions Alphabetical

3-222

Tips
• You can compute the camera extrinsics, rotationMatrix and translationVector,

corresponding to the camera pose, from relativeOrientation and
relativeLocation:

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(relativeOrientation,relativeLocation)

The orientation of the previous camera pose is the identity matrix, eye(3), and its
location is, [0,0,0].

• You can then use rotationMatrix and translationVector as inputs to the
cameraMatrix function.

• You can compute four possible combinations of orientation and location from the input
fundamental matrix. Three of the combinations are not physically realizable, because
they project 3-D points behind one or both cameras. The relativeCameraPose
function uses inlierPoints1 and inlierPoints2 to determine the realizable
combination.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Camera Calibrator | cameraMatrix | cameraPoseToExtrinsics |
estimateCameraParameters | estimateEssentialMatrix |
estimateFundamentalMatrix | estimateWorldCameraPose | plotCamera |
triangulate | triangulateMultiview

Topics
“Structure From Motion From Two Views”

 relativeCameraPose

3-223

“Structure From Motion From Multiple Views”
“Point Feature Types”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”
“Structure from Motion”

Introduced in R2016b

3 Functions Alphabetical

3-224

estimateCameraMatrix
Estimate camera projection matrix from world-to-image point correspondences

Syntax
camMatrix = estimateCameraMatrix(imagePoints,worldPoints)
[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,
worldPoints)

Description
camMatrix = estimateCameraMatrix(imagePoints,worldPoints) returns the
camera projection matrix determined from known world points and their corresponding
image projections by using the direct linear transformation (DLT) approach.

[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,
worldPoints) also returns the reprojection error that quantifies the accuracy of the
projected image coordinates.

Examples

Estimate Camera Projection Matrix

Load a 3-D point cloud data captured by an RGB-D sensor into the workspace.

ld = load('object3d.mat');
ptCloud = ld.ptCloud;

Remove points with Inf or NaN coordinates from the point cloud.

[validPtCloud,validIndices] = removeInvalidPoints(ptCloud);

Read the valid world point coordinates. Each entry specifies the x, y, z coordinates of a
point in the point cloud.

 estimateCameraMatrix

3-225

worldPoints = validPtCloud.Location;

Define the corresponding image point coordinates as a orthographic projection of point
cloud data onto the yz-plane.

indices = 1:ptCloud.Count;
[y,z] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [y(validIndices)' z(validIndices)'];

Generate the 2-D image projection by using the image point coordinates and their color
values.

projImage = zeros(max(imagePoints(:,1)),max(imagePoints(:,2)),3);
rgb = validPtCloud.Color;
for j = 1:length(rgb)
projImage(imagePoints(j,1),imagePoints(j,2),:) = rgb(j,:);
end

Display the point cloud data and the corresponding 2-D image projection.

figure
subplot(1,2,1)
pcshow(ptCloud)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Point Cloud Data','Color',[1 1 1])
subplot(1,2,2)
imshow(uint8(projImage))
title('2-D Image Projection','Color',[1 1 1])

3 Functions Alphabetical

3-226

Estimate the camera projection matrix and reprojection error by using the known world
points and the image points.

[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,worldPoints);

Use the estimated camera projection matrix as input to the findNearestNeighbors
function and find the nearest neighbors of a query point.

point = [0.4 0.3 0.2]; % Specify the query point
K = 50; % Specify the number of nearest neighbors to be determined
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix); % Get the indices and distances of nearest neighbors

Use the select function to get the point cloud data of nearest neighbors.

ptCloudB = select(ptCloud,indices);

 estimateCameraMatrix

3-227

Display the input point cloud and its nearest neighbors.

figure,
pcshow(ptCloud)
hold on
pcshow(ptCloudB.Location,'ob')
hold off
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[1 1 1])

3 Functions Alphabetical

3-228

Input Arguments
imagePoints — Coordinates of image projection points
M-by-2 matrix of (x, y) coordinates

Coordinates of image projection points, specified as an M-by-2 matrix of (x, y)
coordinates. M is the number of points and it must be greater than or equal to 6.

Note

• The input image points must correspond to an undistorted image plane.

Data Types: single | double

worldPoints — 3-D world points
M-by-3 matrix of (x, y, z) coordinates

3-D world points, specified as an M-by-3 matrix of (x, y, z) coordinates. M is the number of
points and it must be greater than or equal to 6.

Note

• The input world coordinates must be non-coplanar points.

Data Types: single | double

Output Arguments
camMatrix — Camera projection matrix
4-by-3 matrix

Camera projection matrix, returned as a 4-by-3 matrix. The matrix maps the 3-D world
points, in homogenous coordinates to the 2-D image coordinates of the projections onto
the image plane.
Data Types: double

 estimateCameraMatrix

3-229

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as a M-by-1 vector. The reprojection error is the error
between the reprojected image points and the input image points. For more information
on the computation of reprojection errors, see “Algorithms” on page 3-230.
Data Types: double

Tips
You can use the estimateCameraMatrix function to estimate a camera projection
matrix:

• If the world-to-image point correspondences are known, and the camera intrinsics and
extrinsics parameters are not known.

• For use with the findNearestNeighbors object function of the pointCloud object.
The use of a camera projection matrix speeds up the nearest neighbors search in a
point cloud generated by an RGB-D sensor, such as Microsoft Kinect.

Algorithms
Given the world points X and the image points x, the camera projection matrix C, is
obtained by solving the equation

λx = CX.
The equation is solved using the direct linear transformation (DLT) approach [1]. This
approach formulates a homogeneous linear system of equations, and the solution is
obtained through generalized eigenvalue decomposition.

Because the image point coordinates are given in pixel values, the approach for
computing the camera projection matrix is sensitive to numerical errors. To avoid
numerical errors, the input image point coordinates are normalized, so that their centroid
is at the origin. Also, the root mean squared distance of the image points from the origin

is 2 . These steps summarize the process for estimating the camera projection matrix.

1 Normalize the input image point coordinates with transform T.
2 Estimate camera projection matrix CN from the normalized input image points.

3 Functions Alphabetical

3-230

3 Compute the denormalized camera projection matrix C as CNT-1.
4 Compute the reprojected image point coordinates xE as CX.
5 Compute the reprojection errors as

reprojectionErrors = |x− xE|.

References
[1] Richard, H. and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge: Cambridge University Press, 2000.

See Also
cameraMatrix | estimateCameraParameters | estimateEssentialMatrix |
estimateFundamentalMatrix | estimateWorldCameraPose |
findNearestNeighbors

Introduced in R2019a

 estimateCameraMatrix

3-231

extractLBPFeatures
Extract local binary pattern (LBP) features

Syntax
features = extractLBPFeatures(I)
features = extractLBPFeatures(I,Name,Value)

Description
features = extractLBPFeatures(I) returns extracted uniform local binary pattern
(LBP) from a grayscale image. The LBP features encode local texture information.

features = extractLBPFeatures(I,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Examples

Using LBP Features to Differentiate Images by Texture

Read images that contain different textures.

brickWall = imread('bricks.jpg');
rotatedBrickWall = imread('bricksRotated.jpg');
carpet = imread('carpet.jpg');

Display the images.

figure
imshow(brickWall)
title('Bricks')

3 Functions Alphabetical

3-232

figure
imshow(rotatedBrickWall)
title('Rotated Bricks')

 extractLBPFeatures

3-233

figure
imshow(carpet)
title('Carpet')

3 Functions Alphabetical

3-234

Extract LBP features from the images to encode their texture information.

lbpBricks1 = extractLBPFeatures(brickWall,'Upright',false);
lbpBricks2 = extractLBPFeatures(rotatedBrickWall,'Upright',false);
lbpCarpet = extractLBPFeatures(carpet,'Upright',false);

Gauge the similarity between the LBP features by computing the squared error between
them.

brickVsBrick = (lbpBricks1 - lbpBricks2).^2;
brickVsCarpet = (lbpBricks1 - lbpCarpet).^2;

Visualize the squared error to compare bricks versus bricks and bricks versus carpet. The
squared error is smaller when images have similar texture.

 extractLBPFeatures

3-235

figure
bar([brickVsBrick; brickVsCarpet]','grouped')
title('Squared Error of LBP Histograms')
xlabel('LBP Histogram Bins')
legend('Bricks vs Rotated Bricks','Bricks vs Carpet')

Apply L1 Normalization to LBP Features

Read in a sample image and convert it to grayscale.

I = imread('gantrycrane.png');
I = rgb2gray(I);

3 Functions Alphabetical

3-236

Extract unnormalized LBP features so that you can apply a custom normalization.

lbpFeatures = extractLBPFeatures(I,'CellSize',[32 32],'Normalization','None');

Reshape the LBP features into a number of neighbors -by- number of cells array to access
histograms for each individual cell.

numNeighbors = 8;
numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);

Normalize each LBP cell histogram using L1 norm.

lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));

Reshape the LBP features vector back to 1-by- N feature vector.

lbpFeatures = reshape(lbpCellHists,1,[]);

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified as an M-by-N 2-D grayscale image that is real, and non-sparse.
Data Types: logical | single | double | int16 | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumNeighbors',8

Algorithm Parameters
The LBP algorithm parameters control how local binary patterns are computed for each
pixel in the input image.

 extractLBPFeatures

3-237

NumNeighbors — Number of neighbors
8 (default) | positive integer

Number of neighbors used to compute the LBP for each pixel in the input image, specified
as the comma-separated pair consisting of 'NumNeighbors' and a positive integer. The
set of neighbors is selected from a circularly symmetric pattern around each pixel.
Increase the number of neighbors to encode greater detail around each pixel. Typical
values range from 4 to 24.

Radius — Radius of circular pattern to select neighbors
1 (default) | positive integer

Radius of circular pattern used to select neighbors for each pixel in the input image,
specified as the comma-separated pair consisting of 'Radius' and a positive integer. To
capture detail over a larger spatial scale, increase the radius. Typical values range from 1
to 5.

Upright — Rotation invariance flag
true | logical scalar

Rotation invariance flag, specified as the comma-separated pair consisting of 'Upright'
and a logical scalar. When you set this property to true, the LBP features do not encode
rotation information. Set 'Upright' to false when rotationally invariant features are
required.

Interpolation — Interpolation method
'Linear' (default) | 'Nearest'

Interpolation method used to compute pixel neighbors, specified as the comma-separated
pair consisting of 'Interpolation' and the character vector 'Linear' or 'Nearest'.
Use 'Nearest' for faster computation, but with less accuracy.

Histogram Parameters
The histogram parameters determine how the distribution of binary patterns is
aggregated over the image to produce the output features.

CellSize — Cell size
size(I) (default) | 2-element vector

Cell size, specified as the comma-separated pair consisting of 'CellSize' and a 2-element
vector. The number of cells is calculated as floor(size(I)/CellSize).

3 Functions Alphabetical

3-238

Normalization — Type of normalization
'L2' (default) | 'None'

Type of normalization applied to each LBP cell histogram, specified as the comma-
separated pair consisting of 'Normalization' and the character vector 'L2' or 'None'.
To apply a custom normalization method as a post-processing step, set this value to
'None'.

Output Arguments
features — LBP feature vector
1-by-N vector

LBP feature vector, returned as a 1-by-N vector of length N representing the number of
features. LBP features encode local texture information, which you can use for tasks such
as classification, detection, and recognition. The function partitions the input image into
non-overlapping cells. To collect information over larger regions, select larger cell sizes .
However, when you increase the cell size, you lose local detail. N, depends on the number
of cells in the image, numCells, the number of neighbors, P, and the Upright parameter.

The number of cells is calculated as:
numCells = prod(floor(size(I)/CellSize))

The figure shows an image with nine cell histograms. Each histogram describes an LBP
feature.

L11 L12 L13

L21 L22 L23

L31 L32 L33

Image

cells

The size of the histogram in each cell is [1,B], where B is the number of bins in the
histogram. The number of bins depends on the Upright property and the number of
neighbors, P.

 extractLBPFeatures

3-239

Upright Number of Bins
true (P x P–1) + 3)
false (P + 2)

The overall LBP feature length, N, depends on the number of cells and the number of
bins, B:
N = numCells x B

L11 L21 L31 L12 L22 L32 L13 L23 L33

LBP features = size(LYX) = [1, B]

N

References
[1] Ojala, T., M. Pietikainen, and T. Maenpaa. “Multiresolution Gray Scale and Rotation

Invariant Texture Classification With Local Binary Patterns.” IEEE Transactions
on Pattern Analysis and Machine Intelligence. Vol. 24, Issue 7, July 2002, pp.
971-987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not generate a platform-dependent library.

See Also
MSERRegions | SURFPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectSURFFeatures | extractFeatures | extractHOGFeatures | matchFeatures

3 Functions Alphabetical

3-240

Topics
“Local Feature Detection and Extraction”

Introduced in R2015b

 extractLBPFeatures

3-241

configureKalmanFilter
Create Kalman filter for object tracking

Syntax
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation,
InitialEstimateError,MotionNoise,MeasurementNoise)

Description
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation,
InitialEstimateError,MotionNoise,MeasurementNoise) returns a
vision.KalmanFilter object configured to track a physical object. This object moves
with constant velocity or constant acceleration in an M-dimensional Cartesian space. The
function determines the number of dimensions, M, from the length of the
InitialLocation vector.

This function provides a simple approach for configuring the vision.KalmanFilter
object for tracking a physical object in a Cartesian coordinate system. The tracked object
may move with either constant velocity or constant acceleration. The statistics are the
same along all dimensions. If you need to configure a Kalman filter with different
assumptions, use the vision.KalmanFilter object directly.

Examples

Track an Occluded Object

Detect and track a ball using Kalman filtering, foreground detection, and blob analysis.

Create System objects to read the video frames, detect foreground physical objects, and
display results.

videoReader = vision.VideoFileReader('singleball.mp4');
videoPlayer = vision.VideoPlayer('Position',[100,100,500,400]);

3 Functions Alphabetical

3-242

foregroundDetector = vision.ForegroundDetector('NumTrainingFrames',10,...
 'InitialVariance',0.05);
blobAnalyzer = vision.BlobAnalysis('AreaOutputPort',false,...
 'MinimumBlobArea',70);

Process each video frame to detect and track the ball. After reading the current video
frame, the example searches for the ball by using background subtraction and blob
analysis. When the ball is first detected, the example creates a Kalman filter. The Kalman
filter determines the ball?s location, whether it is detected or not. If the ball is detected,
the Kalman filter first predicts its state at the current video frame. The filter then uses the
newly detected location to correct the state, producing a filtered location. If the ball is
missing, the Kalman filter solely relies on its previous state to predict the ball's current
location.

 kalmanFilter = []; isTrackInitialized = false;
 while ~isDone(videoReader)
 colorImage = step(videoReader);

 foregroundMask = step(foregroundDetector, rgb2gray(colorImage));
 detectedLocation = step(blobAnalyzer,foregroundMask);
 isObjectDetected = size(detectedLocation, 1) > 0;

 if ~isTrackInitialized
 if isObjectDetected
 kalmanFilter = configureKalmanFilter('ConstantAcceleration',...
 detectedLocation(1,:), [1 1 1]*1e5, [25, 10, 10], 25);
 isTrackInitialized = true;
 end
 label = ''; circle = zeros(0,3);
 else
 if isObjectDetected
 predict(kalmanFilter);
 trackedLocation = correct(kalmanFilter, detectedLocation(1,:));
 label = 'Corrected';
 else
 trackedLocation = predict(kalmanFilter);
 label = 'Predicted';
 end
 circle = [trackedLocation, 5];
 end

 colorImage = insertObjectAnnotation(colorImage,'circle',...
 circle,label,'Color','red');

 configureKalmanFilter

3-243

 step(videoPlayer,colorImage);
 end

Release resources.

release(videoPlayer);
release(videoReader);

3 Functions Alphabetical

3-244

Input Arguments
MotionModel — Motion model
'ConstantVelocity' | 'ConstantAcceleration'

Motion model, specified as the character vector 'ConstantVelocity' or
'ConstantAcceleration'. The motion model you select applies to all dimensions. For

 configureKalmanFilter

3-245

example, for the 2-D Cartesian coordinate system. This mode applies to both X and Y
directions.
Data Types: char

InitialLocation — Initial location of object
vector

Initial location of object, specified as a numeric vector. This argument also determines the
number of dimensions for the coordinate system. For example, if you specify the initial
location as a two-element vector, [x0, y0], then a 2-D coordinate system is assumed.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

InitialEstimateError — Initial estimate uncertainty variance
2-element vector | 3-element vector

Initial estimate uncertainty variance, specified as a two- or three-element vector. The
initial estimate error specifies the variance of the initial estimates of location, velocity,
and acceleration of the tracked object. The function assumes a zero initial velocity and
acceleration for the object, at the location you set with the InitialLocation property.
You can set the InitialEstimateError to an approximated value:
(assumed values – actual values)2 + the variance of the values

The value of this property affects the Kalman filter for the first few detections. Later, the
estimate error is determined by the noise and input data. A larger value for the initial
estimate error helps the Kalman filter to adapt to the detection results faster. However, a
larger value also prevents the Kalman filter from removing noise from the first few
detections.

Specify the initial estimate error as a two-element vector for constant velocity or a three-
element vector for constant acceleration:

MotionModel InitialEstimateError
ConstantVelocity [LocationVariance, VelocityVariance]
ConstantAcceleration [LocationVariance, VelocityVariance, AccelerationVariance]

Data Types: double | single

MotionNoise — Deviation of selected and actual model
2-element vector | 3-element vector

3 Functions Alphabetical

3-246

Deviation of selected and actual model, specified as a two- or three-element vector. The
motion noise specifies the tolerance of the Kalman filter for the deviation from the chosen
model. This tolerance compensates for the difference between the object's actual motion
and that of the model you choose. Increasing this value may cause the Kalman filter to
change its state to fit the detections. Such an increase may prevent the Kalman filter from
removing enough noise from the detections. The values of this property stay constant and
therefore may affect the long-term performance of the Kalman filter.

MotionModel InitialEstimateError
ConstantVelocity [LocationVariance, VelocityVariance]
ConstantAcceleration [LocationVariance, VelocityVariance, AccelerationVariance]

Data Types: double | single

MeasurementNoise — Variance inaccuracy of detected location
scalar

Variance inaccuracy of detected location, specified as a scalar. It is directly related to the
technique used to detect the physical objects. Increasing the MeasurementNoise value
enables the Kalman filter to remove more noise from the detections. However, it may also
cause the Kalman filter to adhere too closely to the motion model you chose, putting less
emphasis on the detections. The values of this property stay constant, and therefore may
affect the long-term performance of the Kalman filter.
Data Types: double | single

Output Arguments
kalmanFilter — Configured Kalman filter tracking
object

Configured Kalman filter, returned as a vision.KalmanFilter object for tracking.

Algorithms
This function provides a simple approach for configuring the vision.KalmanFilter object
for tracking. The Kalman filter implements a discrete time, linear State-Space System.

 configureKalmanFilter

3-247

The configureKalmanFilter function sets the vision.KalmanFilter object
properties.

The InitialLocation property corresponds to the measurement vector used in the
Kalman filter state-space model. This table relates the measurement vector, M, to the
state-space model for the Kalman filter.
State transition model, A, and Measurement model, H
The state transition model, A, and the measurement model, H of the state-space model,
are set to block diagonal matrices made from M identical submatrices As and Hs,
respectively:

A = blkdiag(As _1, As _2, ..., As _M)

H = blkdiag(Hs _1, Hs _2, ..., Hs _M)
The submatrices As and Hs are described below:
MotionModel As Hs
'ConstantVelocity' [1 1; 0 1] [1 0]
'ConstantAcceleration
'

[1 1 0.5; 0 1 1; 0 0 1] [1 0 0]

The Initial State, x:
MotionModel Initial state, x
'ConstantVelocity' [InitialLocation(1), 0, ..., InitialLocation(M), 0]
'ConstantAcceleration
'

[InitialLocation(1), 0, 0, ..., InitialLocation(M),
0, 0]

The initial state estimation error covariance matrix, P:
P = diag(repmat(InitialError, [1, M]))

The process noise covariance, Q:
Q = diag(repmat(MotionNoise, [1, M]))

The measurement noise covariance, R:

3 Functions Alphabetical

3-248

R = diag(repmat(MeasurementNoise, [1, M])).

See Also
vision.BlobAnalysis | vision.ForegroundDetector | vision.KalmanFilter

Topics
“Using Kalman Filter for Object Tracking”
“Multiple Object Tracking”

Introduced in R2012b

 configureKalmanFilter

3-249

detectBRISKFeatures
Detect BRISK features and return BRISKPoints object

Syntax
points = detectBRISKFeatures(I)
points = detectBRISKFeatures(I,Name,Value)

Description
points = detectBRISKFeatures(I) returns a BRISKPoints object, points. The
object contains information about BRISK features detected in a 2-D grayscale input
image, I. The detectBRISKFeatures function uses a Binary Robust Invariant Scalable
Keypoints (BRISK) algorithm to detect multiscale corner features.

points = detectBRISKFeatures(I,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Examples

Detect BRISK Points in an Image and Mark Their Locations

Read the image.

 I = imread('cameraman.tif');

Find the BRISK points.

 points = detectBRISKFeatures(I);

Display the results.

 imshow(I); hold on;
 plot(points.selectStrongest(20));

3 Functions Alphabetical

3-250

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Example:
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 detectBRISKFeatures

3-251

Example: 'MinQuality',0.1,'ROI', [50,150,100,200] specifies that the detector
must use a 10% minimum accepted quality of corners within the designated region of
interest. This region of interest is located at x=50, y=150. The ROI has a width of 100
pixels and a height of 200 pixels.

MinContrast — Minimum intensity difference
0.2 (default) | scalar

Minimum intensity difference between a corner and its surrounding region, specified as
the comma-separated pair consisting of 'MinContrast' and a scalar in the range (0 1).
The minimum contrast value represents a fraction of the maximum value of the image
class. Increase this value to reduce the number of detected corners.

MinQuality — Minimum accepted quality of corners
0.1 (default) | scalar

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'MinQuality' and a scalar value in the range [0,1]. The minimum accepted quality of
corners represents a fraction of the maximum corner metric value in the image. Increase
this value to remove erroneous corners.

NumOctaves — Number of octaves
4 (default) | scalar

Number of octaves to implement, specified as a comma-separated pair consisting of
'NumOctaves' and an integer scalar, greater than or equal to 0. Increase this value to
detect larger blobs. Recommended values are between 1 and 4. When you set
NumOctaves to 0, the function disables multiscale detection. It performs the detection at
the scale of the input image, I.

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting
of 'ROI' and a vector of the format [x y width height]. The first two integer values [x y]
represent the location of the upper-left corner of the region of interest. The last two
integer values represent the width and height.

3 Functions Alphabetical

3-252

Output Arguments
points — Brisk points
BRISKPoints object

Brisk points, returned as a BRISKPoints object. The object contains information about
the feature points detected in the 2-D grayscale input image.

References
[1] Leutenegger, S., M. Chli and R. Siegwart. “BRISK: Binary Robust Invariant Scalable

Keypoints”, Proceedings of the IEEE International Conference, ICCV, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
BRISKPoints | MSERRegions | SURFPoints | binaryFeatures | cornerPoints |
detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |
extractFeatures | extractHOGFeatures | matchFeatures

Topics
“Point Feature Types”

Introduced in R2014a

 detectBRISKFeatures

3-253

detectCheckerboardPoints
Detect checkerboard pattern in image

Syntax
[imagePoints,boardSize] = detectCheckerboardPoints(I)

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(
imageFileNames)
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(
images)

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(
imageFileNames1,imageFileNames2)
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(
images1,images2)

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(___
,'MinCornerMetric',0.15)

Description
[imagePoints,boardSize] = detectCheckerboardPoints(I) detects a black and
white checkerboard of size greater than 4-by-4 squares in a 2-D truecolor or grayscale
image. The function returns the detected points and dimensions of the checkerboard.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(
imageFileNames) detects a checkerboard pattern in a set of input images, provided as
an array of file names.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(
images) detects a checkerboard pattern in a set of input images, provided as an array of
grayscale or truecolor images.

3 Functions Alphabetical

3-254

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(
imageFileNames1,imageFileNames2) detects a checkerboard pattern in stereo pairs
of images, provided as cell arrays of file names.

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(
images1,images2) detects a checkerboard pattern in stereo pairs of images, provided
as arrays of grayscale or truecolor images.

[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(___
,'MinCornerMetric',0.15) sets the corner metric threshold, specified as a
nonnegative scalar. When the image is noisy or highly textured, increase this value to
reduce the number of false corners.

Examples

Detect Checkerboard in a Set of Image Files

Create a cell array of file names of calibration images.

for i = 1:5
 imageFileName = sprintf('image%d.tif', i);
 imageFileNames{i} = fullfile(matlabroot,'toolbox','vision',...
 'visiondata','calibration','webcam',imageFileName);
end

Detect calibration pattern in the images.

[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames);

Display the detected points.

imageFileNames = imageFileNames(imagesUsed);
for i = 1:numel(imageFileNames)
 I = imread(imageFileNames{i});
 subplot(2, 2, i);
 imshow(I);
 hold on;
 plot(imagePoints(:,1,i),imagePoints(:,2,i),'ro');
end

 detectCheckerboardPoints

3-255

Detect Checkerboard in Stereo Images

Read in stereo images.

numImages = 4;
images1 = cell(1, numImages);
images2 = cell(1, numImages);
for i = 1:numImages
 images1{i} = fullfile(matlabroot,'toolbox','vision',...
 'visiondata','calibration','stereo','left',sprintf('left%02d.png',i));
 images2{i} = fullfile(matlabroot,'toolbox','vision',...

3 Functions Alphabetical

3-256

 'visiondata','calibration','stereo','right',sprintf('right%02d.png',i));
end

Detect the checkerboards in the images.

[imagePoints,boardSize,pairsUsed] = ...
 detectCheckerboardPoints(images1,images2);

Display points from images1.

images1 = images1(pairsUsed);
figure;
for i = 1:numel(images1)
 I = imread(images1{i});
 subplot(2,2,i);
 imshow(I);
 hold on;
 plot(imagePoints(:,1,i,1),imagePoints(:,2,i,1),'ro');
end
annotation('textbox',[0 0.9 1 0.1],'String','Camera 1',...
 'EdgeColor','none','HorizontalAlignment','center')

 detectCheckerboardPoints

3-257

Display points from images2.

images2 = images2(pairsUsed);
figure;
for i = 1:numel(images2)
 I = imread(images2{i});
 subplot(2, 2, i);
 imshow(I);
 hold on;
 plot(imagePoints(:,1,i,2),imagePoints(:,2,i,2),'ro');
end
annotation('textbox',[0 0.9 1 0.1],'String','Camera 2',...
 'EdgeColor','none','HorizontalAlignment','center')

3 Functions Alphabetical

3-258

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified in either an M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The
input image must be real and nonsparse. The function can detect checkerboards with a
minimum size of 4-by-4 squares.
Data Types: single | double | int16 | uint8 | uint16 | logical

 detectCheckerboardPoints

3-259

imageFileNames — Image file names
N-element cell array

Image file names, specified as an N-element cell array of N file names.

imageFileNames1 — File names for camera 1 images
N-element cell array

File names for camera 1 images, specified as an N-element cell array of N file names. The
images contained in this array must be in the same order as images contained in
imageFileNames2, forming stereo pairs.

imageFileNames2 — File names for camera 2 images
N-element cell array

File names for camera 2 images, specified as an N-element cell array of N file names. The
images contained in this array must be in the same order as images contained in
imageFileNames1, forming stereo pairs.

images — Images
height-by-width-by-color channel-by-number of frames array

Images, specified as an H-by-W-by-B-by-F array containing a set of grayscale or truecolor
images. The input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3
indicates a truecolor image.
F represents the number of image frames.

images1 — Stereo pair images 1
height-by-width-by-color channel-by-number of frames array

Images, specified as an H-by-W-by-B-by-F array containing a set of grayscale or truecolor
images. The input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3
indicates a truecolor image.
F represents the number of image frames.

3 Functions Alphabetical

3-260

images2 — Stereo pair images 2
height-by-width-by-color channel-by-number of frames array

Images, specified as an H-by-W-by-B-by-F array containing a set of grayscale or truecolor
images. The input dimensions are:
H represents the image height.
W represents the image width.
B represents the color channel. A value of 1 indicates a grayscale image, and a value of 3
indicates a truecolor image.
F represents the number of image frames.

Output Arguments
imagePoints — Detected checkerboard corner coordinates
M-by-2 matrix | M-by-2-by- number of images array | M-by-2-by-number of pairs of
images-by-number of cameras array

Detected checkerboard corner coordinates, returned as an M-by-2 matrix for one image.
For multiple images, points are returned as an M-by-2-by-number of images array, and for
stereo pairs of images, the function returns points as an M-by-2-by-number of pairs-by-
number of cameras array.

For stereo pairs, imagePoints(:,:,:,1) are the points from the first set of images, and
imagePoints(:,:,:,2) are the points from the second set of images. The output contains M
number of [x y] coordinates. Each coordinate represents a point where square corners are
detected on the checkerboard. The number of points the function returns depends on the
value of boardSize, which indicates the number of squares detected. The function
detects the points with sub-pixel accuracy.

The function calculates the number of points, M, as follows:
M = prod(boardSize-1).
If the checkerboard cannot be detected:
imagePoints = []
boardSize = [0,0]

When you specify the imageFileNames input, the function can return imagePoints as
an M-by-2-by-N array. In this array, N represents the number of images in which a
checkerboard is detected.

 detectCheckerboardPoints

3-261

boardSize — Checkerboard dimensions
2-element [height, width] vector

Checkerboard dimensions, returned as a 2-element [height, width] vector. The dimensions
of the checkerboard are expressed in terms of the number of squares.

3 Functions Alphabetical

3-262

imagesUsed — Pattern detection flag
N-by-1 logical vector

Pattern detection flag, returned as an N-by-1 logical vector of N logicals. The function
outputs the same number of logicals as there are input images. A true value indicates
that the pattern was detected in the corresponding image. A false value indicates that
the function did not detect a pattern.

pairsUsed — Stereo pair pattern detection flag
N-by-1 logical vector

 detectCheckerboardPoints

3-263

Stereo pair pattern detection flag, returned as an N-by-1 logical vector of N logicals. The
function outputs the same number of logicals as there are input images. A true value
indicates that the pattern is detected in the corresponding stereo image pair. A false
value indicates that the function does not detect a pattern.

References
[1] Geiger, A., F. Moosmann, O. Car, and B. Schuster. "Automatic Camera and Range

Sensor Calibration using a Single Shot," International Conference on Robotics
and Automation (ICRA), St. Paul, USA, May 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation will not support specifying images as file names or cell arrays of file
names. It supports only checkerboard detection in a single image or stereo pair of
images. For example, these syntaxes are supported:

• detectCheckerboardPoints(I1)
• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.

See Also
Camera Calibrator | cameraParameters | estimateCameraParameters |
generateCheckerboardPoints | stereoParameters

Topics
“Single Camera Calibrator App”

3 Functions Alphabetical

3-264

Introduced in R2014a

 detectCheckerboardPoints

3-265

detectFASTFeatures
Detect corners using FAST algorithm and return cornerPoints object

Syntax
points = detectFASTFeatures(I)
points = detectFASTFeatures(I,Name,Value)

Description
points = detectFASTFeatures(I) returns a cornerPoints object, points. The
object contains information about the feature points detected in a 2-D grayscale input
image, I. The detectFASTFeatures function uses the Features from Accelerated
Segment Test (FAST) algorithm to find feature points.

points = detectFASTFeatures(I,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

Examples

Find Corner Points in an Image Using the FAST Algorithm

Read the image.

I = imread('cameraman.tif');

Find the corners.

corners = detectFASTFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

3 Functions Alphabetical

3-266

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 detectFASTFeatures

3-267

Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the
detector must use a 1% minimum accepted quality of corners within the designated
region of interest. This region of interest is located at x=50, y=150. The ROI has a width
of 100 pixels, and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.1 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner
metric value in the image. Larger values can be used to remove erroneous corners.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MinContrast — Minimum intensity
0.2 (default)

Minimum intensity difference between corner and surrounding region, specified as the
comma-separated pair consisting of 'MinContrast' and a scalar value in the range (0,1).

The minimum intensity represents a fraction of the maximum value of the image class.
Increasing the value reduces the number of detected corners.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting
of 'ROI' and a vector of the format [x y width height]. The first two integer values [x y]
represent the location of the upper-left corner of the region of interest. The last two
integer values represent the width and height.
Example: 'ROI', [50,150,100,200]

3 Functions Alphabetical

3-268

Output Arguments
points — Corner points
cornerPoints object

Corner points object, returned as a cornerPoints object. The object contains
information about the feature points detected in the 2-D grayscale input image.

References
[1] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance

Tracking," Proceedings of the IEEE International Conference on Computer Vision,
Vol. 2 (October 2005): pp. 1508–1511.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
BRISKPoints | MSERRegions | ORBPoints | SURFPoints | binaryFeatures |
cornerPoints | detectBRISKFeatures | detectHarrisFeatures |

 detectFASTFeatures

3-269

detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures |
detectSURFFeatures | extractFeatures | extractHOGFeatures | matchFeatures

Topics
“Find Corner Points Using the Eigenvalue Algorithm” on page 3-276
“Find Corner Points Using the Harris-Stephens Algorithm” on page 3-271
“Point Feature Types”

Introduced in R2013a

3 Functions Alphabetical

3-270

detectHarrisFeatures
Detect corners using Harris–Stephens algorithm and return cornerPoints object

Syntax
points = detectHarrisFeatures(I)
points = detectHarrisFeatures(I,Name,Value)

Description
points = detectHarrisFeatures(I) returns a cornerPoints object, points. The
object contains information about the feature points detected in a 2-D input image, I. The
detectHarrisFeatures function uses the Harris–Stephens algorithm to find these
feature points.

points = detectHarrisFeatures(I,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Examples

Find Corner Points Using the Harris-Stephens Algorithm

Read the image.

I = checkerboard;

Find the corners.

corners = detectHarrisFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

 detectHarrisFeatures

3-271

Input Arguments
I — Input image
M-by-N 2-D image

Input image, specified is an M-by-N 2-D image. The input image must be real and
nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the
detector must use a 1% minimum accepted quality of corners within the designated
region of interest. This region of interest is located at x=50, y=150. The ROI has a width
of 100 pixels and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'MinQuality' and a scalar value in the range [0,1].

3 Functions Alphabetical

3-272

The minimum accepted quality of corners represents a fraction of the maximum corner
metric value in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FilterSize — Gaussian filter dimension
5 (default)

Gaussian filter dimension, specified as the comma-separated pair consisting of
'FilterSize' and an odd integer value in the range [3, min(size(I))].

The Gaussian filter smooths the gradient of the input image.

The function uses the FilterSize value to calculate the filter’s dimensions,
FilterSize-by-FilterSize. It also defines the standard deviation of the Gaussian filter
as FilterSize/3.
Example: 'FilterSize', 5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting
of 'ROI' and a vector of the format [x y width height]. The first two integer values [x y]
represent the location of the upper-left corner of the region of interest. The last two
integer values represent the width and height.
Example: 'ROI', [50,150,100,200]

Output Arguments
points — Corner points
cornerPoints object

Corner points object, returned as a cornerPoints object. The object contains
information about the feature points detected in the 2-D input image.

 detectHarrisFeatures

3-273

References
[1] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of

the 4th Alvey Vision Conference, August 1988, pp. 147-151.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'FilterSize' must be a compile-time constant.
• Generated code for this function uses a precompiled platform-specific shared library.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

See Also
BRISKPoints | MSERRegions | SURFPoints | binaryFeatures | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |
extractFeatures | extractHOGFeatures | matchFeatures

Topics
“Find Corner Points Using the Eigenvalue Algorithm” on page 3-276
“Find Corner Points in an Image Using the FAST Algorithm” on page 3-266
“Point Feature Types”

3 Functions Alphabetical

3-274

https://www.mathworks.com/support/sysreq.html

Introduced in R2013a

 detectHarrisFeatures

3-275

detectMinEigenFeatures
Detect corners using minimum eigenvalue algorithm and return cornerPoints object

Syntax
points = detectMinEigenFeatures(I)
points = detectMinEigenFeatures(I,Name,Value)

Description
points = detectMinEigenFeatures(I) returns a cornerPoints object, points.
The object contains information about the feature points detected in a 2-D grayscale input
image, I. The detectMinEigenFeatures function uses the minimum eigenvalue
algorithm developed by Shi and Tomasi to find feature points.

points = detectMinEigenFeatures(I,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Find Corner Points Using the Eigenvalue Algorithm

Read the image.

I = checkerboard;

Find the corners.

corners = detectMinEigenFeatures(I);

Display the results.

imshow(I); hold on;
plot(corners.selectStrongest(50));

3 Functions Alphabetical

3-276

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the
detector must use a 1% minimum accepted quality of corners within the designated
region of interest. This region of interest is located at x=50, y=150. The ROI has a width
of 100 pixels, and a height of 200 pixels.

MinQuality — Minimum accepted quality of corners
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting
of 'MinQuality' and a scalar value in the range [0,1].

 detectMinEigenFeatures

3-277

The minimum accepted quality of corners represents a fraction of the maximum corner
metric value in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FilterSize — Gaussian filter dimension
5 (default)

Gaussian filter dimension, specified as the comma-separated pair consisting of
'FilterSize' and an odd integer value in the range [3, inf).

The Gaussian filter smooths the gradient of the input image.

The function uses the FilterSize value to calculate the filter’s dimensions,
FilterSize-by-FilterSize. It also defines the standard deviation as FilterSize/3.
Example: 'FilterSize', 5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ROI — Rectangular region
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region for corner detection, specified as a comma-separated pair consisting
of 'ROI' and a vector of the format [x y width height]. The first two integer values [x y]
represent the location of the upper-left corner of the region of interest. The last two
integer values represent the width and height.
Example: 'ROI', [50,150,100,200]

Output Arguments
points — Corner points
cornerPoints object

Corner points, returned as a cornerPoints object. The object contains information
about the feature points detected in the 2-D grayscale input image.

3 Functions Alphabetical

3-278

References
[1] Shi, J., and C. Tomasi, "Good Features to Track," Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, June 1994, pp. 593–600.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'FilterSize' must be a compile-time constant.
• Generated code for this function uses a precompiled platform-specific shared library.

See Also
BRISKPoints | MSERRegions | SURFPoints | binaryFeatures | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectMSERFeatures | detectORBFeatures | detectSURFFeatures |
extractFeatures | extractHOGFeatures | matchFeatures

Topics
“Find Corner Points Using the Harris-Stephens Algorithm” on page 3-271
“Find Corner Points in an Image Using the FAST Algorithm” on page 3-266
“Point Feature Types”

Introduced in R2013a

 detectMinEigenFeatures

3-279

https://www.mathworks.com/support/sysreq.html

detectMSERFeatures
Detect MSER features and return MSERRegions object

Syntax
regions = detectMSERFeatures(I)
[regions,cc] = detectMSERFeatures(I)
[___] = detectMSERFeatures(I,Name,Value)

Description
regions = detectMSERFeatures(I) returns an MSERRegions object, regions,
containing information about MSER features detected in the 2-D grayscale input image,
I. This object uses Maximally Stable Extremal Regions (MSER) algorithm to find regions.

[regions,cc] = detectMSERFeatures(I)optionally returns MSER regions in a
connected component structure.

[___] = detectMSERFeatures(I,Name,Value) sets additional options specified by
one or more Name,Value pair arguments.

Examples

Find MSER Regions in an Image

Read image and detect MSER regions.
I = imread('cameraman.tif');
regions = detectMSERFeatures(I);

Visualize MSER regions which are described by pixel lists stored inside the returned
'regions' object.

figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false);

3 Functions Alphabetical

3-280

Display ellipses and centroids fit into the regions. By default, plot displays ellipses and
centroids.

figure; imshow(I);
hold on;
plot(regions);

 detectMSERFeatures

3-281

Find circular MSER regions

Detect MSER regions.

I = imread('coins.png');
[regions,mserCC] = detectMSERFeatures(I);

Show all detected MSER Regions.

figure
imshow(I)
hold on
plot(regions,'showPixelList',true,'showEllipses',false)

3 Functions Alphabetical

3-282

Measure the MSER region eccentricity to gauge region circularity.

stats = regionprops('table',mserCC,'Eccentricity');

Threshold eccentricity values to only keep the circular regions. (Circular regions have low
eccentricity.)

eccentricityIdx = stats.Eccentricity < 0.55;
circularRegions = regions(eccentricityIdx);

Show the circular regions.

figure
imshow(I)
hold on
plot(circularRegions,'showPixelList',true,'showEllipses',false)

 detectMSERFeatures

3-283

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified in grayscale. It must be real and nonsparse. The function internally
converts input images to uint8 that are not uint8 before looking for MSER regions.
Data Types: uint8 | int16 | uint16 | single | double | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

3 Functions Alphabetical

3-284

Example: 'RegionAreaRange',[30 14000], specifies the size of the region in pixels.

ThresholdDelta — Step size between intensity threshold levels
2 (default) | percent numeric value

Step size between intensity threshold levels, specified as the comma-separated pair
consisting of 'ThresholdDelta' and a numeric value in the range (0,100]. This value is
expressed as a percentage of the input data type range used in selecting extremal regions
while testing for their stability. Decrease this value to return more regions. Typical values
range from 0.8 to 4.

RegionAreaRange — Size of the region
[30 14000] (default) | two-element vector

Size of the region in pixels, specified as the comma-separated pair consisting of
'RegionAreaRange' and a two-element vector. The vector, [minArea maxArea], allows the
selection of regions containing pixels to be between minArea and maxArea, inclusive.

MaxAreaVariation — Maximum area variation between extremal regions
0.25 (default) | positive scalar

Maximum area variation between extremal regions at varying intensity thresholds,
specified as the comma-separated pair consisting of 'MaxAreaVariation' and a positive
scalar value. Increasing this value returns a greater number of regions, but they may be
less stable. Stable regions are very similar in size over varying intensity thresholds.
Typical values range from 0.1 to 1.0.

ROI — Rectangular region of interest
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region of interest, specified as a vector. The vector must be in the format [x y
width height]. When you specify an ROI, the function detects corners within the area
located at [x y] of size specified by [width height] . The [x y] elements specify the upper
left corner of the region.

Output Arguments
regions — MSER regions object
MSERRegions object (default)

 detectMSERFeatures

3-285

MSER regions object, returned as a MSERRegions object. The object contains
information about MSER features detected in the grayscale input image.

cc — Connected component structure
structure

Connected component structure, returned as a structure with four fields. The connected
component structure is useful for measuring region properties using the regionprops
function. The four fields:

Field Description
Connectivi
ty

Connectivity of the MSER regions.

Default: 8
ImageSize Size of I.
NumObjects Number of MSER regions in I.
PixelIdxLi
st

1-by-NumObjects cell array containing NumObjects vectors. Each
vector represents the linear indices of the pixels in the element’s
corresponding MSER region.

Algorithms

Intensity Threshold Levels
The MSER detector incrementally steps through the intensity range of the input image to
detect stable regions. The ThresholdDelta parameter determines the number of
increments the detector tests for stability. You can think of the threshold delta value as
the size of a cup to fill a bucket with water. The smaller the cup, the more number of
increments it takes to fill up the bucket. The bucket can be thought of as the intensity
profile of the region.

3 Functions Alphabetical

3-286

The MSER object checks the variation of the region area size between different intensity
thresholds. The variation must be less than the value of the MaxAreaVariation
parameter to be considered stable.

At a high level, MSER can be explained, by thinking of the intensity profile of an image
representing a series of buckets. Imagine the tops of the buckets flush with the ground,
and a hose turned on at one of the buckets. As the water fills into the bucket, it overflows
and the next bucket starts filling up. Smaller regions of water join and become bigger
bodies of water, and finally the whole area gets filled. As water is filling up into a bucket,
it is checked against the MSER stability criterion. Regions appear, grow and merge at
different intensity thresholds.

References
[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions",

Lecture Notes in Computer Science. 10th European Conference on Computer
Vision, Marseille, France: 2008, no. 5303, pp. 183–196.

 detectMSERFeatures

3-287

[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from
maximally stable extremal regions." Proceedings of British Machine Vision
Conference, pages 384-396, 2002.

[3] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using
Maximally Stable Colour Regions," Communications in Computer and Information
Science, La Ferte-Bernard, France; 2009, vol. 82 CCIS (2010 12 01), pp 107–115.

[4] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool, "A
Comparison of Affine Region Detectors"; International Journal of Computer Vision,
Volume 65, Numbers 1–2 / November, 2005, pp 43–72 .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

• For code generation, the function outputs regions.PixelList as an array. The
region sizes are defined in regions.Lengths.

See Also
BRISKPoints | MSERRegions | SURFPoints | binaryFeatures | cornerPoints |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectMinEigenFeatures | detectSURFFeatures | extractFeatures |
extractHOGFeatures | matchFeatures

Topics
“Automatically Detect and Recognize Text in Natural Images”
“Point Feature Types”

3 Functions Alphabetical

3-288

Introduced in R2012a

 detectMSERFeatures

3-289

detectPeopleACF
Detect people using aggregate channel features (ACF)

Note detectPeopleACF will be removed in a future release. Use peopleDetectorACF
instead.

Syntax
bboxes = detectPeopleACF(I)
[bboxes,scores] = detectPeopleACF(I)
[___] = detectPeopleACF(I,roi)
[___] = detectPeopleACF(Name,Value)

Description
bboxes = detectPeopleACF(I) returns a matrix, bboxes, that contains the locations
of detected upright people in the input image, I. The locations are represented as
bounding boxes. The function uses the aggregate channel features (ACF) algorithm.

[bboxes,scores] = detectPeopleACF(I) also returns the detection scores for each
bounding box.

[___] = detectPeopleACF(I,roi) detects people within the rectangular search
region specified by roi, using either of the previous syntaxes.

[___] = detectPeopleACF(Name,Value) uses additional options specified by one or
more Name,Value pair arguments. Unspecified properties have default values.

Code Generation Support:
Supports Code Generation: No
Supports MATLAB Function block: No
“Code Generation Support, Usage Notes, and Limitations”

3 Functions Alphabetical

3-290

Examples

Detect People Using Aggregated Channel Features

Read an image.

I = imread('visionteam1.jpg');

Detect people in the image and store results as bounding boxes and score.

[bboxes,scores] = detectPeopleACF(I);

Annotate the detected upright people in the image.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);

Display the results with annotation.

figure
imshow(I)
title('Detected people and detection scores')

 detectPeopleACF

3-291

Input Arguments
I — Input image
truecolor image

Input image, specified as a truecolor image. The image must be real and nonsparse.
Data Types: uint8 | uint16 | int16 | double | single

roi — Rectangular search region
four-element vector

3 Functions Alphabetical

3-292

Rectangular search region, specified as a four-element vector, [x,y,width,height]. The roi
must be fully contained in I.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Threshold',-1

Model — ACF classification model
'inria-100x41' (default) | 'caltech-50x21'

ACF classification model, specified as the comma-separated pair consisting of 'Model' and
the character vector 'inria-100x41' or 'caltech-50x21'. The 'inria-100x41'
model was trained using the INRIA Person dataset. The 'caltech-50x21' model was
trained using the Caltech Pedestrian dataset.

NumScaleLevels — Number of scale levels per octave
8 (default) | integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels', and an integer. Each octave is a power-of-two downscaling of the
image. Increase this number to detect people at finer scale increments. Recommended
values are in the range [4,8].

WindowStride — Window stride for sliding window
4 (default) | integer

Window stride for sliding window, specified as the comma-separated pair consisting of
'WindowStride', and an integer. Set this value to the amount you want to move the
window, in the x and y directions. The sliding window scans the images for object
detection. The function uses the same stride for the x and y directions.

SelectStrongest — Select strongest bounding box
true (default) | false

Select strongest bounding box, specified as the comma-separated pair consisting of
'SelectStrongest' and either true or false. The process, often referred to as
nonmaximum suppression, eliminates overlapping bounding boxes based on their scores.

 detectPeopleACF

3-293

Set this property to true to use the selectStrongestBbox function to select the
strongest bounding box. Set this property to false, to perform a custom selection
operation. Setting this property to false returns detected bounding boxes.

MinSize — Minimum region size
two-element vector [height width] | [50 21] | [100 41]

Minimum region size in pixels, specified as the comma-separated pair consisting of
'MinSize', and a two-element vector [height width]. You can set this property to [50 21]
for the 'caltech-50x21' model or [100 41] for the 'inria-100x41' model. You can
reduce computation time by setting this value to the known minimum region size for
detecting a person. By default, MinSize is set to the smallest region size possible to
detect an upright person for the classification model selected.

MaxSize — Maximum region size
size(I) (default) | two-element vector [height width]

Maximum region size in pixels, specified as the comma-separated pair consisting of
'MaxSize', and a two-element vector, [height width]. You can reduce computation time by
setting this value to the known region size for detecting a person. If you do not set this
value, by default the function determines the height and width of the image using the size
of I.

Threshold — Classification accuracy threshold
–1 (default) | numeric value

Classification accuracy threshold, specified as the comma-separated pair consisting of
'Threshold' and a numerical value. Typical values are in the range [–1,1]. During
multiscale object detection, the threshold value controls the person or nonperson
classification accuracy and speed. Increase this threshold to speed up the performance at
the risk of missing true detections.

Output Arguments
bboxes — Locations of detected people
M-by-4 matrix

Locations of people detected using the aggregate channel features (ACF) algorithm,
returned as an M-by-4 matrix. The locations are represented as bounding boxes. Each row
in bboxes contains a four-element vector, [x,y,width,height]. This vector specifies the
upper-left corner and size of a bounding box, in pixels, for a detected person.

3 Functions Alphabetical

3-294

scores — Confidence value
M-by-1 vector

Confidence value for the detections, returned as an M-by-1 vector. The vector contains a
value for each bounding box in bboxes. The score for each detection is the output of a
soft-cascade classifier. The range of score values is [-inf inf]. Greater scores indicate a
higher confidence in the detection.

References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast feature pyramids for object

detection." Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36,
Issue 8, 2014, pp. 1532–1545.

[2] Dollar, C. Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: An evaluation of the
state of the art." Pattern Analysis and Machine Intelligence, IEEE
Transactions.Vol. 34, Issue 4, 2012, pp. 743–761.

[3] Dollar, C., Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: A benchmark." IEEE
Conference on Computer Vision and Pattern Recognition. 2009.

See Also
selectStrongestBbox | vision.CascadeObjectDetector |
vision.PeopleDetector

Topics
“Tracking Pedestrians from a Moving Car”
“Point Feature Types”

Introduced in R2016a

 detectPeopleACF

3-295

detectSURFFeatures
Detect SURF features and return SURFPoints object

Syntax
points = detectSURFFeatures(I)
points = detectSURFFeatures(I,Name,Value)

Description
points = detectSURFFeatures(I) returns a SURFPoints object, points,
containing information about SURF features detected in the 2-D grayscale input image I.
The detectSURFFeatures function implements the Speeded-Up Robust Features
(SURF) algorithm to find blob features.

points = detectSURFFeatures(I,Name,Value) specifies options using one or more
name-value arguments in addition to the input arguments in the previous syntax.

Examples

Detect SURF Interest Points in a Grayscale Image

Read image and detect interest points.

I = imread('cameraman.tif');
points = detectSURFFeatures(I);

Display locations of interest in image.

imshow(I); hold on;
plot(points.selectStrongest(10));

3 Functions Alphabetical

3-296

Input Arguments
I — Input image
M-by-N 2-D grayscale image

Input image, specified as an M-by-N 2-D grayscale. The input image must be a real non-
sparse value.
Data Types: single | double | int16 | uint8 | uint16 | logical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 detectSURFFeatures

3-297

Example: detectSURFFeatures(I,'MetricThreshold',100)

MetricThreshold — Strongest feature threshold
1000.0 (default) | non-negative scalar

Strongest feature threshold, specified as the comma-separated pair consisting of
'MetricThreshold' and a non-negative scalar. To return more blobs, decrease the value
of this threshold.

NumOctaves — Number of octaves
3 (default) | scalar (greater than or equal to 1)

Number of octaves, specified as the comma-separated pair consisting of 'NumOctaves'
and an integer scalar, greater than or equal to 1. Increase this value to detect larger
blobs. Recommended values are between 1 and 4.

Each octave spans a number of scales that are analyzed using varying size filters:

Octave Filter Sizes
1 9-by-9, 15-by-15, 21-by-21, 27-by-27, ...
2 15-by-15, 27-by-27, 39-by-39, 51-by-51, ...
3 27-by-27, 51-by-51, 75-by-75, 99-by-99, ...
4

Higher octaves use larger filters and subsample the image data. Larger number of
octaves result in finding larger size blobs. Set the NumOctaves parameter appropriately
for the image size. For example, a 50-by-50 image require you to set the NumOctaves
parameter, less than or equal to 2. The NumScaleLevels parameter controls the number
of filters used per octave. At least three levels are required to analyze the data in a single
octave.

NumScaleLevels — Number of scale levels per octave
4 (default) | integer scalar, greater than or equal to 3

Number of scale levels per octave to compute, specified as the comma-separated pair
consisting of 'NumScaleLevels' and an integer scalar, greater than or equal to 3.
Increase this number to detect more blobs at finer scale increments. Recommended
values are between 3 and 6.

ROI — Rectangular region of interest
[1 1 size(I,2) size(I,1)] (default) | vector

3 Functions Alphabetical

3-298

Rectangular region of interest, specified as a vector. The vector must be in the format [x y
width height]. When you specify an ROI, the function detects corners within the area at [x
y] of size specified by [width height]. The [x y] elements specify the upper left corner of
the region.

Output Arguments
points — SURF features
SURFPoints object

SURF features, returned as a SURFPoints object. This object contains information about
SURF features detected in a grayscale image.

References
[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.”

Computer Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346–359,
2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

See Also
ORBPoints | SURFPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | extractFeatures | matchFeatures

 detectSURFFeatures

3-299

Introduced in R2011b

3 Functions Alphabetical

3-300

detectORBFeatures
Detect and store ORB keypoints

Syntax
points = detectORBFeatures(I)
points = detectORBFeatures(I,Name,Value)

Description
points = detectORBFeatures(I) returns an ORBPoints object that contains
information about ORB keypoints. The ORB keypoints are detected from the input image
by using the Oriented FAST and rotated BRIEF (ORB) feature detection method.

points = detectORBFeatures(I,Name,Value) specifies options using one or more
name-value pair arguments.

Examples

Detect ORB Keypoints in Grayscale Image

Read an image into the workspace.

I = imread('businessCard.png');

Convert the image into a grayscale image.

I = rgb2gray(I);

Display the grayscale image.

figure
imshow(I)

 detectORBFeatures

3-301

Detect and store ORB keypoints.

points = detectORBFeatures(I);

Display the grayscale image and plot the detected ORB keypoints. Suppress the display of
circles around the detected keypoints. The ORB keypoints are detected in regions with
high intensity variance.

figure
imshow(I)
hold on
plot(points,'ShowScale',false)
hold off

3 Functions Alphabetical

3-302

Detect ORB Keypoints In Binary Shape Image

Read a binary image into the workspace.

I = imread('star.png');

Display the image.

figure
imshow(I)

 detectORBFeatures

3-303

Detect and store ORB keypoints. Specify the scale factor for image decomposition as 1.01
and the number of decomposition levels as 3.

points = detectORBFeatures(I,'ScaleFactor',1.01,'NumLevels',3);

Display the image and plot the detected ORB keypoints. The inflection points in the binary
shape image are detected as the ORB keypoints.

figure
imshow(I)
hold on
plot(points)
hold off

3 Functions Alphabetical

3-304

Input Arguments
I — Input image
M-by-N grayscale image

Input image, specified as an M-by-N grayscale image. The input image must be real and
nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

 detectORBFeatures

3-305

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: detectORBFeatures(I,'NumLevels',4)

ScaleFactor — Scale factor for image decomposition
1.2 (default) | integer greater than 1

Scale factor for image decomposition, specified as the comma-separated pair consisting of
'ScaleFactor' and an integer greater than 1. The scale value at each level of
decomposition is ScaleFactor(level-1), where level is any value in the range [0,
Numlevels-1]. Given the input image of size M-by-N, the image size at each level of

decomposition is
M N

level level
ScaleFactor ScaleFactor

() ()- -1 1
-by-

.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint64 | uint32

NumLevels — Number of decomposition levels
8 (default) | integer greater than or equal to 1

Number of decomposition levels, specified as the comma-separated pair consisting of
'NumLevels' and an integer greater than or equal to 1. Increase this value to extract
keypoints from the image at more levels of decomposition.

The number of decomposition levels for extracting keypoints is limited by the image size
at that level. The image size at a level of decomposition must be at least 63-by-63 for
detecting keypoints. The maximum level of decomposition is calculated as

level
M N

max

log min , log

log
 = floor

ScaleFactor

()()- ()
()

Ê

Ë
Á
Á

ˆ63

¯̄
˜
˜ + 1

If either the default value or the specified value of 'NumLevels' is greater than levelmax,
the function modifies NumLevels to levelmax and returns a warning.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint64 | uint32

3 Functions Alphabetical

3-306

ROI — Region of interest
[1 1 M N] (default) | four-element vector

Region of interest for keypoint detection, specified as the comma-separated pair
consisting of 'ROI' and a vector of the format [x y width height]. The first two elements
represent the location of the upper left corner of the region of interest. The last two
elements represent the width and the height of the region of interest. The width and
height of the region of interest must each be a value greater than or equal to 63.

Output Arguments
points — ORB keypoints
ORBPoints object

ORB keypoints, returned as an ORBPoints object. The object contains information about
keypoints detected in the input image.

Algorithms
The function detects keypoints from the input image by using the ORB feature detection
method in [1].

References
[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to

SIFT or SURF." In Proceedings of the 2011 International Conference on Computer
Vision, 2564–2571. Barcelona, Spain: IEEE, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 detectORBFeatures

3-307

See Also
ORBPoints | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures |
detectMinEigenFeatures | detectSURFFeatures | extractFeatures |
matchFeatures

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2019a

3 Functions Alphabetical

3-308

disparity
(Not recommended) Disparity map between stereo images

Note disparity is not recommended. Use disparityBM or disparitySGM instead.
For more information, see “Compatibility Considerations”

Syntax
disparityMap = disparity(I1,I2)
disparityMap = disparity(I1,I2,Name,Value)

Description
disparityMap = disparity(I1,I2) returns the disparity map, disparityMap, for a
pair of stereo images, I1 and I2.

disparityMap = disparity(I1,I2,Name,Value) provides additional control for the
disparity algorithm by using one or more Name,Value pair arguments.

Examples

Compute Disparity Map for a Pair of Stereo Images

Load the images and convert them to grayscale.

I1 = imread('scene_left.png');
I2 = imread('scene_right.png');

Show stereo anaglyph. Use red-cyan stereo glasses to view image in 3-D.

figure
imshow(stereoAnaglyph(I1,I2));
title('Red-cyan composite view of the stereo images');

 disparity

3-309

Compute the disparity map.

disparityRange = [-6 10];
disparityMap = disparity(rgb2gray(I1),rgb2gray(I2),'BlockSize',...
 15,'DisparityRange',disparityRange);

Display the disparity map. For better visualization, use the disparity range as the display
range for imshow.

figure
imshow(disparityMap,disparityRange);
title('Disparity Map');
colormap(gca,jet)
colorbar

3 Functions Alphabetical

3-310

Input Arguments
I1 — Input image 1
M-by-N 2-D grayscale image

Input image referenced as I1 corresponding to camera 1, specified in 2-D grayscale. The
stereo images, I1 and I2, must be rectified such that the corresponding points are
located on the same rows. You can perform this rectification with the
rectifyStereoImages function.

You can improve the speed of the function by setting the class of I1 and I2 to uint8, and
the number of columns to be divisible by 4. Input images I1 and I2 must be real, finite,
and nonsparse. They must be the same class.
Data Types: uint8 | uint16 | int16 | single | double

 disparity

3-311

I2 — Input image 2
M-by-N 2-D grayscale image

Input image referenced as I2 corresponding to camera 2, specified in 2-D grayscale. The
input images must be rectified such that the corresponding points are located on the
same rows. You can improve the speed of the function by setting the class of I1 and I2 to
uint8, and the number of columns to be divisible by 4. Input images I1 and I2 must be
real, finite, and nonsparse. They must be the same class.
Data Types: uint8 | uint16 | int16 | single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Method','BlockMatching', specifies the 'Method' property be set to
'BlockMatching'.

Method — Disparity estimation algorithm
'SemiGlobal' (default) | 'BlockMatching'

Disparity estimation algorithm, specified as the comma-separated pair consisting of
'Method' and the character vector 'BlockMatching' or 'SemiGlobal'. The disparity
function implements the basic Block Matching[1] and the Semi-Global Block Matching[3]
algorithms. In the 'BlockMatching' method, the function computes disparity by
comparing the sum of absolute differences (SAD) of each block of pixels in the image. In
the 'SemiGlobal' matching method, the function additionally forces similar disparity on
neighboring blocks. This additional constraint results in a more complete disparity
estimate than in the 'BlockMatching' method.

The algorithms perform these steps:

1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each pixel in I1.
3 Mark elements of the disparity map, disparityMap, that were not computed

reliably. The function uses –realmax('single') to mark these elements.

DisparityRange — Range of disparity
[0 64] (default) | two-element vector

3 Functions Alphabetical

3-312

Range of disparity, specified as the comma-separated pair consisting of
'DisparityRange' and a two-element vector. The two-element vector must be in the
format [MinDisparity, MaxDisparity]. Both elements must be an integer and can be
negative. MinDisparity and MaxDisparity must be in the range [-image width, image
width]. The difference between MaxDisparity and MinDisparity must be divisible by 16.
DisparityRange must be real, finite, and nonsparse. If the camera used to take I1 was
to the right of the camera used to take I2, then MinDisparity must be negative.

The disparity range depends on the distance between the two cameras and the distance
between the cameras and the object of interest. Increase the DisparityRange when the
cameras are far apart or the objects are close to the cameras. To determine a reasonable
disparity for your configuration, display the stereo anaglyph of the input images in
imtool and use the Distance tool to measure distances between pairs of corresponding
points. Modify the MaxDisparity to correspond to the measurement.

 disparity

3-313

BlockSize — Square block size
15 (default) | odd integer

Square block size, specified as the comma-separated pair consisting of 'BlockSize' and
an odd integer in the range [5,255]. This value sets the width for the square block size.

3 Functions Alphabetical

3-314

The function uses the square block of pixels for comparisons between I1 and I2.
BlockSize must be real, finite, and nonsparse.

ContrastThreshold — Contrast threshold range
0.5 (default) | scalar value

Contrast threshold range, specified as the comma-separated pair consisting of
'ContrastThreshold' and a scalar value in the range (0,1]. The contrast threshold
defines an acceptable range of contrast values. Increasing this parameter results in fewer
pixels being marked as unreliable.ContrastThreshold must be real, finite, and
nonsparse.

UniquenessThreshold — Minimum value of uniqueness
15 (default) | non-negative integer

Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer. Increasing this parameter results in
the function marking more pixels unreliable. When the uniqueness value for a pixel is low,
the disparity computed for it is less reliable. Setting the threshold to 0 disables
uniqueness thresholding. UniquenessThreshold must be real, finite, and nonsparse.

The function defines uniqueness as a ratio of the optimal disparity estimation and the less
optimal disparity estimation. For example:
Let K be the best estimated disparity, and let V be the corresponding SAD (Sum of
Absolute Difference) value.
Consider V as the smallest SAD value over the whole disparity range, and v as the
smallest SAD value over the whole disparity range, excluding K, K-1, and K+1.
If v < V * (1+0.01*UniquenessThreshold), then the function marks the disparity for
the pixel as unreliable.

DistanceThreshold — Maximum distance for left-to-right image checking
[] (disabled) (default) | non-negative integer

Maximum distance for left-to-right image checking between two points, specified as the
comma-separated pair consisting of 'DistanceThreshold' and a nonnegative integer.
Increasing this parameter results in fewer pixels being marked as unreliable. Conversely,
when you decrease the value of the distance threshold, you increase the reliability of the
disparity map. You can set this parameter to an empty matrix [] to disable it.
DistanceThreshold must be real, finite, and nonsparse.

 disparity

3-315

The distance threshold specifies the maximum distance between a point in I1 and the
same point found from I2. The function finds the distance and marks the pixel in the
following way:
Let p1 be a point in image I1.
Step 1: The function searches for point p1’s best match in image I2 (left-to-right check)
and finds point p2.
Step 2: The function searches for p2’s best match in image I1 (right-to-left check) and
finds point p3.
If the search returns a distance between p1 and p3 greater than DistanceThreshold,
the function marks the disparity for the point p1 as unreliable.

TextureThreshold — Minimum texture threshold
0.0002 (default) | scalar value

Minimum texture threshold, specified as the comma-separated pair consisting of
'TextureThreshold' and a scalar value in the range [0, 1). The texture threshold defines
the minimum texture value for a pixel to be reliable. The lower the texture for a block of
pixels, the less reliable the computed disparity is for the pixels. Increasing this parameter
results in more pixels being marked as unreliable. You can set this parameter to 0 to
disable it. This parameter applies only when you set Method to 'BlockMatching'.

The texture of a pixel is defined as the sum of the saturated contrast computed over the
BlockSize-by-BlockSize window around the pixel. The function considers the disparity
computed for the pixel unreliable and marks it, when the texture falls below the value
defined by:

Texture < X* TextureThreshold * BlockSize2

X represents the maximum value supported by the class of the input images, I1 and I2.

TextureThreshold must be real, finite, and nonsparse.

Output Arguments
disparityMap — Disparity map
M-by-N 2-D grayscale image

Disparity map for a pair of stereo images, returned as an M-by-N 2-D grayscale image.
The function returns the disparity map with the same size as the input images, I1 and I2.

3 Functions Alphabetical

3-316

Each element of the output specifies the disparity for the corresponding pixel in the
image references as I1. The returned disparity values are rounded to 1 16th pixel.

The function computes the disparity map in three steps:

1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each of the pixels by using block matching and the sum of

absolute differences (SAD).
3 Optionally, mark the pixels which contain unreliable disparity values. The function

sets the pixel to the value returned by -realmax('single').

Tips
If your resulting disparity map looks noisy, try modifying the DisparityRange. The
disparity range depends on the distance between the two cameras and the distance
between the cameras and the object of interest. Increase the DisparityRange when the
cameras are far apart or the objects are close to the cameras. To determine a reasonable
disparity for your configuration, display the stereo anaglyph of the input images in
imtool and use the Distance tool to measure distances between pairs of corresponding
points. Modify the MaxDisparity to correspond to the measurement.

 disparity

3-317

3 Functions Alphabetical

3-318

Compatibility Considerations

disparity function will be removed
Not recommended starting in R2019a

The disparity function will be removed in a future release. Use disparityBM or
disparitySGM instead. Use disparityBM to compute disparity map using block
matching method. Use disparitySGM to compute disparity map using semi-global
matching method.

References
[1] Konolige, K., Small Vision Systems: Hardware and Implementation, Proceedings of the

8th International Symposium in Robotic Research, pages 203-212, 1997.

[2] Bradski, G. and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV
Library, O'Reilly, Sebastopol, CA, 2008.

[3] Hirschmuller, H., Accurate and Efficient Stereo Processing by Semi-Global Matching
and Mutual Information, International Conference on Computer Vision and
Pattern Recognition, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method' must be a compile-time constant.
• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)

libraries. See “Portable C Code Generation for Functions That Use OpenCV Library”.

 disparity

3-319

See Also
Stereo Camera Calibrator | estimateCameraParameters |
estimateUncalibratedRectification | reconstructScene |
rectifyStereoImages

Topics
“Depth Estimation From Stereo Video”
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Uncalibrated Stereo Image Rectification”

Introduced in R2011b

3 Functions Alphabetical

3-320

disparityBM
Compute disparity map using block matching

Syntax
disparityMap = disparityBM(I1,I2)
disparityMap = disparityBM(I1,I2,Name,Value)

Description
disparityMap = disparityBM(I1,I2) computes disparity map from a pair of
rectified stereo images I1 and I2, by using the block matching method. To know more
about rectifying stereo images, see “Image Rectification” on page 3-327.

disparityMap = disparityBM(I1,I2,Name,Value) specifies options using one or
more name-value pair arguments.

Examples

Compute Disparity Map by Using Block Matching Method

Load a rectified stereo pair image.

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view
the image in 3-D by using red-cyan stereo glasses.

A = stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

 disparityBM

3-321

Convert the rectified input color images to grayscale images.

J1 = rgb2gray(I1);
J2 = rgb2gray(I2);

Compute the disparity map. Specify the range of disparity as [0, 48], and the minimum
value of uniqueness as 20.

disparityRange = [0 48];
disparityMap = disparityBM(J1,J2,'DisparityRange',disparityRange,'UniquenessThreshold',20);

Display the disparity map. Set the display range to the same value as the disparity range.

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

3 Functions Alphabetical

3-322

Input Arguments
I1 — Input image 1
2-D grayscale image | gpuArray object

Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale
image or a gpuArray object. The function uses this image as the reference image for
computing the disparity map. The input images I1 and I2 must be real, finite, and
nonsparse. Also, I1 and I2 must be of the same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image 2
2-D grayscale image | gpuArray object

Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale
image or a gpuArray object. The input images I1 and I2 must be real, finite, and
nonsparse. I1 and I2 must be of the same size and same data type.

 disparityBM

3-323

Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: disparityBM(I1,I2,'DisparityRange',[0 64])

DisparityRange — Range of disparity
[0 64] (default) | two-element vector

Range of disparity, specified as the comma-separated pair consisting of
'DisparityRange' and a two-element vector of the form [MinDisparity MaxDisparity].
MinDisparity is the minimum disparity and MaxDisparity is the maximum disparity. The
conditions this range must satisfy depend on the type of input images.

If the input images are grayscale images of width N, then:

• MinDisparity and MaxDisparity must be integers in the range (–N, N).
• The difference between the MaxDisparity and MinDisparity values must be divisible by

16 and less than the width of the input images.

If the input images are gpuArray objects of width N, then:

• The value of MinDisparity must be equal to zero.

The value of MaxDisparity must be in the range (16, N). If N is greater than 256, then
the MaxDisparity must be chosen as less than or equal to 256.

The difference between the MaxDisparity and MinDisparity values must be divisible by
16.

The default value for the range of disparity is [0 64]. For more information on choosing
the range of disparity, see “Choosing Range of Disparity” on page 3-327.

BlockSize — Size of squared block
15 (default) | odd integer

Size of the squared block, specified as the comma-separated pair consisting of
'BlockSize' and an odd integer. This value specifies the width of the search window

3 Functions Alphabetical

3-324

used for block matching pixels in the rectified stereo pair image. The range for the size
squared block depend on the type of input images.

If the input images are grayscale images, the 'BlockSize' value must be an odd integer
in the range [5, 255].

If the input images are gpuArray objects, the 'BlockSize' value must be an odd
integer in the range [5, 51].

The default value is 15.

ContrastThreshold — Range of contrast threshold
0.5 (default) | scalar in the range (0, 1]

Range of contrast threshold, specified as the comma-separated pair consisting of
'ContrastThreshold' and a scalar value in the range (0, 1]. The contrast threshold
defines an acceptable range of contrast values. If the contrast value of a pixel in the
reference image is below the contrast threshold, then the disparity computed for that
pixel is considered unreliable. Increasing this parameter results in disparity for fewer
pixels being marked as unreliable.

UniquenessThreshold — Minimum value of uniqueness
15 (default) | nonnegative integer

Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer.

The function marks the estimated disparity value K for a pixel as unreliable, if:
v < V×(1+0.01×UniquenessThreshold),

where V is the sum of absolute difference (SAD) corresponding to the disparity value K. v
is the smallest SAD value over the whole disparity range, excluding K, K–1, and K+1.

Increasing the value of UniquenessThreshold results in disparity values for more
pixels being marked as unreliable. To disable the use of uniqueness threshold, set this
value to [].

Note If the input images are gpuArray objects, then the 'UniquenessThreshold'
name-value pair argument does not apply.

 disparityBM

3-325

DistanceThreshold — Maximum distance between conjugate pixels in stereo
pair image
[] (disabled) (default) | nonnegative integer

Maximum distance between conjugate pixels in stereo pair image, specified as the
comma-separated pair consisting of 'DistanceThreshold' and a nonnegative integer.
The distance threshold specifies the maximum distance between a pixel in I1 and the
same pixel found in I2.

For pixel p1 in the reference image I1, the function performs a left-to-right check to find
its best matching pixel p2 in image I2. For pixel p2, the function performs a right-to-left
check to find its best matching pixel p3 in the reference image I1. If the distance between
p1 and p3 is greater than the DistanceThreshold, the function marks the disparity for
the pixel p1 in the reference image I1 as unreliable.

Increasing the value of DistanceThreshold results in disparity values for fewer pixels
being marked as unreliable. Conversely, decreasing the value of DistanceThreshold,
increases the reliability of the disparity map. To disable the use of distance threshold, set
this value to [].

Note If the input images are gpuArray objects, then the 'DistanceThreshold' name-
value pair argument does not apply.

TextureThreshold — Minimum texture threshold
0.0002 (default) | scalar value in the range [0, 1)

Minimum texture threshold, specified as the comma-separated pair consisting of
'TextureThreshold' and a scalar value in the range [0, 1).

The texture of a pixel is defined as the sum of the saturated contrast computed over the
BlockSize-by-BlockSize window around the pixel. The texture threshold defines the
minimum texture value for a pixel to have reliable disparity value. The function considers
the disparity for a pixel as unreliable, if:

texture < intensitymax×TextureThreshold×BlockSize2,
where texture is the texture of a pixel. intensitymax is the maximum value supported by the
data type of input images I1 and I2.

Increasing the value of 'TextureThreshold' results in disparity values for more pixels
being marked as unreliable. To disable the use of texture threshold, set this value to [].

3 Functions Alphabetical

3-326

Output Arguments
disparityMap — Disparity map
2-D grayscale image | gpuArray object

Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a
gpuArray object. The function returns the disparity map with the same size as input
images I1 and I2. Each value in this output refers to the displacement between
conjugate pixels in the stereo pair image. For details about computing the disparity map,
see “Computing Disparity Map Using Block Matching” on page 3-330.
Data Types: single

More About

Image Rectification
The input images I1 and I2 must be rectified before computing the disparity map. The
rectification ensures that the corresponding points in the stereo pair image are on the
same rows. You can rectify the input stereo pair image by using the
rectifyStereoImages function. The reference image must be the same for rectification
and disparity map computation.

Algorithms

Choosing Range of Disparity
The range of disparity must be chosen to cover the minimum and the maximum amount of
horizontal shift between the corresponding pixels in the rectified stereo pair image. You
can determine the approximate horizontal shift values from the stereo anaglyph of the
stereo pair image. Compute the stereo anaglyph of the rectified images by using the
stereoAnaglyph function. Display the stereo anaglyph in the Image Viewer by using the
imtool function. To measure the amount of horizontal shift between the corresponding
points in the stereo pair image, select Measure Distance from the Tools menu in Image
Viewer. Choose the minimum and maximum disparity values for the range of disparity
based on this measurement.

 disparityBM

3-327

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and
the horizontal shift values measured between the corresponding points in the stereo pair
image. The minimum and maximum shift values are computed as 8 and 31 respectively.
Based on these values, the range of disparity can be chosen as [0, 48].

3 Functions Alphabetical

3-328

 disparityBM

3-329

Computing Disparity Map Using Block Matching
The function computes the disparity map by following these steps:

1 Compute the disparity for each pixel by using the block matching method given in
[1].

• For CPU — The sum of absolute difference (SAD) is used as the cost function in
block matching. The cost function estimates the displacement between pixels in
the rectified stereo pair image.

• For GPU — The sum of squared difference (SSD) is used as the cost function in
block matching. The cost function estimates the displacement between pixels in
the rectified stereo pair image.

2 Optionally, mark the pixels for unreliability based on the ContrastThreshold,
UniquenessThreshold, DistanceThreshold, and TextureThreshold name-
value pairs. The function sets the unreliable disparity values to NaN.

References
[1] Konolige, K. "Small Vision Systems: Hardware and Implementation." In Proceedings of

the 8th International Symposium in Robotic Research, pp. 203–212. 1997.

[2] Bradski, G. and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV
Library. Sebastopol, CA: O'Reilly Media, Inc. 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

3 Functions Alphabetical

3-330

• The GPU version of this function works only on NVIDIA GPUs. The maximum disparity
value supported for gpuArray objects is 256.

See Also
Apps
Stereo Camera Calibrator

Functions
disparitySGM | estimateCameraParameters |
estimateUncalibratedRectification | reconstructScene |
rectifyStereoImages

Introduced in R2019a

 disparityBM

3-331

disparitySGM
Compute disparity map through semi-global matching

Syntax
disparityMap = disparitySGM(I1,I2)
disparityMap = disparitySGM(I1,I2,Name,Value)

Description
disparityMap = disparitySGM(I1,I2) computes disparity map from a pair of
rectified stereo images I1 and I2, by using semi-global matching (SGM) method. To know
more about rectifying stereo images, see “Image Rectification” on page 3-336.

disparityMap = disparitySGM(I1,I2,Name,Value) specifies options using one or
more name-value pair arguments.

Examples

Compute Disparity Map by Using Semi-Global Matching Method

Load a rectified stereo pair image.

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view
the image in 3-D by using red-cyan stereo glasses.

A = stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

3 Functions Alphabetical

3-332

Convert the rectified input color images to grayscale images.

J1 = rgb2gray(I1);
J2 = rgb2gray(I2);

Compute the disparity map through semi-global matching. Specify the range of disparity
as [0, 48], and the minimum value of uniqueness as 20.

disparityRange = [0 48];
disparityMap = disparitySGM(J1,J2,'DisparityRange',disparityRange,'UniquenessThreshold',20);

Display the disparity map. Set the display range to the same value as the disparity range.

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

 disparitySGM

3-333

Input Arguments
I1 — Input image 1
2-D grayscale image | gpuArray object

Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale
image or a gpuArray object. The function uses this image as the reference image for
computing the disparity map. The input images I1 and I2 must be real, finite, and
nonsparse. Also, I1 and I2 must be of the same size and same data type.
Data Types: single | double | int16 | uint8 | uint16

I2 — Input image 2
2-D grayscale image | gpuArray object

Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale
image or a gpuArray object. The input images I1 and I2 must be real, finite, and
nonsparse. I1 and I2 must be of the same size and same data type.

3 Functions Alphabetical

3-334

Data Types: single | double | int16 | uint8 | uint16

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: disparitySGM(I1,I2,'DisparityRange',[0 64])

DisparityRange — Range of disparity
[0 128] (default) | two-element vector

Range of disparity, specified as the comma-separated pair consisting of
'DisparityRange' and a two-element vector of the form [MinDisparity MaxDisparity].
MinDisparity is the minimum disparity and MaxDisparity is the maximum disparity.

For input images of width N, the MinDisparity and MaxDisparity must be integers in the
range (–N, N). The difference between the MaxDisparity and MinDisparity values must be
divisible by 8 and must be less than or equal to 128.

The default value for the range of disparity is [0 128]. For more information on choosing
the range of disparity, see “Choosing Range of Disparity” on page 3-336.
Data Types: integers

UniquenessThreshold — Minimum value of uniqueness
15 (default) | non-negative integer

Minimum value of uniqueness, specified as the comma-separated pair consisting of
'UniquenessThreshold' and a nonnegative integer.

The function marks the estimated disparity value K for a pixel as unreliable, if:
v < V×(1+0.01×UniquenessThreshold),

where V is the Hamming distance corresponding to the disparity value K. v is the smallest
Hamming distance value over the whole disparity range, excluding K, K–1, and K+1.

Increasing the value of UniquenessThreshold results in disparity values for more
pixels being marked as unreliable. To disable the use of uniqueness threshold, set this
value to 0.

 disparitySGM

3-335

Output Arguments
disparityMap — Disparity map
2-D grayscale image | gpuArray object

Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a
gpuArray object. The function returns the disparity map with the same size as input
images I1 and I2. Each value in this output refers to the displacement between
conjugate pixels in the stereo pair image. For details about computing the disparity map,
see “Computing Disparity Map Using Semi-Global Matching” on page 3-339.
Data Types: single

More About

Image Rectification
The input images I1 and I2 must be rectified before computing the disparity map. The
rectification ensures that the corresponding points in the stereo pair image are on the
same rows. You can rectify the input stereo pair image by using the
rectifyStereoImages function. The reference image must be the same for rectification
and disparity map computation.

Algorithms

Choosing Range of Disparity
The range of disparity must be chosen to cover the minimum and the maximum amount of
horizontal shift between the corresponding pixels in the rectified stereo pair image. You
can determine the approximate horizontal shift values from the stereo anaglyph of the
stereo pair image. Compute the stereo anaglyph of the rectified images by using the
stereoAnaglyph function. Display the stereo anaglyph in the Image Viewer by using the
imtool function. To measure the amount of horizontal shift between the corresponding
points in the stereo pair image, select Measure Distance from the Tools menu in Image
Viewer. Choose the minimum and maximum disparity values for the range of disparity
based on this measurement.

3 Functions Alphabetical

3-336

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and
the horizontal shift values measured between the corresponding points in the stereo pair
image. The minimum and maximum shift values are computed as 8 and 31 respectively.
Based on these values, the range of disparity can be chosen as [0, 48].

 disparitySGM

3-337

3 Functions Alphabetical

3-338

Computing Disparity Map Using Semi-Global Matching
1 Compute Census transform of the rectified stereo pair image.
2 Compute Hamming distance between pixels in the census-transformed image to

obtain the matching cost matrix.
3 Compute the pixel-wise disparity from matching cost matrix by using the semi-global

matching method given in [1].
4 Optionally, mark the pixels for unreliability based on the UniquenessThreshold

name-value pair. The function sets the disparity values of the unreliable pixels to NaN.

References
[1] Hirschmuller, H. "Accurate and Efficient Stereo Processing by Semi-Global Matching

and Mutual Information." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 807-814. San Diego, CA: IEEE, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

• The GPU version of this function works only on NVIDIA GPUs.

See Also
Apps
Stereo Camera Calibrator

 disparitySGM

3-339

Functions
disparityBM | estimateCameraParameters |
estimateUncalibratedRectification | reconstructScene |
rectifyStereoImages

Introduced in R2019a

3 Functions Alphabetical

3-340

epipolarLine
Compute epipolar lines for stereo images

Syntax
lines = epipolarLine(F,points)
lines = epipolarLine(F',points)

Description
lines = epipolarLine(F,points) returns an M-by-3 matrix, lines. The matrix
represents the computed epipolar lines in image I2 corresponding to the points in
image I1. The input F represents the fundamental matrix that maps points in I1 to
epipolar lines in image I2.

lines = epipolarLine(F',points) The matrix represents the computed epipolar
lines in image I1 corresponding to the points in image I2.

Examples

Compute Fundamental Matrix

This example shows you how to compute the fundamental matrix. It uses the least median
of squares method to find the inliers.

The points, matched_points1 and matched_points2, have been putatively matched.

load stereoPointPairs
[fLMedS,inliers] = estimateFundamentalMatrix(matchedPoints1,...
 matchedPoints2,'NumTrials',4000);

Show the inliers in the first image.

I1 = imread('viprectification_deskLeft.png');
figure;

 epipolarLine

3-341

subplot(121);
imshow(I1);
title('Inliers and Epipolar Lines in First Image'); hold on;
plot(matchedPoints1(inliers,1),matchedPoints1(inliers,2),'go')

Compute the epipolar lines in the first image.

epiLines = epipolarLine(fLMedS',matchedPoints2(inliers,:));

Compute the intersection points of the lines and the image border.

points = lineToBorderPoints(epiLines,size(I1));

Show the epipolar lines in the first image

3 Functions Alphabetical

3-342

line(points(:,[1,3])',points(:,[2,4])');

Show the inliers in the second image.

I2 = imread('viprectification_deskRight.png');
subplot(122);
imshow(I2);
title('Inliers and Epipolar Lines in Second Image'); hold on;
plot(matchedPoints2(inliers,1),matchedPoints2(inliers,2),'go')

 epipolarLine

3-343

Compute and show the epipolar lines in the second image.

epiLines = epipolarLine(fLMedS,matchedPoints1(inliers,:));
points = lineToBorderPoints(epiLines,size(I2));
line(points(:,[1,3])',points(:,[2,4])');
truesize;

3 Functions Alphabetical

3-344

Input Arguments
F — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix. F must be double or single. If P1
represents a point in the first image I1 that corresponds to P2, a point in the second
image I2, then:
[P2,1] * F * [P1,1]' = 0

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates
corresponding points in stereo images. When two cameras view a 3-D scene from two
distinct positions, there are a number of geometric relations between the 3-D points and
their projections onto the 2-D images that lead to constraints between the image points.
Two images of the same scene are related by epipolar geometry.

F' — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix. The F' fundamental matrix maps points
in image I2 to epipolar lines in image I1.

points — Coordinates of points
M

 epipolarLine

3-345

Coordinates of points, specified as an M-by-2 matrix. Each row contains the (x,y)
coordinates of a point. M is the number of points.

Output Arguments
lines — Lines
M-by-3 matrix

An M-by-3 matrix, where each row must be in the format, [A,B,C]. This corresponds to the
definition of the line:
A * x + B * y + C = 0.
M represents the number of lines.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateFundamentalMatrix | insertShape | isEpipoleInImage | line |
lineToBorderPoints | size

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2011a

3 Functions Alphabetical

3-346

estimateCameraParameters
Calibrate a single or stereo camera

Syntax
[cameraParams,imagesUsed,estimationErrors] =
estimateCameraParameters(imagePoints,worldPoints)

[stereoParams,pairsUsed,estimationErrors] =
estimateCameraParameters(imagePoints,worldPoints)

cameraParams = estimateCameraParameters(___ ,Name,Value)

Description
[cameraParams,imagesUsed,estimationErrors] =
estimateCameraParameters(imagePoints,worldPoints) returns cameraParams,
a cameraParameters object containing estimates for the intrinsic and extrinsic
parameters and the distortion coefficients of a single camera. The function also returns
the images you used to estimate the camera parameters and the standard estimation
errors for the single camera calibration.

[stereoParams,pairsUsed,estimationErrors] =
estimateCameraParameters(imagePoints,worldPoints) returns stereoParams,
a stereoParameters object containing the parameters of the stereo camera. The
function also returns the images you used to estimate the stereo parameters and the
standard estimation errors for the stereo camera calibration.

cameraParams = estimateCameraParameters(___ ,Name,Value) configures the
cameraParams object properties specified by one or more Name,Value pair arguments,
using any of the preceding syntaxes. Unspecified properties have their default values.

Examples

 estimateCameraParameters

3-347

Single Camera Calibration

Create a set of calibration images.

images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','mono'));
imageFileNames = images.ImageLocation;

Detect the calibration pattern.

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

Generate the world coordinates of the corners of the squares.

squareSizeInMM = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMM);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I, 1),size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize the calibration accuracy.

showReprojectionErrors(params);

3 Functions Alphabetical

3-348

Visualize camera extrinsics.

figure;
showExtrinsics(params);

 estimateCameraParameters

3-349

drawnow;

Plot detected and reprojected points.

figure;
imshow(imageFileNames{1});
hold on;
plot(imagePoints(:,1,1), imagePoints(:,2,1),'go');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+');
legend('Detected Points','ReprojectedPoints');
hold off;

3 Functions Alphabetical

3-350

Stereo Camera Calibration

Specify calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo','right'));

Detect the checkerboards.

[imagePoints,boardSize] = ...
 detectCheckerboardPoints(leftImages.Files,rightImages.Files);

 estimateCameraParameters

3-351

Specify the world coordinates of the checkerboard keypoints. Square size is in
millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize the calibration accuracy.

 showReprojectionErrors(params);

3 Functions Alphabetical

3-352

Visualize camera extrinsics.

figure;
showExtrinsics(params);

 estimateCameraParameters

3-353

Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numImages | M-by-2-by-numPairs-by-2 array

Key points of calibration pattern, specified as an array of [x,y] intrinsic image coordinates.

3 Functions Alphabetical

3-354

Calibration Input Array of [x,y] Key Points
Single Camera M-by-2-by-numImages array of [x,y] points.

• The number of images, numImages, must be greater than 2.
• The number of keypoint coordinates in each pattern, M, must be

greater than 3.
Stereo Camera M-by-2-by-numPairs-by-2 array of [x,y] points.

• numPairs is the number of stereo image pairs containing the
calibration pattern.

• The number of keypoint coordinates in each pattern, M, must be
greater than 3.

• imagePoints(:,:,:,1) are the points from camera 1.
• imagePoints(:,:,:,2) are the points from camera 2.

Data Types: single | double

worldPoints — Key points of calibration pattern in world coordinates
M-by-2 array

Key points of calibration pattern in world coordinates, specified as an M-by-2 array of M
number of [x,y] world coordinates. The pattern must be planar; therefore, z-coordinates
are zero.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WorldUnits','mm' sets the world point units to millimeters.

WorldUnits — World points units
'mm' (default) | character vector

World points units, specified as the comma-separated pair consisting of 'WorldUnits'
and a character vector representing units.

 estimateCameraParameters

3-355

EstimateSkew — Estimate skew
false (default) | logical scalar

Estimate skew, specified as the comma-separated pair consisting of 'EstimateSkew'
and a logical scalar. When you set this property to true, the function estimates the image
axes skew. When set to false, the image axes are exactly perpendicular and the function
sets the skew to zero.

NumRadialDistortionCoefficients — Number of radial distortion coefficients
2 (default) | 3

Number of radial distortion coefficients to estimate, specified as the comma-separated
pair consisting of 'NumRadialDistortionCoefficients' and the value 2 or 3. Radial
distortion occurs when light rays bend more near the edges of a lens than they do at its
optical center. The smaller the lens, the greater the distortion.

Negative radial distortion No distortion Positive radial distortion
“pincushion” “barrel”

The radial distortion coefficients model this type of distortion. The distorted points are
denoted as (xdistorted, ydistorted):

xdistorted = x(1 + k1*r2 + k2*r4 + k3*r6)

ydistorted= y(1 + k1*r2 + k2*r4 + k3*r6)

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.
• r2: x2 + y2

3 Functions Alphabetical

3-356

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in
wide-angle lenses, you can select 3 coefficients to include k3.

EstimateTangentialDistortion — Tangential distortion flag
false (default) | logical scalar

Tangential distortion flag, specified as the comma-separated pair consisting of,
'EstimateTangentialDistortion' and a logical scalar. When you set this property to
true, the function estimates the tangential distortion. When you set it to false, the
tangential distortion is negligible.

Tangential distortion occurs when the lens and the image plane are not parallel. The
tangential distortion coefficients model this type of distortion.

Camera lens

Vertical plane

Zero Tangential Distortion

Lens and sensor are parallel

Camera
sensor

Camera lens

Tangential Distortion

Lens and sensor are not parallel

Camera
sensor

Vertical plane

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x + [2 * p1 * x * y + p2 * (r2 + 2 * x2)]

ydistorted = y + [p1 * (r2 + 2 *y2) + 2 * p2 * x * y]

• x, y — Undistorted pixel locations. x and y are in normalized image coordinates.
Normalized image coordinates are calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels. Thus, x and y are
dimensionless.

 estimateCameraParameters

3-357

• p1 and p2 — Tangential distortion coefficients of the lens.
• r2: x2 + y2

InitialIntrinsicMatrix — Initial guess for camera intrinsics
[] (default) | 3-by-3 matrix

Initial guess for camera intrinsics, specified as the comma-separated pair consisting of
'InitialIntrinsicMatrix' and a 3-by-3 matrix. If you do not provide an initial value,
the function computes the initial intrinsic matrix using linear least squares.

InitialRadialDistortion — Initial guess for radial distortion coefficients
[] (default) | 2-element vector | 3-element vector

Initial guess for radial distortion coefficients, specified as the comma-separated pair
consisting of 'InitialRadialDistortion' and a 2- or 3-element vector. If you do not
provide an initial value, the function uses 0 as the initial value for all the coefficients.

ImageSize — Image size produced by camera
1-by-2 [mrows, ncols] vector | []

Image size produced by camera, specified as the comma-separated pair consisting of
'ImageSize' and as 1-by-2 [mrows, ncols] vector.

Output Arguments
cameraParams — Camera parameters
cameraParameters object

Camera parameters, returned as a cameraParameters object.

imagesUsed — Images used to estimate camera parameters
P-by-1 logical array

Images you use to estimate camera parameters, returned as a P-by-1 logical array. P
corresponds to the number of images. The array indicates which images you used to
estimate the camera parameters. A logical true value in the array indicates which
images you used to estimate the camera parameters.

The function computes a homography between the world points and the points detected
in each image. If the homography computation fails for an image, the function issues a

3 Functions Alphabetical

3-358

warning. The points for that image are not used for estimating the camera parameters.
The function also sets the corresponding element of imagesUsed to false.

estimationErrors — Standard errors of estimated parameters
cameraCalibrationErrors object | stereoCalibrationErrors object

Standard errors of estimated parameters, returned as a cameraCalibrationErrors
object or a stereoCalibrationErrors object.

stereoParams — Camera parameters for stereo system
stereoParameters object

Camera parameters for stereo system, returned as a stereoParameters object. The
object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo
camera system.

pairsUsed — Image pairs used to estimate camera parameters
P-by-1 logical array

Image pairs used to estimate camera parameters, returned as a P-by-1 logical array. P
corresponds to the number of image pairs. A logical true value in the array indicates
which image pairs you used to estimate the camera parameters.

Algorithms

Calibration Algorithm
You can use the Camera Calibrator app with cameras up to a field of view (FOV) of 95
degrees.

The calibration algorithm assumes a pinhole camera model:

w x y 1 = X Y Z 1
R
t

K

(X,Y,Z): world coordinates of a point
(x,y): coordinates of the corresponding image point
w: arbitrary scale factor
K: camera intrinsic matrix

 estimateCameraParameters

3-359

R: matrix representing the 3-D rotation of the camera
t: translation of the camera relative to the world coordinate system

Camera calibration estimates the values of the intrinsic parameters, the extrinsic
parameters, and the distortion coefficients. There are two steps involved in camera
calibration:

1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is
zero. [1]

2 Estimate all parameters simultaneously including the distortion coefficients using
nonlinear least-squares minimization (Levenberg–Marquardt algorithm). Use the
closed form solution from the preceding step as the initial estimate of the intrinsics
and extrinsics. Then set the initial estimate of the distortion coefficients to zero. [1]
[2]

References
[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on

Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–1334.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit
Image Correction”, IEEE International Conference on Computer Vision and
Pattern Recognition, 1997.

[3] Bouguet, J.Y. “Camera Calibration Toolbox for Matlab”, Computational Vision at the
California Institute of Technology. Camera Calibration Toolbox for MATLAB.

[4] Bradski, G., and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV
Library. Sebastopol, CA: O'Reilly, 2008.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Classes
cameraCalibrationErrors | cameraParameters | stereoCalibrationErrors |
stereoParameters

3 Functions Alphabetical

3-360

http://www.vision.caltech.edu/bouguetj/calib_doc/

Functions
detectCheckerboardPoints | disparityBM | disparitySGM |
estimateFundamentalMatrix | estimateStereoBaseline |
estimateUncalibratedRectification | generateCheckerboardPoints |
reconstructScene | rectifyStereoImages | showExtrinsics |
showReprojectionErrors | undistortImage | undistortPoints

Topics
“Evaluating the Accuracy of Single Camera Calibration”
“What Is Camera Calibration?”
“Single Camera Calibrator App”
“Coordinate Systems”

Introduced in R2014b

 estimateCameraParameters

3-361

estimateFundamentalMatrix
Estimate fundamental matrix from corresponding points in stereo images

Syntax
estimateFundamentalMatrix
F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2)
[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2,Name,Value)

Description
estimateFundamentalMatrix estimates the fundamental matrix from corresponding
points in stereo images. This function can be configured to use all corresponding points or
to exclude outliers. You can exclude outliers by using a robust estimation technique such
as random-sample consensus (RANSAC). When you use robust estimation, results may not
be identical between runs because of the randomized nature of the algorithm.

F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2) returns
the 3-by-3 fundamental matrix, F, using the least median of squares (LMedS) method. The
input points can be M-by-2 matrices of M number of [x y] coordinates, or KAZEPoints,
SURFPoints, MSERRegions, ORBPoints, or cornerPoints object.

[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2) additionally returns logical indices, inliersIndex, for the inliers
used to compute the fundamental matrix. The inliersIndex output is an M-by-1 vector.
The function sets the elements of the vector to true when the corresponding point was
used to compute the fundamental matrix. The elements are set to false if they are not
used.

[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2) additionally returns a status code.

3 Functions Alphabetical

3-362

[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Compute Fundamental Matrix

The RANSAC method requires that the input points are already putatively matched. We
can, for example, use the matchFeatures function for this. Using the RANSAC algorithm
eliminates any outliers which may still be contained within putatively matched points.

Load stereo points.

load stereoPointPairs

Estimate the fundamental matrix.

fRANSAC = estimateFundamentalMatrix(matchedPoints1,...
 matchedPoints2,'Method','RANSAC',...
 'NumTrials',2000,'DistanceThreshold',1e-4)

fRANSAC = 3×3

 0.0000 -0.0004 0.0348
 0.0004 0.0000 -0.0937
 -0.0426 0.0993 0.9892

Use the Least Median of Squares Method to Find Inliers

Load the putatively matched points.

load stereoPointPairs
[fLMedS, inliers] = estimateFundamentalMatrix(matchedPoints1,matchedPoints2,'NumTrials',2000)

fLMedS = 3×3

 0.0000 -0.0004 0.0349

 estimateFundamentalMatrix

3-363

 0.0004 0.0000 -0.0938
 -0.0426 0.0994 0.9892

inliers = 18x1 logical array

 1
 1
 1
 1
 1
 1
 0
 1
 0
 0
 ⋮

Load the stereo images.

I1 = imread('viprectification_deskLeft.png');
I2 = imread('viprectification_deskRight.png');

Show the putatively matched points.

figure;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','PlotOptions',{'ro','go','y--'});
title('Putative point matches');

3 Functions Alphabetical

3-364

Show the inlier points.

figure;
showMatchedFeatures(I1, I2, matchedPoints1(inliers,:),matchedPoints2(inliers,:),'montage','PlotOptions',{'ro','go','y--'});
title('Point matches after outliers were removed');

 estimateFundamentalMatrix

3-365

Use the Normalized Eight-Point Algorithm to Compute the Fundamental Matrix

Load the stereo point pairs.

load stereoPointPairs

Compute the fundamental matrix for input points which do not contain any outliers.

inlierPts1 = matchedPoints1(knownInliers,:);
inlierPts2 = matchedPoints2(knownInliers,:);
fNorm8Point = estimateFundamentalMatrix(inlierPts1,inlierPts2,'Method','Norm8Point')

fNorm8Point = 3×3

 0.0000 -0.0004 0.0348
 0.0004 0.0000 -0.0937
 -0.0426 0.0993 0.9892

Input Arguments
matchedPoints1 — Coordinates of corresponding points
SURFPoints | cornerPoints | MSERRegions | ORBPoints object | M-by-2 matrix of
[x,y] coordinates

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M
number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions,
ORBPoints, or cornerPoints object. The matchedPoints1 input must contain points
which do not lie on a single planar surface, (e.g., a wall, table, or book) and are putatively
matched by using a function such as matchFeatures.

matchedPoints2 — Coordinates of corresponding points
SURFPoints | cornerPoints | MSERRegions | ORBPoints object | M-by-2 matrix of
[x,y] coordinates

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M
number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions,
ORBPoints, or cornerPoints object. The matchedPoints2 input must contain points
which do not lie on a single planar surface, (e.g., a wall, table, or book) and are putatively
matched by using a function such as matchFeatures

3 Functions Alphabetical

3-366

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Method', 'RANSAC' specifies RANSAC as the method to compute the
fundamental matrix.

Method — Method used to compute the fundamental matrix
LMedS (default) | Norm8Point | RANSAC | MSAC | LTS

Method used to compute the fundamental matrix, specified as the comma-separated pair
consisting of 'Method' and one of the five character vectors:

Norm8Point Normalized eight-point algorithm. To produce reliable results, the
inputs, matchedPoints1 and matchedPoints2 must match
precisely.

LMedS Least Median of Squares. Select this method if you know that at least
50% of the points in matchedPoints1 and matchedPoints2 are
inliers.

RANSAC RANdom SAmple Consensus. Select this method if you would like to
set the distance threshold for the inliers.

MSAC M-estimator SAmple Consensus. Select the M-estimator SAmple
Consensus method if you would like to set the distance threshold for
the inliers. Generally, the MSAC method converges more quickly than
the RANSAC method.

LTS Least Trimmed Squares. Select the Least Trimmed Squares method if
you know a minimum percentage of inliers in matchedPoints1 and
matchedPoints2. Generally, the LTS method converges more quickly
than the LMedS method.

To produce reliable results using the Norm8Point algorithm, the inputs,
matchedPoints1 and matchedPoints2, must match precisely. The other methods can
tolerate outliers and therefore only require putatively matched input points. You can
obtain putatively matched points by using the matchFeatures function.

OutputClass — Fundamental matrix class
'double' (default) | 'single'

 estimateFundamentalMatrix

3-367

Fundamental matrix class, specified as the comma-separated pair consisting of
'OutputClass' and either the character vector 'double' or 'single'. This specifies
the class for the fundamental matrix and the function's internal computations.

NumTrials — Number of random trials for finding the outliers
500 (default) | integer

Number of random trials for finding the outliers, specified as the comma-separated pair
consisting of 'NumTrials' and an integer value. This parameter applies when you set the
Method parameter to LMedS, RANSAC, MSAC, or LTS.

When you set the Method parameter to either LMedS or LTS, the function uses the actual
number of trials as the parameter value.

When you set the Method parameter to either RANSAC or MSAC, the function uses the
maximum number of trials as the parameter value. The actual number of trials depends
on matchedPoints1, matchedPoints2, and the value of the Confidence parameter.

Select the number of random trials to optimize speed and accuracy.

DistanceType — Algebraic or Sampson distance type
'Sampson' (default) | 'Algebraic'

Algebraic or Sampson distance type, specified as the comma-separated pair consisting of
'DistanceType' and either the Algebraic or Sampson character vector. The distance
type determines whether a pair of points is an inlier or outlier. This parameter applies
when you set the Method parameter to LMedS, RANSAC, MSAC, or LTS.

Note For faster computations, set this parameter to Algebraic. For a geometric
distance, set this parameter to Sampson.

Data Types: char

DistanceThreshold — Distance threshold for finding outliers
0.01 (default)

Distance threshold for finding outliers, specified as the comma-separated pair consisting
of 'DistanceThreshold' and a positive value. This parameter applies when you set the
Method parameter to RANSAC or MSAC.

3 Functions Alphabetical

3-368

Confidence — Desired confidence for finding maximum number of inliers
99 (default) | scalar

Desired confidence for finding maximum number of inliers, specified as the comma-
separated pair consisting of 'Confidence' and a percentage scalar value in the range (0
100). This parameter applies when you set the Method parameter to RANSAC or MSAC.

InlierPercentage — Minimum percentage of inliers in input points
50 (default) | scalar

Minimum percentage of inliers in input points, specified as the comma-separated pair
consisting of 'InlierPercentage' and percentage scalar value in the range (0 100).
Specify the minimum percentage of inliers in matchedPoints1 and matchedPoints2.
This parameter applies when you set the Method parameter to LTS.

ReportRuntimeError — Report runtime error
true (default) | false

Report runtime error, specified as the comma-separated pair consisting of
'ReportRuntimeError' and a logical value. Set this parameter to true to report run-
time errors when the function cannot compute the fundamental matrix from
matchedPoints1 and matchedPoints2. When you set this parameter to false, you
can check the status output to verify validity of the fundamental matrix.

Output Arguments
F — Fundamental matrix
3-by-3 matrix

Fundamental matrix, returns as a 3-by-3 matrix that is computed from the points in the
inputs matchedPoints1 and matchedPoints2.

P2 1 * FundamentalMatrix * P1 1 ′ = 0

P1, the point in matchedPoints1 of image 1 in pixels, corresponds to the point, P2, the
point in matchedPoints2 in image 2.

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates
corresponding points in stereo images. When two cameras view a 3-D scene from two
distinct positions, there are a number of geometric relations between the 3-D points and

 estimateFundamentalMatrix

3-369

their projections onto the 2-D images that lead to constraints between the image points.
Two images of the same scene are related by epipolar geometry.

inliersIndex — Inliers index
M-by-1 logical vector

Inliers index, returned as an M-by-1 logical index vector. An element set to true means
that the corresponding indexed matched points in matchedPoints1 and
matchedPoints2 were used to compute the fundamental matrix. An element set to
false means the indexed points were not used for the computation.
Data Types: logical

status — Status code
0 | 1 | 2

Status code, returned as one of the following possible values:

status Value
0: No error.
1: matchedPoints1 and matchedPoints2 do not contain enough points.

Norm8Point, RANSAC, and MSAC require at least 8 points, LMedS 16
points, and LTS requires ceil(800/InlierPercentage).

2: Not enough inliers found.

Data Types: int32

Tips
Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain
the intrinsics using the Camera Calibrator app. Otherwise, you can use the
estimateFundamentalMatrix function that does not require camera intrinsics. Note
that the fundamental matrix cannot be estimated from coplanar world points.

3 Functions Alphabetical

3-370

Algorithms

Computing the Fundamental Matrix
This function computes the fundamental matrix using the normalized eight-point
algorithm [1]

When you choose the Norm8Point method, the function uses all points in
matchedPoints1 and matchedPoints2 to compute the fundamental matrix.

When you choose any other method, the function uses the following algorithm to exclude
outliers and compute the fundamental matrix from inliers:

1 Initialize the fundamental matrix, F, to a 3-by-3 matrix of zeros.
2 Set the loop counter n, to zero, and the number of loops N, to the number of random

trials specified.
3 Loop through the following steps while n < N:

a Randomly select 8 pairs of points from matchedPoints1 and matchedPoints2.
b Use the selected 8 points to compute a fundamental matrix, f, by using the

normalized 8-point algorithm.
c Compute the fitness of f for all points in matchedPoints1 and

matchedPoints2.
d If the fitness of f is better than F, replace F with f.

For RANSAC and MSAC, update N.
e n = n + 1

Number of Random Samplings for RANSAC and MSAC Methods
The RANSAC and MSAC methods update the number of random trials N, for every
iteration in the algorithm loop. The function resets N, according to the following:
N = min(N, log(1 − p)

log(1 − r8)
).

Where, p represents the confidence parameter you specified, and r is calculated as
follows:

 estimateFundamentalMatrix

3-371

∑
i

N
sgn(dui, vi), t)/N, where sgn(a, b) = 1 if a ≤ b and 0 otherwise.

When you use RANSAC or MSAC, results may not be identical between runs because of the
randomized nature of the algorithm.

Distance Types
The function provides two distance types, algebraic distance and Sampson distance, to
measure the distance of a pair of points according to a fundamental matrix. The following
equations are used for each type, with u representing matchedPoints1 and v
representing matchedPoints2.

Algebraic distance: d(ui, vi) = (viFui
T)2

Sampson distance:
d(ui, vi) = (viFui

T)2 1
(Fui

T)1
2 + (Fui

T)2
2 + 1

(viF)12 + (viF)22

where i represents the index of the corresponding points, and Fui
T

j
2, the square of the j-

th entry of the vector Fui
T.

Fitness of Fundamental Matrix for Corresponding Points
The following table summarizes how each method determines the fitness of the computed
fundamental matrix:

Metho
d

Measure of Fitness

LMedS median(d ui, vi); i = 1:N , the number of input points. The smaller the value, the better the
fitness.

RANSA
C ∑

i

N
sgn(dui, vi), t)/N, where sgn(a, b) = 1 if a ≤ b and 0 otherwise, t represents the specified

threshold. The greater the value, the better the fitness.
MSAC

∑
i

N
min(d(ui, vi), t). The smaller the value, the better the fitness.

3 Functions Alphabetical

3-372

Metho
d

Measure of Fitness

LTS ∑
iεΩ

d(ui, vi), where Ω is the first lowest value of an (N x q) pair of points. Where q

represents the inlier percentage you specified. The smaller the value, the better the
fitness.

References
[1] Hartley, R., A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge

University Press, 2003.

[2] Rousseeuw, P., A. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons,
1987.

[3] Torr, P. H. S., and A. Zisserman, MLESAC: A New Robust Estimator with Application to
Estimating Image Geometry, Computer Vision and Image Understanding, 2000.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method', 'OutputClass', 'DistanceType', and 'ReportRuntimeError' must
be compile-time constants.

See Also
ORBPoints | detectFASTFeatures | detectHarrisFeatures |
detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures |
detectSURFFeatures | epipolarline | estimateUncalibratedRectification |
extractFeatures | matchFeatures | relativeCameraPose

 estimateFundamentalMatrix

3-373

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Point Feature Types”
“Structure from Motion”
“Coordinate Systems”

Introduced in R2012b

3 Functions Alphabetical

3-374

estimateEssentialMatrix
Estimate essential matrix from corresponding points in a pair of images

Syntax
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams)
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams1,cameraParams2)
[E,inliersIndex] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2)
[E,inliersIndex,status] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2)
[E,inliersIndex,status] = estimateEssentialMatrix(___ ,Name,Value)

Description
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams) returns the 3-by-3 essential matrix, E, using the M-estimator sample
consensus (MSAC) algorithm. The input points can be M-by-2 matrices of M number of
[x,y] coordinates, or a KAZEPoints , SURFPoints, MSERRegions, BRISKPoints, or
cornerPoints object. The cameraParams object contains the parameters of the camera
used to take the images.

E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams1,cameraParams2) returns the essential matrix relating two images
taken by different cameras. cameraParams1 and cameraParams2 are
cameraParameters objects containing the parameters of camera 1 and camera 2
respectively.

[E,inliersIndex] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2) additionally returns an M-by-1 logical vector, inliersIndex, used to
compute the essential matrix. The function sets the elements of the vector to true when
the corresponding point was used to compute the fundamental matrix. The elements are
set to false if they are not used.

 estimateEssentialMatrix

3-375

[E,inliersIndex,status] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2) additionally returns a status code to indicate the validity of points.

[E,inliersIndex,status] = estimateEssentialMatrix(___ ,Name,Value)
uses additional options specified by one or more Name,Value pair arguments.

Examples

Estimate Essential Matrix from A Pair of Images

Load precomputed camera parameters.

load upToScaleReconstructionCameraParameters.mat

Read and undistort two images.

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
 'upToScaleReconstructionImages');
images = imageDatastore(imageDir);
I1 = undistortImage(readimage(images,1),cameraParams);
I2 = undistortImage(readimage(images,2),cameraParams);
I1gray = rgb2gray(I1);
I2gray = rgb2gray(I2);

Detect feature points each image.

imagePoints1 = detectSURFFeatures(I1gray);
imagePoints2 = detectSURFFeatures(I2gray);

Extract feature descriptors from each image.

features1 = extractFeatures(I1gray,imagePoints1,'Upright',true);
features2 = extractFeatures(I2gray,imagePoints2,'Upright',true);

Match features across the images.

indexPairs = matchFeatures(features1,features2);
matchedPoints1 = imagePoints1(indexPairs(:,1));
matchedPoints2 = imagePoints2(indexPairs(:,2));
figure
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
title('Putative Matches')

3 Functions Alphabetical

3-376

Estimate the essential matrix.

[E,inliers] = estimateEssentialMatrix(matchedPoints1,matchedPoints2,...
 cameraParams);

Display the inlier matches.

inlierPoints1 = matchedPoints1(inliers);
inlierPoints2 = matchedPoints2(inliers);
figure
showMatchedFeatures(I1,I2,inlierPoints1,inlierPoints2);
title('Inlier Matches')

 estimateEssentialMatrix

3-377

Input Arguments
matchedPoints1 — Coordinates of corresponding points
M-by-2 matrix of [x,y] coordinates | KAZEPoints | SURFPoints | BRISKPoints |
MSERRegions | cornerPoints

Coordinates of corresponding points in image 1, specified as an M-by-2 matrix of M of
[x,y] coordinates, or as a KAZEPoints,SURFPoints , BRISKPoints, MSERRegions, or
cornerPoints object. The matchedPoints1 input must contain at least five points,
which are putatively matched by using a function such as matchFeatures.

3 Functions Alphabetical

3-378

matchedPoints2 — Coordinates of corresponding points
SURFPoints | cornerPoints | MSERRegions | BRISKPoints | M-by-2 matrix of [x,y]
coordinates

Coordinates of corresponding points in image 1, specified as an M-by-2 matrix of M of
[x,y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, BRISKPoints,or
cornerPoints object. The matchedPoints2 input must contain at least five points,
which are putatively matched by using a function such as matchFeatures.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

cameraParams1 — Camera parameters for camera 1
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 1, specified as a cameraParameters or
cameraIntrinsics object. You can return the cameraParameters object using the
estimateCameraParameters function. The cameraParameters object contains the
intrinsic, extrinsic, and lens distortion parameters of a camera.

cameraParams2 — Camera parameters for camera 2
cameraParameters object | cameraIntrinsics object

Camera parameters for camera 2, specified as a cameraParameters or
cameraIntrinsics object. You can return the cameraParameters object using the
estimateCameraParameters function. The cameraParameters object contains the
intrinsic, extrinsic, and lens distortion parameters of a camera.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumTrials', 500

 estimateEssentialMatrix

3-379

MaxNumTrials — Maximum number of random trials for finding the outliers
500 (default) | positive integer

Maximum number of random trials for finding outliers, specified as the comma-separated
pair consisting of 'MaxNumTrials' and a positive integer. The actual number of trials
depends on matchedPoints1, matchedPoints2, and the value of the Confidence
parameter. To optimize speed and accuracy, select the number of random trials.

Confidence — Desired confidence for finding maximum number of inliers
99 (default) | scalar

Desired confidence for finding the maximum number of inliers, specified as the comma-
separated pair consisting of 'Confidence' and a percentage scalar value in the range
(0,100). Increasing this value improves the robustness of the output but increases the
amount of computations.

MaxDistance — Sampson distance threshold
0.1 (default) | scalar

Sampson distance threshold, specified as the comma-separated pair consisting of
'MaxDistance' and a scalar value. The function uses the threshold to find outliers
returned in pixels squared. The Sampson distance is a first-order approximation of the
squared geometric distance between a point and the epipolar line. Increase this value to
make the algorithm converge faster, but this can also adversely affect the accuracy of the
result.

Output Arguments
E — Essential matrix
3-by-3 matrix

Essential matrix, returned as a 3-by-3 matrix that is computed from the points in the
matchedPoints1 and matchedPoints2 inputs.

P2 1 * EssentialMatrix * P1 1 ′ = 0

The P1 point in image 1, in normalized image coordinates, corresponds to the , P2 point in
image 2.

In computer vision, the essential matrix is a 3-by-3 matrix which relates corresponding
points in stereo images which are in normalized image coordinates. When two cameras

3 Functions Alphabetical

3-380

view a 3-D scene from two distinct positions, the geometric relations between the 3-D
points and their projections onto the 2-D images lead to constraints between image
points. The two images of the same scene are related by epipolar geometry.
Data Types: double

inliersIndex — Inliers index
M-by-1 logical vector

Inliers index, returned as an M-by-1 logical index vector. An element set to true indicates
that the corresponding indexed matched points in matchedPoints1 and
matchedPoints2 were used to compute the essential matrix. An element set to false
means the indexed points were not used for the computation.
Data Types: logical

status — Status code
0 | 1 | 2

Status code, returned as one of the following possible values:

status Value
0: No error.
1: matchedPoints1 and matchedPoints2 do not contain enough points.

At least five points are required.
2: Not enough inliers found. A least five inliers are required.

Data Types: int32

Tips
Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain
the intrinsics using the Camera Calibrator app. Otherwise, you can use the
estimateFundamentalMatrix function that does not require camera intrinsics. The
fundamental matrix cannot be estimated from coplanar world points.

References
[1] Kukelova, Z., M. Bujnak, and T. Pajdla Polynomial Eigenvalue Solutions to the 5-pt and

6-pt Relative Pose Problems. Leeds, UK: BMVC, 2008.

 estimateEssentialMatrix

3-381

[2] Nister, D.. “An Efficient Solution to the Five-Point Relative Pose Problem.” IEEE
Transactions on Pattern Analysis and Machine Intelligence.Volume 26, Issue 6,
June 2004.

[3] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application
to Estimating Image Geometry.” Computer Vision and Image Understanding.
Volume 78, Issue 1, April 2000, pp. 138-156.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Apps
Camera Calibrator

Functions
estimateCameraParameters | estimateFundamentalMatrix |
estimateWorldCameraPose | relativeCameraPose

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Point Feature Types”
“Structure from Motion”
“Coordinate Systems”

Introduced in R2016b

3 Functions Alphabetical

3-382

estimateStereoBaseline
Estimate baseline of stereo camera

Syntax
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2)
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits',units)

Description
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2) estimates the translation
and orientation between two cameras of the same resolution. The
estimateStereoBaseline function is best used for a stereo system with a wide
baseline.

[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(
imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits',units)
specifies the units in which worldPoints are measured.

Examples

Estimate Baseline of a Stereo System

Load camera intrinsic parameters.

ld = load('wideBaselineStereo');

Specify stereo calibration images.

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','wideBaseline','left'));

 estimateStereoBaseline

3-383

rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','wideBaseline','right'));

Detect the checkerboards.

[imagePoints, boardSize] = ...
 detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.

squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the baseline and extrinsic parameters.

params = estimateStereoBaseline(imagePoints,worldPoints, ...
 ld.intrinsics1,ld.intrinsics2)

params =
 stereoParameters with properties:

 Parameters of Two Cameras
 CameraParameters1: [1x1 cameraParameters]
 CameraParameters2: [1x1 cameraParameters]

 Inter-camera Geometry
 RotationOfCamera2: [3x3 double]
 TranslationOfCamera2: [-978.9732 55.2644 547.8082]
 FundamentalMatrix: [3x3 double]
 EssentialMatrix: [3x3 double]

 Accuracy of Estimation
 MeanReprojectionError: 0.2699

 Calibration Settings
 NumPatterns: 6
 WorldPoints: [54x2 double]
 WorldUnits: 'mm'

Visualize calibration accuracy.

figure
showReprojectionErrors(params)

3 Functions Alphabetical

3-384

Visualize camera extrinsics.

figure
showExtrinsics(params)

 estimateStereoBaseline

3-385

Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numPairs-by-2 array

Key points of calibration pattern, specified as an M-by-2-by-numPairs-by-2 array. The
array contains the [x,y] intrinsic image coordinates of key points in the calibration
pattern.

• numPairs is the number of stereo image pairs containing the calibration pattern.

3 Functions Alphabetical

3-386

• The number of keypoint coordinates in each pattern, M, must be greater than 3.
• imagePoints(:,:,:,1) are the points from camera 1.
• imagePoints(:,:,:,2) are the points from camera 2.

Data Types: single | double

worldPoints — Key points of calibration pattern in world coordinates
M-by-2 array

Key points of calibration pattern in world coordinates, specified as an M-by-2 array of M
number of [x,y] world coordinates. The pattern must be planar; therefore, z-coordinates
are zero.
Data Types: single | double

intrinsics1 — Intrinsic parameters of camera 1
cameraIntrinsics object

Intrinsic parameters of camera 1, specified as a cameraIntrinsics object. The
intrinsics object stores information about a camera’s intrinsic calibration parameters,
including lens distortion.

intrinsics2 — Intrinsic parameters of camera 2
cameraIntrinsics object

Intrinsic parameters of camera 2, specified as a cameraIntrinsics object. The
intrinsics object stores information about a camera’s intrinsic calibration parameters,
including lens distortion.

units — World points units
'mm' (default) | string

World points units, specified as a string representing units.

Output Arguments
stereoParams — Camera parameters for stereo system
stereoParameters object

 estimateStereoBaseline

3-387

Camera parameters for stereo system, returned as a stereoParameters object. The
object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo
camera system.

pairsUsed — Image pairs used to estimate camera parameters
numPairs-by-1 logical vector

Image pairs used to estimate camera parameters, returned as a numPairs-by-1 logical
array. A logical true value in the vector indicates which that the image pairs was used to
estimate the camera parameters. An image pair will not be used for estimation if the
algorithm fails to estimate a homography between the world points and the points
detected in that pair of images.

estimationErrors — Standard errors of estimated parameters
stereoCalibrationErrors object

Standard errors of estimated parameters, returned as a stereoCalibrationErrors
object.

See Also
Apps
Stereo Camera Calibrator

Classes
cameraCalibrationErrors | cameraIntrinsics | cameraParameters |
stereoCalibrationErrors | stereoParameters

Functions
detectCheckerboardPoints | estimateCameraParameters |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors |
undistortImage

Introduced in R2018a

3 Functions Alphabetical

3-388

estimateWorldCameraPose
Estimate camera pose from 3-D to 2-D point correspondences

Syntax
[worldOrientation,worldLocation] = estimateWorldCameraPose(
imagePoints,worldPoints,cameraParams)
[___ ,inlierIdx] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams)
[___ ,status] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams)
[___] = estimateWorldCameraPose(___ ,Name,Value)

Description
[worldOrientation,worldLocation] = estimateWorldCameraPose(
imagePoints,worldPoints,cameraParams) returns the orientation and location of a
calibrated camera in a world coordinate system. The input worldPoints must be defined
in the world coordinate system.

This function solves the perspective-n-point (PnP) problem using the perspective-three-
point (P3P) algorithm [1]. The function also eliminates spurious correspondences using
the M-estimator sample consensus (MSAC) algorithm.

[___ ,inlierIdx] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams) returns the indices of the inliers used to compute the camera pose, in
addition to the arguments from the previous syntax.

[___ ,status] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams) additionally returns a status code to indicate whether there were
enough points.

[___] = estimateWorldCameraPose(___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments, using any of the preceding
syntaxes.

 estimateWorldCameraPose

3-389

Examples

Determine Camera Pose from World-to-Image Correspondences

Load previously calculated world-to-image correspondences.

data = load('worldToImageCorrespondences.mat');

Estimate the world camera pose.

[worldOrientation,worldLocation] = estimateWorldCameraPose(...
 data.imagePoints,data.worldPoints,data.cameraParams);

Plot the world points.

 pcshow(data.worldPoints,'VerticalAxis','Y','VerticalAxisDir','down', ...
 'MarkerSize',30);
 hold on
 plotCamera('Size',10,'Orientation',worldOrientation,'Location',...
 worldLocation);
 hold off

3 Functions Alphabetical

3-390

Input Arguments
imagePoints — Coordinates of undistorted image points
M-by-2 array

Coordinates of undistorted image points, specified as an M-by-2 array of [x,y] coordinates.
The number of image points, M, must be at least four.

The function does not account for lens distortion. You can either undistort the images
using the undistortImage function before detecting the image points, or you can
undistort the image points themselves using the undistortPoints function.

 estimateWorldCameraPose

3-391

Data Types: single | double

worldPoints — Coordinates of world points
M-by-3 array

Coordinates of world points, specified as an M-by-3 array of [x,y,z] coordinates.
Data Types: single | double

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumTrials',1000

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer scalar

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and a positive integer scalar. The actual number of trials depends on the
number of image and world points, and the values for the MaxReprojectionError and
Confidence properties. Increasing the number of trials improves the robustness of the
output at the expense of additional computation.

Confidence — Confidence for finding maximum number of inliers
99 (default) | scalar in the range (0,100)

Confidence for finding maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a scalar in the range (0,100). Increasing this value
improves the robustness of the output at the expense of additional computation.

3 Functions Alphabetical

3-392

MaxReprojectionError — Reprojection error threshold
1 (default) | positive numeric scalar

Reprojection error threshold for finding outliers, specified as the comma-separated pair
consisting of 'MaxReprojectionError' and a positive numeric scalar in pixels.
Increasing this value makes the algorithm converge faster, but can reduce the accuracy of
the result.

Output Arguments
worldOrientation — Orientation of camera in world coordinates
3-by-3 matrix

Orientation of camera in world coordinates, returned as a 3-by-3 matrix.
Data Types: double

worldLocation — Location of camera
1-by-3 vector

Location of camera, returned as a 1-by-3 unit vector.
Data Types: double

inlierIdx — Indices of inlier points
M-by-1 logical vector

Indices of inlier points, returned as an M-by-1 logical vector. A logical true value in the
vector corresponds to inliers represented in imagePoints and worldPoints.

status — Status code
integer value

Status code, returned as 0, 1, or 2.

Status code Status
0 No error
1 imagePoints and worldPoints do not contain enough points.

A minimum of four points are required.

 estimateWorldCameraPose

3-393

Status code Status
2 Not enough inliers found. A minimum of 4 inliers are required.

References
[1] Gao, X.-S., X.-R. Hou, J. Tang, and H.F. Cheng. “Complete Solution Classification for

the Perspective-Three-Point Problem.” IEEE Transactions on Pattern Analysis and
Machine Intelligence. Volume 25,Issue 8, pp. 930–943, August 2003.

[2] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application
to Estimating Image Geometry.” Computer Vision and Image Understanding.
Volume 78, Issue 1, April 2000, pp. 138-156.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
Functions
bundleAdjustment | cameraPoseToExtrinsics | extrinsics |
extrinsicsToCameraPose | pcshow | plotCamera | pointsToWorld |
relativeCameraPose | triangulateMultiview | viewSet | worldToImage

Topics
“Structure from Motion”

Introduced in R2016b

3 Functions Alphabetical

3-394

cameraPoseToExtrinsics
Convert camera pose to extrinsics

Syntax
[rotationMatrix,translationVector] = cameraPoseToExtrinsics(
orientation,location)

Description
[rotationMatrix,translationVector] = cameraPoseToExtrinsics(
orientation,location) returns the camera extrinsics, rotationMatrix and
translationVector, which represent the coordinate system transformation from world
coordinates to camera coordinates. The inputs, orientation and location, represent
the 3-D camera pose in the world coordinates.

Examples

Convert World Coordinates to Camera Coordinates

orientation = eye(3);
location = [0 0 10];
[R,t] = cameraPoseToExtrinsics(orientation,location)

R = 3×3

 1 0 0
 0 1 0
 0 0 1

t = 1×3

 0 0 -10

 cameraPoseToExtrinsics

3-395

Input Arguments
orientation — 3-D orientation
3-by-3 matrix

3-D orientation of the camera in world coordinates, specified as a 3-by-3 matrix. The
orientation and location inputs must be the same data type.
Data Types: double | single

location — 3-D location
three-element vector

3-D location of the camera in world coordinates, specified as a three-element vector. The
orientation and location inputs must be the same data type.
Data Types: double | single

Output Arguments
rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation , returned as a 3-by-3 matrix. The rotation matrix, together with the
translation vector allows you to transform points from the world coordinate system to the
camera coordinate system.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

The relationship between the rotation matrix and the input orientation matrix is:
rotationMatrix = orientation'

translationVector — 3-D translation
1-by-3 vector

3 Functions Alphabetical

3-396

3-D translation, returned as a 1-by-3 vector. The translation vector together with the
rotation matrix, enables you to transform points from the world coordinate system to the
camera coordinate system.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

The relationship between the translation vector and the input orientation matrix is :
translationVector = –location*orientation'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateWorldCameraPose | extrinsics | extrinsicsToCameraPose |
relativeCameraPose

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016b

 cameraPoseToExtrinsics

3-397

extrinsicsToCameraPose
Convert extrinsics to camera pose

Syntax
[orientation,location] = extrinsicsToCameraPose(rotationMatrix,
translationVector)

Description
[orientation,location] = extrinsicsToCameraPose(rotationMatrix,
translationVector) returns 3-D camera pose orientation and location in world
coordinates. The inputs, rotationMatrix and translationVector, represent the
transformation from world coordinates to camera coordinates.

Examples

Convert Camera Coordinates to World Coordinates

R = eye(3);
t = [0 0 -10];
[orientation,location] = extrinsicsToCameraPose(R,t)

orientation = 3×3

 1 0 0
 0 1 0
 0 0 1

location = 1×3

 0 0 10

3 Functions Alphabetical

3-398

Input Arguments
rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation , specified as a 3-by-3 matrix. The rotation matrix, together with the
translation vector allows you to transform points from the world coordinate system to the
camera coordinate system.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

The relationship between the rotation matrix and the input orientation matrix is:
rotationMatrix = orientation'
Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation, specified as a 1-by-3 vector. The translation vector together with the
rotation matrix, enables you to transform points from the world coordinate system to the
camera coordinate system.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

The relationship between the translation vector and the input orientation matrix is :
translationVector = –location*orientation'
Data Types: double | single

Output Arguments
orientation — 3-D orientation
3-by-3 matrix

 extrinsicsToCameraPose

3-399

3-D orientation of the camera in world coordinates, returned as a 3-by-3 matrix.

location — 3-D location
3-element vector

3-D location of the camera in world coordinates, specified as a three-element vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cameraPoseToExtrinsics | cameraPoseToExtrinsics |
estimateWorldCameraPose | estimateWorldCameraPose | extrinsics |
extrinsicsToCameraPose | pointsToWorld | relativeCameraPose |
relativeCameraPose | worldToImage

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016b

3 Functions Alphabetical

3-400

trainACFObjectDetector
Train ACF object detector

Syntax
detector = trainACFObjectDetector(trainingData)
detector = trainACFObjectDetector(trainingData,Name,Value)

Description
detector = trainACFObjectDetector(trainingData) returns a trained aggregate
channel features (ACF) object detector. The function uses positive instances of objects in
images given in the trainingData table and automatically collects negative instances
from the images during training. To create a ground truth table, use the Image Labeler
or Video Labeler app.

detector = trainACFObjectDetector(trainingData,Name,Value) returns a
detector object with additional options specified by one or more Name,Value pair
arguments.

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object
detector that can detect stop signs. Test the detector with a separate image.

Load the training data.

load('stopSignsAndCars.mat')

Select the ground truth for stop signs. These ground truth is the set of known locations of
stop signs in the images.

 trainACFObjectDetector

3-401

stopSigns = stopSignsAndCars(:,1:2);

Add the full path to the image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
 'visiondata',stopSigns.imageFilename);

Train the ACF detector. You can turn off the training progress output by specifying
'Verbose',false as a Name,Value pair.

acfDetector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.

3 Functions Alphabetical

3-402

--
ACF object detector training is completed. Elapsed time is 37.2905 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');

[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

for i = 1:length(scores)
 annotation = sprintf('Confidence = %.1f',scores(i));
 img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

 trainACFObjectDetector

3-403

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two columns. The first column
must contain paths and file names to grayscale or truecolor (RGB) images. Although, ACF-
based detectors work best with truecolor images. The second column contains M-by-4
matrices, that contain the locations of the bounding boxes related to the corresponding
image. The locations are in the format, [x,y,width,height]. The second column represents
a positive instance of a single object class, such as a car, dog, flower, or stop sign.
Negative instances are automatically collected from images during the training process.

Each bounding box must be in the format [x,y,width,height]. The format specifies the
upper-left corner location and the size of the object in the corresponding image. The table
variable (column) name defines the object class name. To create the ground truth table,
use the Image Labeler app.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

3 Functions Alphabetical

3-404

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ObjectTrainingSize', [100 100]

ObjectTrainingSize — Size of training images
'Auto' (default) | [height width] vector

Size of training images, specified as the comma-separated pair consisting of
'ObjectTrainingSize' and either 'Auto' or a [height width] vector. The minimum
value of height and width is 8. During the training process, all images are resized to this
height and width. Increasing the size can improve detection accuracy, but also increases
training and detection times.

When you specify 'Auto', the size is set based on the median width-to-height ratio of the
positive instances.
Example: [100,100]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumStages — Number of training stages
4 (default) | positive integer

Number of training stages for the iterative training process, specified as the comma-
separated pair consisting of 'NumStages' and a positive integer. Increasing this number
can improve the detector and reduce training errors, at the expense of longer training
time.
Data Types: double

NegativeSamplesFactor — Negative sample factor
5 (default) | real-valued scalar

Negative sample factor, specified as the comma-separated pair consisting of
'NegativeSamplesFactor' and a real-valued scalar. The number of negative samples to
use at each stage is equal to

NegativeSamplesFactor × number of positive samples used at each stage

Data Types: double

 trainACFObjectDetector

3-405

MaxWeakLearners — Maximum number of weak learners
2048 (default) | positive integer scalar | vector of positive integers

Maximum number of weak learners for the last stage, specified as the comma-separated
pair consisting of 'MaxWeakLearners' and a positive integer scalar or vector of positive
integers. If the input is a scalar, MaxWeakLearners specifies the maximum number for
the last stage. If the input is a vector, MaxWeakLearners specifies the maximum number
for each of the stages and must have a length equal to 'NumStages'. These values
typically increase throughout the stages. The ACF object detector uses the boosting
algorithm to create an ensemble of weaker learners. You can use higher values to improve
the detection accuracy, at the expense of reduced detection performance speeds.
Recommended values range from 300 to 5000.
Data Types: double

Verbose — Display progress information
true (default) | false

Option to display progress information for the training process, specified as the comma-
separated pair consisting of 'Verbose' and true or false.
Data Types: logical

Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object.

See Also
Apps
Image Labeler | Video Labeler

Functions
acfObjectDetector | detectPeopleACF | trainCascadeObjectDetector |
trainRCNNObjectDetector

3 Functions Alphabetical

3-406

Introduced in R2017a

 trainACFObjectDetector

3-407

trainRCNNObjectDetector
Train an R-CNN deep learning object detector

Syntax
detector = trainRCNNObjectDetector(trainingData,network,options)
detector = trainRCNNObjectDetector(___ ,Name,Value)
detector = trainRCNNObjectDetector(___ ,'
RegionProposalFcn',proposalFcn)
[detector,info] = trainRCNNObjectDetector(___)

Description
detector = trainRCNNObjectDetector(trainingData,network,options)
trains an R-CNN (regions with convolutional neural networks) based object detector. The
function uses deep learning to train the detector to detect multiple object classes.

This implementation of R-CNN does not train an SVM classifier for each object class.

This function requires that you have Deep Learning Toolbox and Statistics and Machine
Learning Toolbox. It is recommended that you also have Parallel Computing Toolbox to
use with a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher.

detector = trainRCNNObjectDetector(___ ,Name,Value) returns a detector
object with optional input properties specified by one or more Name,Value pair
arguments.

detector = trainRCNNObjectDetector(___ ,'
RegionProposalFcn',proposalFcn) optionally trains an R-CNN detector using a
custom region proposal function.

[detector,info] = trainRCNNObjectDetector(___) also returns information on
the training progress, such as training loss and accuracy, for each iteration.

3 Functions Alphabetical

3-408

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
 'stopSignImages');
addpath(imDir);

Set network training options to use mini-batch size of 32 to reduce GPU memory usage.
Lower the InitialLearningRate to reduce the rate at which network parameters are
changed. This is beneficial when fine-tuning a pre-trained network and prevents the
network from changing too rapidly.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|===|
| 3 | 50 | 9.27 | 0.2895 | 96.88% | 0.000001 |
| 5 | 100 | 14.77 | 0.2443 | 93.75% | 0.000001 |

 trainRCNNObjectDetector

3-409

| 8 | 150 | 20.29 | 0.0013 | 100.00% | 0.000001 |
| 10 | 200 | 25.94 | 0.1524 | 96.88% | 0.000001 |
|===|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

3 Functions Alphabetical

3-410

Remove the image directory from the path.

rmpath(imDir);

Resume Training an R-CNN Object Detector

Resume training an R-CNN object detector using additional data. To illustrate this
procedure, half the ground truth data will be used to initially train the detector. Then,
training is resumed using all the data.

Load training data and initialize training options.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

options = trainingOptions('sgdm', ...

 trainRCNNObjectDetector

3-411

 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10, ...
 'Verbose', false);

Train the R-CNN detector with a portion of the ground truth.

rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRange', [0 0.3]);

Get the trained network layers from the detector. When you pass in an array of network
layers to trainRCNNObjectDetector, they are used as-is to continue training.

network = rcnn.Network;
layers = network.Layers;

Resume training using all the training data.

rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);

Create a network for multiclass R-CNN object detection

Create an R-CNN object detector for two object classes: dogs and cats.

objectClasses = {'dogs','cats'};

The network must be able to classify both dogs, cats, and a "background" class in order to
be trained using trainRCNNObjectDetector. In this example, a one is added to include
the background.

numClassesPlusBackground = numel(objectClasses) + 1;

The final fully connected layer of a network defines the number of classes that the
network can classify. Set the final fully connected layer to have an output size equal to the
number of classes plus a background class.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 fullyConnectedLayer(numClassesPlusBackground);
 softmaxLayer()
 classificationLayer()];

These network layers can now be used to train an R-CNN two-class object detector.

3 Functions Alphabetical

3-412

Use A Saved Network In R-CNN Object Detector

Create an R-CNN object detector and set it up to use a saved network checkpoint. A
network checkpoint is saved every epoch during network training when the
trainingOptions 'CheckpointPath' parameter is set. Network checkpoints are useful in
case your training session terminates unexpectedly.

Load the stop sign training data.

load('rcnnStopSigns.mat','stopSigns','layers')

Add full path to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Set the 'CheckpointPath' using the trainingOptions function.

checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
 'CheckpointPath',checkpointLocation);

Train the R-CNN object detector with a few images.

rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);

Load a saved network checkpoint.

wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);

Load one of the checkpoint networks.

filepath = fullfile(contents(1).folder,contents(1).name);
checkpoint = load(filepath);

checkpoint.net

ans =

 SeriesNetwork with properties:

 trainRCNNObjectDetector

3-413

 Layers: [15×1 nnet.cnn.layer.Layer]

Create a new R-CNN object detector and set it up to use the saved network.

rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;

Set the Network to the saved network checkpoint.

rcnnCheckPoint.Network = checkpoint.net

rcnnCheckPoint =

 rcnnObjectDetector with properties:

 Network: [1×1 SeriesNetwork]
 ClassNames: {'stopSign' 'Background'}
 RegionProposalFcn: @rcnnObjectDetector.proposeRegions

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two or more columns. The first
column must contain path and file names to images that are either grayscale or true color
(RGB). The remaining columns must contain bounding boxes related to the corresponding
image. Each column represents a single object class, such as a car, dog, flower, or stop
sign.

3 Functions Alphabetical

3-414

Each bounding box must be in the format [x,y,width,height]. The format specifies the
upper-left corner location and size of the object in the corresponding image. The table
variable name defines the object class name. To create the ground truth table, use the
Image Labeler app. Boxes smaller than 32-by-32 are not used for training.

network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph
object, or by the network name. The network is trained to classify the object classes
defined in the trainingData table. The SeriesNetwork, Layer, and layerGraph
objects are available in the Deep Learning Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by
the network name, the network is automatically transformed into a R-CNN network by
adding new classification and regression layers to support object detection.

• The array of Layer objects must contain a classification layer that supports the
number of object classes, plus a background class. Use this input type to customize
the learning rates of each layer. An example of an array of Layer objects:

layers = [imageInputLayer([28 28 3])
 convolution2dLayer([5 5],10)
 reluLayer()

 trainRCNNObjectDetector

3-415

 fullyConnectedLayer(10)
 softmaxLayer()
 classificationLayer()];

• When you specify the network as SeriesNetwork, Layer array, or network by name,
the weights for convolution and fully-connected layers are initialized to 'narrow-
normal'.

• The network name must be one of the following valid networks names. You must also
install the corresponding Add-on.

• 'alexnet'
• 'vgg16'
• 'vgg19'
• resnet18
• 'resnet50'
• 'resnet101'
• 'inceptionv3'
• 'googlenet'
• 'inceptionresnetv2'
• 'mobilenetv2'
• 'squeezenet'

• The LayerGraph object must be a valid R-CNN object detection network. You can also
use a LayerGraph object to train a custom R-CNN network.

See “R-CNN, Fast R-CNN, and Faster R-CNN Basics” to learn more about how to create a
R-CNN network.

options — Training options
traingingOptions output

Training options, returned by the trainingOptions function from the Deep Learning
Toolbox. To specify solver and other options for network training, use trainingOptions.

Note trainRCNNObjectDetector does not support these training options:

• The Plots value: 'training-progress'
• The ValidationData, ValidationFrequency, or ValidationPatience options

3 Functions Alphabetical

3-416

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PositiveOverlapRange',[0.5 1].

PositiveOverlapRange — Positive training sample ratios for range of bounding
box overlap
[0.5 1] (default) | two-element vector

Positive training sample ratios for range of bounding box overlap, specified as the comma-
separated pair consisting of 'PositiveOverlapRange' and a two-element vector. The
vector contains values in the range [0,1]. Region proposals that overlap with ground truth
bounding boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and
NegativeOverlapRange is defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NegativeOverlapRange — Negative training sample ratios for range of bounding
box overlap
[0.1 0.5] (default) | two-element vector

Negative training sample ratios for range of bounding box overlap, specified as the
comma-separated pair consisting of 'NegativeOverlapRange' and a two-element vector.
The vector contains values in the range [0,1]. Region proposals that overlap with the
ground truth bounding boxes within the specified range are used as negative training
samples.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | integer

Maximum number of strongest region proposals to use for generating training samples,
specified as the comma-separated pair consisting of 'NumStrongestRegions' and an
integer. Reduce this value to speed up processing time, although doing so decreases
training accuracy. To use all region proposals, set this value to inf.

 trainRCNNObjectDetector

3-417

RegionProposalFcn — Custom region proposal
function handle

Custom region proposal function handle, specified as the comma-separated pair
consisting of 'RegionProposalFcn' and the function name. If you do not specify a
custom region proposal function, the default variant of the Edge Boxes algorithm [3], set
in rcnnObjectDetector, is used. A custom proposalFcn must have the following
functional form:

 [bboxes,scores] = proposalFcn(I)

The input, I, is an image defined in the groundTruth table. The function must return
rectangular bounding boxes in an M-by-4 array. Each row of bboxes contains a four-
element vector, [x,y,width,height], that specifies the upper–left corner and size of a
bounding box in pixels. The function must also return a score for each bounding box in an
M-by-1 vector. Higher scores indicate that the bounding box is more likely to contain an
object. The scores are used to select the strongest regions, which you can specify in
NumStrongestRegions.

BoxRegressionLayer — Box regression layer name
'auto' (default) | character vector

Box regression layer name, specified as the comma-separated pair consisting of
'BoxRegressionLayer' and a character vector. Valid values are 'auto' or the name of a
layer in the input network. The output activations of this layer are used as features to
train a regression model for refining the detected bounding boxes.

If the name is 'auto', then trainRCNNObjectDetector automatically selects a layer
from the input network based on the type of input network:

• If the input network is a SeriesNetwork or an array of Layer objects, then the
function selects the last convolution layer.

• If the input network is a LayerGraph, then the function selects the source of the last
fully connected layer.

Output Arguments
detector — Trained R-CNN-based object detector
rcnnObjectDetector object

3 Functions Alphabetical

3-418

Trained R-CNN-based object detector, returned as an rcnnObjectDetector object. You
can train an R-CNN detector to detect multiple object classes.

info — Training information
structure

Training information, returned as a structure with the following fields. Each field is a
numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are represented by NaN.

• TrainingLoss — Training loss at each iteration. This is the combination of the
classification and regression loss used to train the R-CNN network.

• TrainingAccuracy — Training set accuracy at each iteration
• BaseLearnRate — Learning rate at each iteration

Limitations
• This implementation of R-CNN does not train an SVM classifier for each object class.

Tips
• To accelerate data preprocessing for training, trainRCNNObjectDetector

automatically creates and uses a parallel pool based on your parallel preference
settings. This requires Parallel Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training
with large images may produce "Out of Memory" errors. To mitigate these errors,
manually resize the images along with the bounding box ground truth data before
calling trainRCNNObjectDetector.

• This function supports transfer learning. When a network is input by name, such as
'resnet50', then the software automatically transforms the network into a valid R-
CNN network model based on the pretrained resnet50 model. Alternatively, manually
specify a custom R-CNN network using the LayerGraph extracted from a pretrained
DAG network. See “Create R-CNN Object Detection Network”.

• Use the trainingOptions function to enable or disable verbose printing.

 trainRCNNObjectDetector

3-419

References
[1] Girshick, R., J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation.”Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 580–587.

[2] Girshick, R. “Fast R-CNN.” Proceedings of the IEEE International Conference on
Computer Vision. 2015, pp. 1440–1448.

[3] Zitnick, C. Lawrence, and P. Dollar. “Edge Boxes: Locating Object Proposals from
Edges.” Computer Vision-ECCV, Springer International Publishing. 2014, pp. 391–
405.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
Layer | SeriesNetwork | imageCategoryClassifier | rcnnObjectDetector |
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainingOptions

Topics
“Image Category Classification Using Deep Learning”

3 Functions Alphabetical

3-420

“Anchor Boxes for Object Detection”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2016b

 trainRCNNObjectDetector

3-421

estimateGeometricTransform
Estimate geometric transform from matching point pairs

Syntax
tform = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType)

[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(
matchedPoints1,matchedPoints2,transformType)
[___ ,status] = estimateGeometricTransform(matchedPoints1,
matchedPoints2,transformType)

[___] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType, Name,Value)

Description
tform = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType) returns a 2-D geometric transform object, tform. The tform object
maps the inliers in matchedPoints1 to the inliers in matchedPoints2.

The function excludes outliers using the M-estimator SAmple Consensus (MSAC)
algorithm. The MSAC algorithm is a variant of the Random Sample Consensus (RANSAC)
algorithm. Results may not be identical between runs because of the randomized nature
of the MSAC algorithm.

[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(
matchedPoints1,matchedPoints2,transformType) returns the corresponding
inlier points in inlierpoints1 and inlierpoints2.

[___ ,status] = estimateGeometricTransform(matchedPoints1,
matchedPoints2,transformType) returns a status code of 0, 1, or 2. If you do not
request the status code output, the function returns an error for conditions that cannot
produce results.

3 Functions Alphabetical

3-422

[___] = estimateGeometricTransform(matchedPoints1,matchedPoints2,
transformType, Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Recover a Transformed Image Using SURF Feature Points

Read and display an image and a transformed image.

original = imread('cameraman.tif');
imshow(original);
title('Base image');

distorted = imresize(original,0.7);
distorted = imrotate(distorted,31);

 estimateGeometricTransform

3-423

figure; imshow(distorted);
title('Transformed image');

Detect and extract features from both images.

ptsOriginal = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);
[featuresOriginal,validPtsOriginal] = ...
 extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = ...
 extractFeatures(distorted,ptsDistorted);

Match features.

index_pairs = matchFeatures(featuresOriginal,featuresDistorted);
matchedPtsOriginal = validPtsOriginal(index_pairs(:,1));
matchedPtsDistorted = validPtsDistorted(index_pairs(:,2));
figure;
showMatchedFeatures(original,distorted,...

3 Functions Alphabetical

3-424

 matchedPtsOriginal,matchedPtsDistorted);
title('Matched SURF points,including outliers');

Exclude the outliers, and compute the transformation matrix.

[tform,inlierPtsDistorted,inlierPtsOriginal] = ...
 estimateGeometricTransform(matchedPtsDistorted,matchedPtsOriginal,...
 'similarity');
figure;

showMatchedFeatures(original,distorted,...
 inlierPtsOriginal,inlierPtsDistorted);
title('Matched inlier points');

 estimateGeometricTransform

3-425

Recover the original image from the distorted image.

outputView = imref2d(size(original));
Ir = imwarp(distorted,tform,'OutputView',outputView);
figure; imshow(Ir);
title('Recovered image');

3 Functions Alphabetical

3-426

Input Arguments
matchedPoints1 — Matched points from image 1
cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object |
M-by-2 matrix of [x,y] coordinates

Matched points from image 1, specified as either a KAZEPoints, cornerPoints object,
SURFPoints object, MSERRegions object, ORBPoints object, or an M-by-2 matrix of
[x,y] coordinates. The function excludes outliers using the M-estimator SAmple Consensus
(MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus
(RANSAC) algorithm.

matchedPoints2 — Matched points from image 2
cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object |
M-by-2 matrix of [x,y] coordinates

 estimateGeometricTransform

3-427

Matched points from image 2, specified as either a KAZEPoints, cornerPoints object,
SURFPoints object, MSERRegions object, ORBPoints object, or an M-by-2 matrix of
[x,y] coordinates. The function excludes outliers using the M-estimator SAmple Consensus
(MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus
(RANSAC) algorithm.

transformType — Transform type
'similarity' | 'affine' | 'projective'

Transform type, specified as one of three character strings. You can set the transform
type to either 'similarity', 'affine', or 'projective'. The greater the number of
matched pairs of points, the greater the accuracy of the estimated transformation. The
minimum number of matched pairs of points for each transform type:

Transform Type Minimum Number of Matched Pairs of
Points

'similarity' 2
'affine' 3
'projective' 4

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Confidence',99 sets the confidence value to 99.

MaxNumTrials — Maximum random trials
1000 (default) | positive integer

Maximum number of random trials for finding the inliers, specified as the comma-
separated pair consisting of 'MaxNumTrials' and a positive integer scalar. Increasing this
value improves the robustness of the results at the expense of additional computations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

3 Functions Alphabetical

3-428

Confidence — Confidence of finding maximum number of inliers
99 (default) | positive numeric scalar

Confidence of finding the maximum number of inliers, specified as the comma-separated
pair consisting of 'Confidence' and a percentage numeric scalar in the range (0 100).
Increasing this value improves the robustness of the results at the expense of additional
computations.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

MaxDistance — Maximum distance from point to projection
1.5 (default) | positive numeric scalar

Maximum distance in pixels, from a point to the projection of its corresponding point,
specified as the comma-separated pair consisting of 'MaxDistance' and a positive
numeric scalar. The corresponding projection is based on the estimated transform.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
tform — Geometric transformation
affine2d object | projective2d object

 estimateGeometricTransform

3-429

Geometric transformation, returned as either an affine2d object or a projective2d
object.

The returned geometric transformation matrix maps the inliers in matchedPoints1 to
the inliers in matchedPoints2. When you set the transformType input to either
'similarity' or 'affine', the function returns an affine2d object. Otherwise, it
returns a projective2d object.

status — Status code
0 | 1 | 2

Status code, returned as the value 0, 1, or 2.

status Description
0 No error.
1 matchedPoints1 and matchedPoints2

inputs do not contain enough points.
2 Not enough inliers found.

If you do not request the status code output, the function will throw an error for the two
conditions that cannot produce results.
Data Types: double

inlierpoints1 — Inlier points in image 1
inlier points

Inlier points in image 1, returned as the same type as the input matching points.

inlierpoints2 — Inlier points in image 2
inlier points

Inlier points in image 2, returned as the same type as the input matching points.

References
[1] Hartley, R., and A. Zisserman, "Multiple View Geometry in Computer Vision,"

Cambridge University Press, 2003.

3 Functions Alphabetical

3-430

[2] Torr, P. H. S., and A. Zisserman, "MLESAC: A New Robust Estimator with Application
to Estimating Image Geometry," Computer Vision and Image Understanding,
2000.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You cannot use SURFPoints object as an input to estimateGeometricTransform.
See the “Introduction to Code Generation with Feature Matching and Registration”
example for details on how to use SURFPoints with
estimateGeometricTransform in codegen.

See Also
KAZEPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints |
detectFASTFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | estimateFundamentalMatrix |
extractFeatures | fitgeotrans | matchFeatures

Topics
“Feature Based Panoramic Image Stitching”
“Point Feature Types”
“Coordinate Systems”
“2-D and 3-D Geometric Transformation Process Overview” (Image Processing Toolbox)
“Introduction to Code Generation with Feature Matching and Registration”

Introduced in R2013a

 estimateGeometricTransform

3-431

estimateUncalibratedRectification
Uncalibrated stereo rectification

Syntax
[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1,
inlierPoints2,imagesize)

Description
[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1,
inlierPoints2,imagesize) returns projective transformations for rectifying stereo
images. This function does not require either intrinsic or extrinsic camera parameters.

Examples

Find Fundamental Matrix Describing Epipolar Geometry

This example shows how to compute the fundamental matrix from corresponding points in
a pair of stereo images.

Load the stereo images and feature points which are already matched.

I1 = imread('yellowstone_left.png');
I2 = imread('yellowstone_right.png');
load yellowstone_inlier_points;

Display point correspondences. Notice that the matching points are in different rows,
indicating that the stereo pair is not rectified.

showMatchedFeatures(I1, I2,inlier_points1,inlier_points2,'montage');
title('Original images and matching feature points');

3 Functions Alphabetical

3-432

Compute the fundamental matrix from the corresponding points.

f = estimateFundamentalMatrix(inlier_points1,inlier_points2,...
 'Method','Norm8Point');

Compute the rectification transformations.

[t1, t2] = estimateUncalibratedRectification(f,inlier_points1,...
 inlier_points2,size(I2));

Rectify the stereo images using projective transformations t1 and t2.

[I1Rect,I2Rect] = rectifyStereoImages(I1,I2,t1,t2);

Display the stereo anaglyph, which can also be viewed with 3-D glasses.

figure;
imshow(stereoAnaglyph(I1Rect,I2Rect));

 estimateUncalibratedRectification

3-433

Input Arguments
F — Fundamental matrix for the stereo images
3-by-3 matrix

Fundamental matrix for the stereo images, specified as a 3-by-3 fundamental matrix. The
fundamental matrix satisfies the following criteria:
If P1, a point in image 1, corresponds to P2, a point in image 2, then:
[P2,1] *F * [P1,1]' = 0

F must be double or single.

inlierPoints1 — Coordinates of corresponding points
ORBPoints | BRISKPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2
matrix of [x,y] coordinates

3 Functions Alphabetical

3-434

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M
number of [x y] coordinates, or as aORBPoints,BRISKPoints , SURFPoints,
MSERRegions , or cornerPoints object.

inlierPoints2 — Coordinates of corresponding points
ORBPoints | BRISKPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2
matrix of [x,y] coordinates

Coordinates of corresponding points in image two, specified as an M-by-2 matrix of M
number of [x y] coordinates, or as aORBPoints,BRISKPoints , SURFPoints,
MSERRegions , or cornerPoints object.

imagesize — Input image size
single | double | integer

Second input image size, specified as a double, single, or integer value and in the format
returned by the size function. The size of input image 2 corresponds to
inlierPoints2.

Output Arguments
T1 — Projective transformation one
3-by-3 matrix

Projective transformation, returned as a 3-by-3 matrix describing the projective
transformations for input image T1.

T2 — Projective transformation two
3-by-3 matrix

Projective transformation, returned as a 3-by-3 matrix describing the projective
transformations for input image T2.

Tips
• An epipole may be located in the first image or the second image. Applying the output

uncalibrated rectification of T1 (or T2) to image 1 (or image 2) may result in an
undesired distortion. You can check for an epipole within an image by applying the
isEpipoleInImage function.

 estimateUncalibratedRectification

3-435

References
[1] Hartley, R. and A. Zisserman, "Multiple View Geometry in Computer Vision,"

Cambridge University Press, 2003.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Objects
BRISKPoints | MSERRegions | ORBPoints | SURFPoints | cameraParameters |
cornerPoints | stereoParameters

Functions
cameraMatrix | detectHarrisFeatures | detectHarrisFeatures |
detectMinEigenFeatures | estimateCameraParameters |
estimateFundamentalMatrix | extractFeatures | imwarp | isEpipoleInImage |
matchFeatures | reconstructScene | size | undistortImage

Topics
Image Rectification
“Point Feature Types”
“Coordinate Systems”

Introduced in R2012b

3 Functions Alphabetical

3-436

matlab: showdemo videorectification

evaluateDetectionMissRate
Evaluate miss rate metric for object detection

Syntax
logAverageMissRate = evaluateDetectionMissRate(detectionResults,
groundTruthData)
[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate(___)
[___] = evaluateDetectionMissRate(___ ,threshold)

Description
logAverageMissRate = evaluateDetectionMissRate(detectionResults,
groundTruthData) returns the log-average miss rate of the detectionResults
compared to groundTruthTable, which is used to measure the performance of the
object detector. For a multiclass detector, the log-average miss rate is a vector of scores
for each object class in the order specified by groundTruthTable.

[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate(___)
returns data points for plotting the log miss rate–false positives per image (FPPI) curve,
using input arguments from the previous syntax.

[___] = evaluateDetectionMissRate(___ ,threshold) specifies the overlap
threshold for assigning a detection to a ground truth box.

Examples

Evaluate a Stop Sign Detector

Load a ground truth table.

load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:, 1:2);

 evaluateDetectionMissRate

3-437

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Train an ACF based detector.

detector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 36.6555 seconds.

Create a struct array to store the results.

3 Functions Alphabetical

3-438

numImages = height(stopSigns);
results(numImages) = struct('Boxes', [], 'Scores', []);

Run the detector on the training images.

for i = 1 : numImages
 I = imread(stopSigns.imageFilename{i});
 [bboxes, scores] = detect(detector, I);
 results(i).Boxes = bboxes;
 results(i).Scores = scores;
end

results = struct2table(results);

Evaluate the results against the ground truth data.

[am, fppi, missRate] = evaluateDetectionMissRate(results, stopSigns(:, 2));

Plot log-miss-rate/FPPI curve.

figure
loglog(fppi, missRate);
grid on
title(sprintf('log Average Miss Rate = %.1f', am))

 evaluateDetectionMissRate

3-439

Input Arguments
detectionResults — Object locations and scores
table

Object locations and scores, specified as a two-column table containing the bounding
boxes and scores for each detected object. For multiclass detection, a third column
contains the predicted label for each detection. The bounding boxes must be stored in an
M-by-4 cell array. The scores must be stored in an M-by-1 cell array, and the labels must
be stored as a categorical vector.

3 Functions Alphabetical

3-440

When detecting objects, you can create the detection results table by using
struct2table to combine the bboxes and scores outputs:

 for i = 1 : numImages
 I = imread(stopSigns.imageFilename{i});
 [bboxes, scores] = detect(detector,I);
 results.Boxes{i} = bboxes;
 results.Scores{i} = scores;
 end

Data Types: table

groundTruthData — Training data
table

Training data, specified as a table with one or more columns. The table contains one
column for single-class data and multiple columns for multiclass data. Each column
contains M-by-4 matrices of [x,y,width,height] bounding boxes that specify object
locations. The format specifies the upper-left corner location and the size of the object.
The column name specifies the class label.

threshold — Overlap threshold
0.5 | numeric scalar

Overlap threshold for a detection assigned to a ground truth box, specified as a numeric
scalar. The overlap ratio is computed as the intersection over union.

Output Arguments
logAverageMissRate — Log-average miss rate metric
numeric scalar | vector

Log-average miss rate metric, returned as either a numeric scalar or vector. For a
multiclass detector, the log-average miss rate is returned as a vector of values that
correspond to the data points for each class.

fppi — False positives per image
vector of numeric scalars | cell array

False positives per image, returned as either a vector of numeric scalars or as a cell array.
For a multiclass detector, the FPPI and log miss rate are cell arrays, where each cell
contains the data points for each object class.

 evaluateDetectionMissRate

3-441

missRate — Log miss rate
vector of numeric scalars | cell array

Log miss rate, returned as either a vector of numeric scalars or as a cell array. For a
multiclass detector, the FPPI and log miss rate are cell arrays, where each cell contains
the data points for each object class.

See Also
Image Labeler | Video Labeler | acfObjectDetector |
evaluateDetectionPrecision | trainACFObjectDetector

Introduced in R2017a

3 Functions Alphabetical

3-442

evaluateDetectionPrecision
Evaluate precision metric for object detection

Syntax
averagePrecision = evaluateDetectionPrecision(detectionResults,
groundTruthData)
[averagePrecision,recall,precision] = evaluateDetectionPrecision(___
)
[___] = evaluateDetectionPrecision(___ ,threshold)

Description
averagePrecision = evaluateDetectionPrecision(detectionResults,
groundTruthData) returns the average precision, of the detectionResults
compared to the groundTruthData. You can use the average precision to measure the
performance of an object detector. For a multiclass detector, the function returns
averagePrecision as a vector of scores for each object class in the order specified by
groundTruthData.

[averagePrecision,recall,precision] = evaluateDetectionPrecision(___
) returns data points for plotting the precision–recall curve, using input arguments from
the previous syntax.

[___] = evaluateDetectionPrecision(___ ,threshold) specifies the overlap
threshold for assigning a detection to a ground truth box.

Examples

Evaluate Precision of Stop Sign Detector

Train an ACF-based detector using pre-loaded ground truth information. Run the detector
on the training images. Evaluate the detector and display the precision-recall curve.

 evaluateDetectionPrecision

3-443

Load the ground truth table.

load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:,1:2);
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Train an ACF-based detector.

detector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 39.3117 seconds.

3 Functions Alphabetical

3-444

Create a table to store the results.

numImages = height(stopSigns);
results = table('Size',[numImages 2],...
 'VariableTypes',{'cell','cell'},...
 'VariableNames',{'Boxes','Scores'});

Run the detector on the training images. Store the results as a table.

for i = 1 : numImages
 I = imread(stopSigns.imageFilename{i});
 [bboxes, scores] = detect(detector,I);
 results.Boxes{i} = bboxes;
 results.Scores{i} = scores;
end

Evaluate the results against the ground truth data. Get the precision statistics.

[ap,recall,precision] = evaluateDetectionPrecision(results,stopSigns(:,2));

Plot the precision-recall curve.

figure
plot(recall,precision)
grid on
title(sprintf('Average Precision = %.1f',ap))

 evaluateDetectionPrecision

3-445

Input Arguments
detectionResults — Object locations and scores
table

Object locations and scores, specified as a two-column table containing the bounding
boxes and scores for each detected object. For multiclass detection, a third column
contains the predicted label for each detection. The bounding boxes must be stored in an
M-by-4 cell array. The scores must be stored in an M-by-1 cell array, and the labels must
be stored as a categorical vector.

3 Functions Alphabetical

3-446

When detecting objects, you can create the detection results table by using
struct2table to combine the bboxes and scores outputs:

 for i = 1 : numImages
 I = imread(stopSigns.imageFilename{i});
 [bboxes, scores] = detect(detector,I);
 results.Boxes{i} = bboxes;
 results.Scores{i} = scores;
 end

Data Types: table

groundTruthData — Training data
table

Training data, specified as a table with one or more columns. The table contains one
column for single-class data and multiple columns for multiclass data. Each column
contains M-by-4 matrices of [x,y,width,height] bounding boxes that specify object
locations. The format specifies the upper-left corner location and the size of the object.
The column name specifies the class label.

threshold — Overlap threshold
0.5 | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric
scalar. The overlap ratio is computed as the intersection over union.

Output Arguments
averagePrecision — Average precision
numeric scalar | vector

Average precision over all the detection results, returned as a numeric scalar or vector.
Precision is a ratio of true positive instances to all positive instances of objects in the
detector, based on the ground truth. For a multiclass detector, the average precision is a
vector of average precision scores for each object class.

recall — Recall values from each detection
vector of numeric scalars | cell array

Recall values from each detection, returned as an M-by-1 vector of numeric scalars or as
a cell array. The length of M equals 1 + the number of detections assigned to a class. For

 evaluateDetectionPrecision

3-447

example, if your detection results contain 4 detections with class label 'car', then
recall contains 5 elements. The first value of recall is always 0.

Recall is a ratio of true positive instances to the sum of true positives and false negatives
in the detector, based on the ground truth. For a multiclass detector, recall and
precision are cell arrays, where each cell contains the data points for each object class.

precision — Precision values from each detection
vector of numeric scalars | cell array

Precision values from each detection, returned as an M-by-1 vector of numeric scalars or
as a cell array. The length of M equals 1 + the number of detections assigned to a class.
For example, if your detection results contain 4 detections with class label 'car', then
precision contains 5 elements. The first value of precision is always 1.

Precision is a ratio of true positive instances to all positive instances of objects in the
detector, based on the ground truth. For a multi-class detector, recall and precision
are cell arrays, where each cell contains the data points for each object class.

See Also
Image Labeler | Video Labeler | acfObjectDetector |
evaluateDetectionMissRate | trainACFObjectDetector

Introduced in R2017a

3 Functions Alphabetical

3-448

evaluateImageRetrieval
Evaluate image search results

Syntax
averagePrecision = evaluateImageRetrieval(queryImage,imageIndex,
expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(
queryImage,imageIndex,expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(___ ,
Name,Value)

Description
averagePrecision = evaluateImageRetrieval(queryImage,imageIndex,
expectedIDs) returns the average precision metric for measuring the accuracy of
image search results for the queryImage. The expectedIDs input contains the indices
of images within imageIndex that are known to be similar to the query image.

[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(
queryImage,imageIndex,expectedIDs) optionally returns the indices corresponding
to images within imageIndex that are visually similar to the query image. It also returns
the corresponding similarity scores.

[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(___ ,
Name,Value) uses additional options specified by one or more Name,Value pair
arguments, using any of the preceding syntaxes.

Examples

Evaluate Image Retrieval Results

Define a set of images.

 evaluateImageRetrieval

3-449

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Display the set of images.

thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
 img = readimage(bookCovers,i);
 thumbnail = imresize(img,[300 300]);
 thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end
figure
montage(thumbnailGallery);

3 Functions Alphabetical

3-450

Index the images. This will take a few minutes.

imageIndex = indexImages(bookCovers);

 evaluateImageRetrieval

3-451

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000

* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.41 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
query = imread([queryDir 'query2.jpg']);

figure
imshow(query)

3 Functions Alphabetical

3-452

Evaluation requires knowing the expected results. Here, the query image is known to be
the 3rd book in the imageIndex.

expectedID = 3;

Find and report the average precision score.

[averagePrecision,actualIDs] = evaluateImageRetrieval(query,...
 imageIndex,expectedID);

fprintf('Average Precision: %f\n\n',averagePrecision)

Average Precision: 0.043478

 evaluateImageRetrieval

3-453

Show the query and best match side-by-side.

bestMatch = actualIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});

figure
imshowpair(query,bestImage,'montage')

Compute Mean Average Precision (MAP) for Image Retrieval

Create an image set of book covers.

 dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
 bookCovers = imageDatastore(dataDir);

Index the image set. The indexing may take a few minutes.

 imageIndex = indexImages(bookCovers,'Verbose',false);

Create a set of query images.

 queryDir = fullfile(dataDir,'queries',filesep);
 querySet = imageDatastore(queryDir);

3 Functions Alphabetical

3-454

Specify the expected search results for each query image.

 expectedIDs = [1 2 3];

Evaluate each query image and collect average precision scores.

 for i = 1:numel(querySet.Files)
 query = readimage(querySet,i);
 averagePrecision(i) = evaluateImageRetrieval(query, imageIndex, expectedIDs(i));
 end

Compute mean average precision (MAP).

 map = mean(averagePrecision)

map = 0.8333

Input Arguments
queryImage — Input query image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input query image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D
grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object. The indexImages
function creates the invertedImageIndex object, which stores the data used for the
image search.

expectedIDs — Image indices
row or column vector

Image indices, specified as a row or column vector. The indices correspond to the images
within imageIndex that are known to be similar to the query image.

 evaluateImageRetrieval

3-455

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumResults',25

NumResults — Maximum number of search results to evaluate
Inf (default) | positive integer value

Maximum number of search results to evaluate, specified as the comma-separated pair
consisting of 'NumResults' and a positive integer value. The function evaluates the top
NumResults and returns the average-precision-at-NumResults metric.

ROI — Rectangular search region
[1 1 size(queryImage,2) size(queryImage,1)] (default) | [x y width height]
vector

Rectangular search region within the query image, specified as the comma-separated pair
consisting of 'ROI' and a [x y width height] formatted vector.

Output Arguments
averagePrecision — Average precision metric
scalar value in the range [0 1]

Average precision metric, returned as a scalar value in the range [0 1]. The average
precision metric represents the accuracy of image search results for the query image.

imageIDs — Ranked index of retrieved images
M-by-1 vector

Ranked index of retrieved images, returned as an M-by-1 vector. The image IDs are
returned in ranked order, from the most to least similar matched image.

scores — Similarity metric
N-by-1 vector

3 Functions Alphabetical

3-456

Similarity metric, returned as an N-by-1 vector. This output contains the scores that
correspond to the retrieved images in the imageIDs output. The scores are computed
using the cosine similarity and range from 0 to 1.

See Also
bagOfFeatures | imageDatastore | indexImages | invertedImageIndex |
retrieveImages

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

 evaluateImageRetrieval

3-457

evaluateSemanticSegmentation
Evaluate semantic segmentation data set against ground truth

Syntax
ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)
ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,Name,Value)

Description
ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth) computes
various metrics to evaluate the quality of the semantic segmentation results,
pxdsResults, against the ground truth segmentation, pxdsTruth.

ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,Name,Value)
computes semantic segmentation metrics using one or more Name,Value pair arguments
to control the evaluation.

Examples

Evaluate Semantic Segmentation Results

Evaluate the results of semantic segmentation by computing a confusion matrix and
metrics for each class, each image, and the entire data set.

Perform Semantic Segmentation

Label each pixel in a series of images either as an object or as the background. This
example uses the triangleImages data set, which has 100 test images of triangles with
ground truth labels.

Define the location of the data set, test images, and ground truth labels.

3 Functions Alphabetical

3-458

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImagesDir = fullfile(dataSetDir,'testImages');
testLabelsDir = fullfile(dataSetDir,'testLabels');

Create an image datastore holding the test images.

imds = imageDatastore(testImagesDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Create a pixel label datastore holding the ground truth pixel labels for the test images.

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);

Load a semantic segmentation network that has been trained on the training images of
noisy shapes.

net = load('triangleSegmentationNetwork');
net = net.net;

Run the network on the test images. Predicted labels are written to disk in a temporary
folder and returned as a pixelLabelDatastore.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network

* Processing 100 images.
* Progress: 100.00%

Compute Confusion Matrix and Segmentation Metrics

Evaluate the prediction results against the ground truth. By default,
evaluateSemanticSegmentation computes all available metrics, including the
confusion matrix, normalized confusion matrix, data set metrics, class metrics, and image
metrics.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)

Evaluating semantic segmentation results
---------------------------------------[==] 100%
Elapsed time: 00:00:01

 evaluateSemanticSegmentation

3-459

Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.90624 0.95085 0.61588 0.87529 0.40652

metrics =
 semanticSegmentationMetrics with properties:

 ConfusionMatrix: [2x2 table]
 NormalizedConfusionMatrix: [2x2 table]
 DataSetMetrics: [1x5 table]
 ClassMetrics: [2x3 table]
 ImageMetrics: [100x5 table]

To explore the results, display the classification accuracy, the intersection over union, and
the boundary F-1 score for each class. These values are stored in the ClassMetrics
property. Also, display the normalized confusion matrix.

metrics.ClassMetrics

ans=2×3 table
 Accuracy IoU MeanBFScore
 ________ _______ ___________

 triangle 1 0.33005 0.028664
 background 0.9017 0.9017 0.78438

metrics.NormalizedConfusionMatrix

ans=2×2 table
 triangle background
 ________ __________

 triangle 1 0

3 Functions Alphabetical

3-460

 background 0.0983 0.9017

Input Arguments
pxdsResults — Predicted pixel labels
PixelLabelDatastore object | cell array of PixelLabelDatastore objects

Predicted pixels labels resulting from semantic segmentation, specified as a
PixelLabelDatastore object or a cell array of PixelLabelDatastore objects.

pxdsTruth — Ground truth pixel labels
PixelLabelDatastore object | cell array of PixelLabelDatastore objects

Ground truth pixel labels, specified as a PixelLabelDatastore object or a cell array of
PixelLabelDatastore objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: metrics =
evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'Metrics',"bfscor
e") computes only the mean BF score of each class, each image, and the entire data set.

Metrics — Segmentation metrics
"all" (default) | vector of strings

Segmentation metrics in semanticSegmentationMetrics to compute, specified as the
comma-separated pair consisting of 'Metrics' and a vector of strings. This argument
specifies which variables in the DataSetMetrics, ClassMetrics, and ImageMetrics
tables to compute. ConfusionMatrix and NormalizedConfusionMatrix are
computed regardless of the value of 'Metric'.

 evaluateSemanticSegmentation

3-461

Value Description Aggr
egat
e
Data
Set
Metri
c

Imag
e
Metri
c

Class
Metric

"all" Evaluate all semantic segmentation metrics. All
aggre
gate
data
set
metri
cs

All
image
metri
cs

All
class
metric
s

"accurac
y"

Accuracy indicates the percentage of correctly
identified pixels for each class. Use the accuracy
metric if you want to know how well each class
correctly identifies pixels.

• For each class, Accuracy is the ratio of correctly
classified pixels to the total number of pixels in
that class, according to the ground truth. In other
words,

Accuracy score = TP / (TP + FN)
TP is the number of true positives and FN is the
number of false negatives.

• For the aggregate data set, MeanAccuracy is the
average Accuracy of all classes in all images.

• For each image, MeanAccuracy is the average
Accuracy of all classes in that particular image.

The class accuracy is a simple metric analogous to
global accuracy, but it can be misleading. For
example, labeling all pixels "car" gives a perfect score
for the "car" class (although not for the other
classes). Use class accuracy in conjuction with IoU
for a more complete evaluation of segmentation
results.

Mean
Accu
racy

Mean
Accu
racy

Accur
acy

3 Functions Alphabetical

3-462

Value Description Aggr
egat
e
Data
Set
Metri
c

Imag
e
Metri
c

Class
Metric

"bfscore
"

The boundary F1 (BF) contour matching score
indicates how well the predicted boundary of each
class aligns with the true boundary. Use the BF score
if you want a metric that tends to correlate better
with human qualitative assessment than the IoU
metric.

• For each class, MeanBFScore is the average BF
score of that class over all images.

• For each image, MeanBFScore is the average BF
score of all classes in that particular image.

• For the aggregate data set, MeanBFScore is the
average BF score of all classes in all images.

For more information, see bfscore.

Mean
BFSc
ore

Mean
BFSc
ore

MeanB
FScor
e

"global-
accuracy
"

GlobalAccuracy is the ratio of correctly classified
pixels, regardless of class, to the total number of
pixels. Use the global accuracy metric if you want a
quick and computationally inexpensive estimate of
the percentage of correctly classified pixels.

Glob
alAc
cura
cy

Glob
alAc
cura
cy

none

 evaluateSemanticSegmentation

3-463

Value Description Aggr
egat
e
Data
Set
Metri
c

Imag
e
Metri
c

Class
Metric

"iou" Intersection over union (IoU), also known as the
Jaccard similarity coefficient, is the most commonly
used metric. Use the IoU metric if you want a
statistical accuracy measurement that penalizes false
positives.

• For each class, IoU is the ratio of correctly
classified pixels to the total number of ground
truth and predicted pixels in that class. In other
words,

IoU score = TP / (TP + FP + FN)
The image describes the true positives (TP), false
positives (FP), and false negatives (FN).

Mean
IoU

Mean
IoU

IoU

3 Functions Alphabetical

3-464

Value Description Aggr
egat
e
Data
Set
Metri
c

Imag
e
Metri
c

Class
Metric

• For each image, MeanIoU is the average IoU score
of all classes in that particular image.

• For the aggregate data set, MeanIoU is the
average IoU score of all classes in all images.

For more information, see jaccard.

 evaluateSemanticSegmentation

3-465

Value Description Aggr
egat
e
Data
Set
Metri
c

Imag
e
Metri
c

Class
Metric

"weighte
d-iou"

Average IoU of each class, weighted by the number of
pixels in that class. Use this metric if images have
disproportionally sized classes, to reduce the impact
of errors in the small classes on the aggregate quality
score.

Weig
hted
IoU

Weig
hted
IoU

none

Example: metrics = evaluateSemanticSegmentation(pxdsResults,
pxdsTruth,'Metrics',["global-accuracy","iou"]) calculates the global
accuracy and IoU metrics across the data set, images, and classes.
Data Types: string

Verbose — Flag to display evaluation progress
1 (default) | 0

Flag to display evaluation progress information in the command window, specified as the
comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The displayed information includes a progress bar, elapsed time, estimated time
remaining, and data set metrics.
Example: metrics = evaluateSemanticSegmentation(pxdsResults,
pxdsTruth,'Verbose',0) calculates segmentation metrics without displaying progress
information.
Data Types: logical

Output Arguments
ssm — Semantic segmentation metrics
semanticSegmentationMetrics object

Semantic segmentation metrics, returned as a semanticSegmentationMetrics object.

3 Functions Alphabetical

3-466

References
[1] Csurka, G., D. Larlus, and F. Perronnin. "What is a good evaluation measure for

semantic segmentation?" Proceedings of the British Machine Vision Conference,
2013, pp. 32.1–32.11.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
PixelLabelDatastore | bfscore | jaccard | plotconfusion |
semanticSegmentationMetrics | semanticseg

Topics
“Semantic Segmentation Basics”
“Deep Learning in MATLAB” (Deep Learning Toolbox)

Introduced in R2017b

 evaluateSemanticSegmentation

3-467

extractFeatures
Extract interest point descriptors

Syntax
[features,validPoints] = extractFeatures(I,points)
[features,validPoints] = extractFeatures(I,points,Name,Value)

Description
[features,validPoints] = extractFeatures(I,points) returns extracted
feature vectors, also known as descriptors, and their corresponding locations, from a
binary or intensity image.

The function derives the descriptors from pixels surrounding an interest point. The pixels
represent and match features specified by a single-point location. Each single-point
specifies the center location of a neighborhood. The method you use for descriptor
extraction depends on the class of the input points.

[features,validPoints] = extractFeatures(I,points,Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

Examples

Extract Corner Features from an Image.

Read the image.

 I = imread('cameraman.tif');

Find and extract corner features.

 corners = detectHarrisFeatures(I);
 [features, valid_corners] = extractFeatures(I, corners);

3 Functions Alphabetical

3-468

Display image.

 figure; imshow(I); hold on

Plot valid corner points.

 plot(valid_corners);

 extractFeatures

3-469

Extract SURF Features from an Image

Read image.

 I = imread('cameraman.tif');

Find and extract features.

 points = detectSURFFeatures(I);
 [features, valid_points] = extractFeatures(I, points);

Display and plot ten strongest SURF features.

 figure; imshow(I); hold on;
 plot(valid_points.selectStrongest(10),'showOrientation',true);

3 Functions Alphabetical

3-470

Extract MSER Features from an Image

Read image.

 I = imread('cameraman.tif');

Find features using MSER with SURF feature descriptor.

 regions = detectMSERFeatures(I);
 [features, valid_points] = extractFeatures(I,regions,'Upright',true);

Display SURF features corresponding to the MSER ellipse centers.

 figure; imshow(I); hold on;
 plot(valid_points,'showOrientation',true);

 extractFeatures

3-471

Input Arguments
I — Input image
binary image | M-by-N 2-D grayscale image

Input image, specified as either a binary or 2-D grayscale image.
Data Types: logical | single | double | int16 | uint8 | uint16

points — Center location point
BRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints object
| MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Center location point of a square neighborhood, specified as either a BRISKPoints,
SURFPoints, KAZEPoints, MSERRegions, cornerPoints , or ORBPoints object, or an
M-by-2 matrix of M number of [x y] coordinates. The table lists the possible input classes
of points that can be used for extraction.

3 Functions Alphabetical

3-472

Class of Points
BRISKPoints Binary Robust Invariant Scalable Keypoints

(BRISK)
SURFPoints object Speeded-Up Robust Features (SURF)
MSERRegions object Maximally Stable Extremal Regions (MSER)
cornerPoints Features from Accelerated Segment Test

(FAST), Minimum eigen-value, or Harris
KAZEPoints Non-linear image pyramid-based rotation

and orientation invariant features. Similar
to SURF, but contains less noisy points.

ORBPoints Oriented FAST and rotated BRIEF (ORB)
features.

M-by-2 matrix of [x y] coordinates Simple square neighborhood around [x y]
point locations

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Method','Block' specifies the Block method for descriptor extraction.

Method — Descriptor extraction method
'Auto' (default) | 'BRISK' | 'FREAK' | 'SURF' | 'ORB' | 'KAZE' | 'Block'

Descriptor extraction method, specified as a comma-separated pair consisting of 'Method'
and the character vector 'FREAK', 'SURF', 'ORB', Block', or 'Auto'.

The table describes how the function implements the descriptor extraction methods.

Method Feature Vector (Descriptor)
BRISK Binary Robust Invariant Scalable Keypoints (BRISK).

The function sets the Orientation property of the
validPoints output object to the orientation of the
extracted features, in radians.

 extractFeatures

3-473

Method Feature Vector (Descriptor)
FREAK Fast Retina Keypoint (FREAK).

The function sets the Orientation property of the
validPoints output object to the orientation of the
extracted features, in radians.

SURF Speeded-Up Robust Features (SURF).
The function sets the Orientation property of the
validPoints output object to the orientation of the
extracted features, in radians.

When you use an MSERRegions object with the SURF
method, the Centroid property of the object extracts
SURF descriptors. The Axes property of the object selects
the scale of the SURF descriptors such that the circle
representing the feature has an area proportional to the
MSER ellipse area. The scale is calculated as
1/4*sqrt((majorAxes/2).*(minorAxes/2)) and
saturated to 1.6, as required by the SURFPoints object.

ORB Oriented FAST and rotated BRIEF (ORB) features.
The Orientation property of the validPoints output
object is automatically set to the Orientation property of
the input ORBPoints object points.

KAZE Non-linear pyramid-based features.

The function sets the Orientation property of the
validPoints output object to the orientation of the
extracted features, in radians.

When you use an MSERRegions object with the KAZE
method, the Location property of the object is used to
extract KAZE descriptors.

The Axes property of the object selects the scale of the
KAZE descriptors such that the circle representing the
feature has an area proportional to the MSER ellipse area.

3 Functions Alphabetical

3-474

Method Feature Vector (Descriptor)
Block Simple square neighbhorhood.

The Block method extracts only the neighborhoods fully
contained within the image boundary. Therefore, the output,
validPoints, can contain fewer points than the input
POINTS.

Auto The function selects the Method, based on the class of the
input points and implements:
The FREAK method for a cornerPoints input object.
The SURF method for a SURFPoints or MSERRegions input
object.
The BRISK method for a BRISKPoints input object.
The ORB method for a ORBPoints input object.

For an M-by-2 input matrix of [x y] coordinates, the function
implements the Block method.

Note The descriptor extraction method must be ORB, if the input points is an
ORBPoints object. Also, ORB descriptor extraction method is not supported for any other
class of points, except ORBPoints.

BlockSize — Block size
11 (default) | odd integer scalar

Block size, specified as an odd integer scalar. This value defines the local square
neighborhood BlockSize-by-BlockSize, centered at each interest point. This option
applies only when the function implements the Block method.

Upright — Rotation invariance flag
false | logical scalar

Rotation invariance flag, specified a logical scalar. When you set this property to true,
the orientation of the feature vectors are not estimated and the feature orientation is set
to pi/2. Set this to true when you do not need the image descriptors to capture rotation
information. When you set this property to false, the orientation of the features is
estimated and the features are then invariant to rotation.

 extractFeatures

3-475

Note The rotation invariance flag 'Upright' is not supported if the input points is an
ORBPoints object.

FeatureSize — Length of feature vector
64 (default) | 128

Length of the SURF or KAZE feature vector (descriptor), specified as 64 or 128. This
option applies only when the function implements the SURF or KAZE method. The larger
feature size of 128 provides greater accuracy, but decreases the feature matching speed.

Output Arguments
features — Feature vectors
M-by-N matrix | binaryFeatures object

Feature vectors, returned as a binaryFeatures object or an M-by-N matrix of M feature
vectors, also known as descriptors. Each descriptor is of length N.

validPoints — Valid points
BRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints object
| MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Valid points associated with each output feature vector (descriptor) in features,
returned in the same format as the input. Valid points can be a BRISKPoints,
cornerPoints, SURFPoints, KAZEPoints, MSERRegions, ORBPoints object, or an M-
by-2 matrix of [x,y] coordinates.

The function extracts descriptors from a region around each interest point. If the region
lies outside of the image, the function cannot compute a feature descriptor for that point.
When the point of interest lies too close to the edge of the image, the function cannot
compute the feature descriptor. In this case, the function ignores the point. The point is
not included in the valid points output.

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV

Library, O'Reilly, Sebastopol, CA, 2008.

3 Functions Alphabetical

3-476

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF: Speeded Up Robust
Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp.
346--359, 2008

[3] Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up
Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110,
No. 3, pp. 346--359, 2008.

[4] Alahi, Alexandre, Ortiz, Raphael, and Pierre Vandergheynst, "FREAK: Fast Retina
Keypoint", IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[5] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI,
LNCS 7577 pp. 214, 2012

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Method' must be a compile-time constant.
• Supports MATLAB Function block for BRISK, FREAK, and SURF methods only.
• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)

libraries for BRISK, ORB, FREAK, and SURF Methods. See “Portable C Code Generation
for Functions That Use OpenCV Library”.

• The KAZE method and the detectKAZEFeatures function do not support code
generation.

See Also
KAZEPoints | MSERRegions | ORBPoints | SURFPoints | binaryFeatures |
detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures |
detectKAZEFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | extractHOGFeatures |
extractLBPFeatures | matchFeatures

 extractFeatures

3-477

Topics
“Point Feature Types”
“Local Feature Detection and Extraction”

Introduced in R2011a

3 Functions Alphabetical

3-478

extractHOGFeatures
Extract histogram of oriented gradients (HOG) features

Syntax
features = extractHOGFeatures(I)
[features,validPoints] = extractHOGFeatures(I,points)
[___ , visualization] = extractHOGFeatures(I, ___)
[___] = extractHOGFeatures(___ ,Name,Value)

Description
features = extractHOGFeatures(I) returns extracted HOG features from a
truecolor or grayscale input image, I. The features are returned in a 1-by-N vector, where
N is the HOG feature length. The returned features encode local shape information from
regions within an image. You can use this information for many tasks including
classification, detection, and tracking.

[features,validPoints] = extractHOGFeatures(I,points) returns HOG
features extracted around specified point locations. The function also returns
validPoints, which contains the input point locations whose surrounding region is fully
contained within I. Scale information associated with the points is ignored.

[___ , visualization] = extractHOGFeatures(I, ___) optionally returns a
HOG feature visualization, using any of the preceding syntaxes. You can display this
visualization using plot(visualization).

[___] = extractHOGFeatures(___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments, using any of the preceding syntaxes.

Examples

 extractHOGFeatures

3-479

Extract and Plot HOG Features

Read the image of interest.

img = imread('cameraman.tif');

Extract HOG features.

[featureVector,hogVisualization] = extractHOGFeatures(img);

Plot HOG features over the original image.

figure;
imshow(img);
hold on;
plot(hogVisualization);

3 Functions Alphabetical

3-480

Extract HOG Features using CellSize

Read the image of interest.

I1 = imread('gantrycrane.png');

Extract HOG features.

[hog1,visualization] = extractHOGFeatures(I1,'CellSize',[32 32]);

Display the original image and the HOG features.

subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
plot(visualization);

 extractHOGFeatures

3-481

Extract HOG Features Around Corner Points

Read in the image of interest.

I2 = imread('gantrycrane.png');

Detect and select the strongest corners in the image.

corners = detectFASTFeatures(rgb2gray(I2));
strongest = selectStrongest(corners,3);

Extract HOG features.

3 Functions Alphabetical

3-482

[hog2, validPoints,ptVis] = extractHOGFeatures(I2,strongest);

Display the original image with an overlay of HOG features around the strongest corners.

figure;
imshow(I2);
hold on;
plot(ptVis,'Color','green');

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The input
image must be a real, nonsparse value. If you have tightly cropped images, you may lose

 extractHOGFeatures

3-483

shape information that the HOG function can encode. You can avoid losing this
information by including an extra margin of pixels around the patch that contains
background pixels.
Data Types: single | double | int16 | uint8 | uint16 | logical

points — Center location point
BRISKPoints object | cornerPoints object | SURFPoints object | MSERRegions
object | M-by-2 matrix of [x, y] coordinates

Center location point of a square neighborhood, specified as either a BRISKPoints,
SURFPoints, MSERRegions, ORBPoints or cornerPoints object, or an M-by-2 matrix
of M number of [x, y] coordinates. The function extracts descriptors from the
neighborhoods that are fully contained within the image boundary. You can set the size of
the neighborhood with the BlockSize parameter. Only neighborhoods fully contained
within the image are used to determine the valid output points. The function ignores scale
information associated with these points.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'BlockSize',[2 2] sets the BlockSize to be a 2-by-2 square block.

CellSize — Size of HOG cell
[8 8] (default) | 2-element vector

Size of HOG cell, specified in pixels as a 2-element vector. To capture large-scale spatial
information, increase the cell size. When you increase the cell size, you may lose small-
scale detail.

BlockSize — Number of cells in block
[2 2] (default) | 2-element vector

Number of cells in a block, specified as a 2-element vector. A large block size value
reduces the ability to suppress local illumination changes. Because of the number of
pixels in a large block, these changes may get lost with averaging. Reducing the block
size helps to capture the significance of local pixels. Smaller block size can help suppress
illumination changes of HOG features.

3 Functions Alphabetical

3-484

BlockOverlap — Number of overlapping cells between adjacent blocks
ceil(BlockSize/2) (default)

Number of overlapping cells between adjacent blocks, specified as a 2-element vector. To
ensure adequate contrast normalization, select an overlap of at least half the block size.
Large overlap values can capture more information, but they produce larger feature
vector size. This property applies only when you are extracting HOG features from
regions and not from point locations. When you are extracting HOG features around a
point location, only one block is used, and thus, no overlap occurs.

NumBins — Number of orientation histogram bins
9 (default) | positive scalar

Number of orientation histogram bins, specified as positive scalar. To encode finer
orientation details, increase the number of bins. Increasing this value increases the size
of the feature vector, which requires more time to process.

UseSignedOrientation — Selection of orientation values
false (default) | logical scalar

Selection of orientation values, specified as a logical scalar. When you set this property to
true, orientation values are evenly spaced in bins between -180 and 180 degrees. When
you set this property to false, they are evenly spaced from 0 through 180. In this case,
values of theta that are less than 0 are placed into a theta + 180 value bin. Using signed
orientation can help differentiate light-to-dark versus dark-to-light transitions within an
image region.

Output Arguments
features — Extracted HOG features
1-by-N vector | P-by-Q matrix

Extracted HOG features, returned as either a 1-by-N vector or a P-by-Q matrix. The
features encode local shape information from regions or from point locations within an
image. You can use this information for many tasks including classification, detection, and
tracking.

 extractHOGFeatures

3-485

features output Description
1-by-N vector HOG feature length, N, is based on the image size and the function

parameter values.
N = prod([BlocksPerImage, BlockSize, NumBins])
BlocksPerImage = floor((size(I)./CellSize – BlockSize)./
(BlockSize – BlockOverlap) + 1)

P-by-Q matrix P is the number of valid points whose surrounding region is fully
contained within the input image. You provide the points input
value for extracting point locations.
The surrounding region is calculated as:
CellSize.*BlockSize.
The feature vector length, Q, is calculated as:
prod([NumBins,BlockSize]).

Example 3.1. Arrangement of Histograms in HOG Feature Vectors

The figure below shows an image with six cells.

c11 c12 c13

c21 c22 c23

If you set the BlockSize to [2 2], it would make the size of each HOG block, 2-by-2
cells. The size of the cells are in pixels. You can set it with the CellSize property.

c11

c21

c12 c13

c22 c23

HOG block: 2-by-2 cells

The HOG feature vector is arranged by HOG blocks. The cell histogram, H(Cyx), is 1-by-
NumBins.

3 Functions Alphabetical

3-486

Block 1 Block 2 Block N. . .

 1-by-NumBins

HOG Feature Vector

HOG block

H(c12)H(c12){

Cell Histogram

H(c22) H(c13) H(c23)

The figure below shows the HOG feature vector with a 1-by-1 cell overlap between blocks.

Block 1 Block 2

{ {H(c11) H(c21) H(c12) H(c22) H(c12) H(c22) H(c13) H(c23)

validPoints — Valid points
cornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions
object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Valid points associated with each features descriptor vector output. This output can be
returned as either a cornerPoints object, BRISKPoints, SURFPoints object,
MSERRegions object, ORBPoints object or an M-by-2 matrix of [x,y] coordinates. The
function extracts M number of descriptors from valid interest points in a region of size
equal to [CellSize.*BlockSize]. The extracted descriptors are returned as the same
type of object or matrix as the input. The region must be fully contained within the image.

visualization — HOG feature visualization
object

HOG feature visualization, returned as an object. The function outputs this optional
argument to visualize the extracted HOG features. You can use the plot method with the
visualization output. See the “Extract and Plot HOG Features” on page 3-479
example.

HOG features are visualized using a grid of uniformly spaced rose plots. The cell size and
the size of the image determines the grid dimensions. Each rose plot shows the
distribution of gradient orientations within a HOG cell. The length of each petal of the
rose plot is scaled to indicate the contribution each orientation makes within the cell
histogram. The plot displays the edge directions, which are normal to the gradient
directions. Viewing the plot with the edge directions allows you to better understand the
shape and contours encoded by HOG. Each rose plot displays two times NumBins petals.

 extractHOGFeatures

3-487

You can use the following syntax to plot the HOG features:
plot(visualization) plots the HOG features as an array of rose plots.
plot(visualization,AX) plots HOG features into the axes AX.
plot(___, 'Color',Colorspec) Specifies the color used to plot HOG features, where
Colorspec represents the color.

References
[1] Dalal, N. and B. Triggs. "Histograms of Oriented Gradients for Human Detection",

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Vol. 1 (June 2005), pp. 886–893.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See Also
MSERRegions | ORBPoints | SURFPoints | binaryFeatures | detectFASTFeatures
| detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |
detectORBFeatures | detectSURFFeatures | extractFeatures |
extractLBPFeatures | matchFeatures | rose

Topics
“Digit Classification Using HOG Features”
“Local Feature Detection and Extraction”
“Point Feature Types”

Introduced in R2013b

3 Functions Alphabetical

3-488

fitPolynomialRANSAC
Fit polynomial to points using RANSAC

Syntax
P = fitPolynomialRANSAC(xyPoints,N,maxDistance)
[P,inlierIdx] = fitPolynomialRANSAC(___)
[___] = fitPolynomialRANSAC(___ ,Name,Value)

Description
P = fitPolynomialRANSAC(xyPoints,N,maxDistance) finds the polynomial
coefficients, P, by sampling a small set of points given in xyPoints and generating
polynomial fits. The fit that has the most inliers within maxDistance is returned. If a fit
cannot be found, then P is returned empty.The function uses the M-estimator sample
consensus (MSAC) algorithm, a variation of the random sample consensus (RANSAC)
algorithm to fit the data.

[P,inlierIdx] = fitPolynomialRANSAC(___) returns a logical array, inlierIdx,
that specifies the indices for data points that are inliers to the fit polynomial based on
maxDistance. Use the input arguments from the previous syntax.

[___] = fitPolynomialRANSAC(___ ,Name,Value) specifies additional options
specified by one or more Name,Value pair arguments.

Examples

Fit Parabola to Noisy Data Using RANSAC

Use the RANSAC algorithm to generate a polynomial that fits a set of noisy data. The
fitPolynomialRANSAC function generates a polynomial by sampling a small set of
points from [x y] point data and generating polynomial fits. The fit with the most inliers
within maxDistance is returned.

 fitPolynomialRANSAC

3-489

Construct and plot a parabola with [x y] points.

x = (-10:0.1:10)';
y = (36-x.^2)/9;
figure
plot(x,y)
title('Parabola')

Add noise and outlier points to the points on the parabola.

y = y+rand(length(y),1);
y([50,150,99,199]) = [y(50)+12,y(150)-12,y(99)+33,y(199)-23];

plot(x,y)
title('Parabola with Outliers and Noise')

3 Functions Alphabetical

3-490

Use fitPolynomialRANSAC to generate coefficients for a second-degree polynomial.
Also get the inliers identified by the specified maxDistance from the polynomial fit.

N = 2; % second-degree polynomial
maxDistance = 1; % maximum allowed distance for a point to be inlier

[P, inlierIdx] = fitPolynomialRANSAC([x,y],N,maxDistance);

Evaluate the polynomial using polyval. Plot the curve and overlay the [x y] points.
Mark outliers with a red circle.

yRecoveredCurve = polyval(P,x);
figure
plot(x,yRecoveredCurve,'-g','LineWidth',3)

 fitPolynomialRANSAC

3-491

hold on
plot(x(inlierIdx),y(inlierIdx),'.',x(~inlierIdx),y(~inlierIdx),'ro')
legend('Fit polynomial','Inlier points','Outlier points')
hold off

Input Arguments
xyPoints — [x y] coordinate points
m-by-2 matrix

[x y] coordinate points, specified as an m-by-2 matrix. The polynomial is fit to these
points.

3 Functions Alphabetical

3-492

Data Types: double | single | uint32 | int32 | uint16 | int16

N — Degree of polynomial fit
integer

Degree of polynomial fit, P, specified as an integer. The degree of a polynomial is the
highest degree of the terms in the equation. For example, a polynomial of degree 2 is:

Ax2+Bx+C

A, B, and C are constants. In general, higher degree polynomials allow for a better fit, but
the fit depends on your data.

maxDistance — Maximum distance for inlier points
positive scalar

Maximum distance from the polynomial fit curve to an inlier point, specified as a positive
scalar. Any points further away are considered outliers. The RANSAC algorithm creates a
fit from a small sample of points but tries to maximize the number of inlier points.
Lowering the maximum distance helps to improve the polynomial fit by putting a tighter
tolerance on inlier points.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumTrials',2000

MaxNumTrials — Maximum number of random trials
1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and an integer. A single trial uses a minimum number of random points
from xyPoints to fit a parabolic model. Then, the trial checks the number of inliers
within the maxDistance from the model. After all trials, the model with the highest
number of inliers is selected. Increasing the number of trials improves the robustness of
the output at the expense of additional computation.

 fitPolynomialRANSAC

3-493

Confidence — Confidence of final solution
99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the polynomial
fit, specified as the comma-separated pair consisting of 'Confidence' and a scalar from 0
to 100. Increasing this value improves the robustness of the output at the expense of
additional computation.

ValidatePolynomialFcn — Function to validate polynomial
function handle

Function to validate polynomial, specified as the comma-separated pair consisting of
'ValidatePolynomialFcn' and a function handle. The function returns true if the
polynomial is accepted based on criteria defined in the function. Use this function to
reject specific polynomial fits. The function must be of the form:

isValid = validatePolynomialFcn(P,varargin)

If no function is specified, all polynomials are assumed to be valid.

MaxSamplingAttempts — Maximum number of sample attempts
100 (default) | integer

Maximum number of attempts to find a sample that yields a valid polynomial, specified as
the comma-separated pair consisting of 'MaxSamplingAttempts' and an integer.

Output Arguments
P — Polynomial coefficients
vector of numeric scalars

Polynomial coefficients, returned as a vector of numeric scalars. Each element
corresponds to a constant in the polynomial equation with degree N. For example, for a
second-degree polynomial, Ax2+Bx+C:

P = [A B C];

Data Types: single | double

inlierIdx — Inlier points
logical vector

3 Functions Alphabetical

3-494

Inlier points, returned as a logical vector. The vector is the same length as xyPoints, and
each element indicates if that point is an inlier for the polynomial fit based on
maxDistance.

References
[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application

to Estimating Image Geometry." Computer Vision and Image Understanding. Vol.
18, Issue 1, April 2000, pp. 138–156.

See Also
polyfit | polyval | ransac

Introduced in R2017a

 fitPolynomialRANSAC

3-495

extrinsics
Compute location of calibrated camera

Syntax
[rotationMatrix,translationVector] = extrinsics(imagePoints,
worldPoints,cameraParams)

Description
[rotationMatrix,translationVector] = extrinsics(imagePoints,
worldPoints,cameraParams) returns the 3-D rotation matrix and the 3-D translation
vector to allow you to transform points from the world coordinate to the camera
coordinate system.

Examples

Compute Camera Extrinsics

Create a set of calibration images.

 images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration', 'slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric
coordinate system, with the upper-left corner at (0,0). The square size is in millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

Calibrate the camera.

3 Functions Alphabetical

3-496

I = readimage(images,1);
imageSize = [size(I,1), size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Load image at new location.

imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
 'calibration','slr','image9.jpg'));
figure
imshow(imOrig);
title('Input Image');

Undistort image.

[im,newOrigin] = undistortImage(imOrig,cameraParams,'OutputView','full');

 extrinsics

3-497

Find reference object in new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compensate for image coordinate system shift.

imagePoints = [imagePoints(:,1) + newOrigin(1), ...
 imagePoints(:,2) + newOrigin(2)];

Compute new extrinsics.

[rotationMatrix, translationVector] = extrinsics(...
imagePoints,worldPoints,cameraParams);

Compute camera pose.

[orientation, location] = extrinsicsToCameraPose(rotationMatrix, ...
 translationVector);
figure
plotCamera('Location',location,'Orientation',orientation,'Size',20);
hold on
pcshow([worldPoints,zeros(size(worldPoints,1),1)], ...
 'VerticalAxisDir','down','MarkerSize',40);

3 Functions Alphabetical

3-498

Input Arguments
imagePoints — Image coordinates of points
M-by-2 array

Image coordinates of points, specified as an M-by-2 array. The array contains M number
of [x, y] coordinates. The imagePoints and worldPoints inputs must both be double
or both be single.
Data Types: single | double

 extrinsics

3-499

worldPoints — World coordinates corresponding to image coordinates
M-by-2 matrix

World coordinates corresponding to image coordinates, specified as an M-by-2 matrix.
The imagePoints and worldPoints inputs must both be double or both be single.
The function assumes that the points are coplanar with z= 0 and the number of points, M,
must be at least 4.
Data Types: single | double

cameraParams — Camera parameters
cameraParameters object | cameraIntrinsics object | fisheyeIntrinsics object

Object for storing camera parameters, specified as a cameraParameters,
cameraIntrinsics, or fisheyeIntrinsics object. These objects are returned by the
estimateCameraParameters function, the estimateFisheyeParameters function,
or the Camera Calibrator app. The object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

Output Arguments
rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation, returned as a 3-by-3 matrix. The rotation matrix together with the
translation vector allows you to transform points from the world coordinate to the camera
coordinate system.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

If you set the imagePoints and worldPoints inputs to class double, then the function
returns the rotationMatrix and translationVector as double. Otherwise, they are
single.

translationVector — 3-D translation
3-D translation, returned as a 1-by-3 vector. The rotation matrix together with the
translation vector allows you to transform points from the world coordinate to the camera
coordinate system.

3 Functions Alphabetical

3-500

3-D translation, returned as a 1-by-3 vector.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

If you set the imagePoints and worldPoints inputs to class double, then the function
returns the rotationMatrix and translationVector as double. Otherwise, they are
single.

Algorithms
The extrinsics function uses two different algorithms to compute the extrinsics
depending on whether worldPoints are specified as an M-by-2 matrix. Use an M-by-2
matrix for coplanar points where z= 0.

The extrinsics function computes the rotation matrix and translation vector for a
single image in closed form. During calibration, the extrinsics are estimated numerically
to minimize the reprojection errors for all calibration images. Therefore, using the
extrinsics function on one of the calibration images returns rotation matrix and
translation vector slightly different from the ones obtained during calibration.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• Use of a fisheyeIntrinsics object as the cameraParams input is not supported.

 extrinsics

3-501

See Also
Camera Calibrator | cameraIntrinsics | cameraMatrix | cameraParameters |
cameraPoseToExtrinsics | estimateCameraParameters |
estimateFisheyeParameters | extrinsicsToCameraPose | fisheyeIntrinsics |
plotCamera | pointsToWorld | worldToImage | worldToImage

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2014a

3 Functions Alphabetical

3-502

generateCheckerboardPoints
Generate checkerboard corner locations

Syntax
[worldPoints] = generateCheckerboardPoints(boardSize,squareSize)

Description
[worldPoints] = generateCheckerboardPoints(boardSize,squareSize)
returns an M-by-2 matrix containing M [x, y] corner coordinates for the squares on a
checkerboard. The point [0,0] corresponds to the lower-right corner of the top-left square
of the board.

Examples

Generate and Plot Corners of an 8-by-8 Checkerboard

Generate the checkerboard, and obtain world coordinates.

 I = checkerboard;
 squareSize = 10;
 worldPoints = generateCheckerboardPoints([8 8], squareSize);

Offset the points, placing the first point at the lower-right corner of the first
square.

 imshow(insertMarker(I, worldPoints + squareSize));

 generateCheckerboardPoints

3-503

Input Arguments
boardSize — Generated checkerboard dimensions
2-element [height, width] vector

Generated checkerboard dimensions, specified as a 2-element [height, width] vector. You
express the dimensions of the checkerboard in number of squares.

3 Functions Alphabetical

3-504

squareSize — Generated checkerboard square side length
scalar

Checkerboard square side length, specified as a scalar in world units. You express world
units as a measurement, such as millimeters or inches.

 generateCheckerboardPoints

3-505

Output Arguments
worldPoints — Generated checkerboard corner coordinates
M-by-2 matrix

Generated checkerboard corner coordinates, returned as an M-by-2 matrix of M number
of [x y] coordinates. The coordinates represent the corners of the squares on the
checkerboard. The point [0,0] corresponds to the lower-right corner of the top-left square

3 Functions Alphabetical

3-506

of the board. The number of points, M, that the function returns are based on the number
of squares on the checkerboard. This value is set with the boardSize parameter.
M = (boardSize(1)-1) * (boardSize(2)-1)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Camera Calibrator | cameraParameters | detectCheckerboardPoints |
estimateCameraParameters | stereoParameters

Topics
“Measuring Planar Objects with a Calibrated Camera”
“Single Camera Calibrator App”

Introduced in R2013b

 generateCheckerboardPoints

3-507

indexImages
Create image search index

Syntax
imageIndex = indexImages(imds)

imageIndex = indexImages(imds,bag)
imageIndex = indexImages(___ ,Name,Value)

Description
imageIndex = indexImages(imds) creates an invertedImageIndex object,
imageIndex, that contains a search index for imds. Use imageIndex with the
retrieveImages function to search for images.

imageIndex = indexImages(imds,bag) returns a search index that uses a custom
bagOfFeatures object, bag. Use this syntax with the bag you created when you want to
modify the number of visual words or the feature type used to create the image search
index for imds.

imageIndex = indexImages(___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments, using any of the preceding syntaxes.

This object supports parallel computing using multiple MATLAB workers. Enable parallel
computing from the “Computer Vision Toolbox Preferences” dialog box. To open
Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Then select Computer Vision System Toolbox.

Examples

Search Image Set Using a Query Image

Create an image set.

3 Functions Alphabetical

3-508

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir);

Index the image set.

imageIndex = indexImages(imds)

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 6 images...done. Extracted 1708 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest 1366 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 1366
* Number of clusters (K) : 1366

* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.05 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 6 images...done.
Finished creating the image index.

imageIndex =
 invertedImageIndex with properties:

 ImageLocation: {6x1 cell}

 indexImages

3-509

 ImageWords: [6x1 vision.internal.visualWords]
 WordFrequency: [1x1366 double]
 BagOfFeatures: [1x1 bagOfFeatures]
 MatchThreshold: 0.0100
 WordFrequencyRange: [0.0100 0.9000]

Display the image set using the montage function.

thumbnailGallery = [];
for i = 1:length(imds.Files)
 I = readimage(imds,i);
 thumbnail = imresize(I,[300 300]);
 thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end

figure
montage(thumbnailGallery);

3 Functions Alphabetical

3-510

Select a query image.

queryImage = readimage(imds,2);
figure
imshow(queryImage)

 indexImages

3-511

3 Functions Alphabetical

3-512

Search the image set for similar image using query image. The best result is first.

indices = retrieveImages(queryImage,imageIndex)

indices = 5×1

 2
 1
 4
 3
 5

bestMatchIdx = indices(1);

Display the best match from the image set.

bestMatch = imageIndex.ImageLocation{bestMatchIdx}

bestMatch =
'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg'

figure
imshow(bestMatch)

 indexImages

3-513

3 Functions Alphabetical

3-514

Create Search Index Using Custom Bag of Features

Create an image set.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imgSets = imageSet(setDir, 'recursive');

Display image set.

thumbnailGallery = [];
for i = 1:imgSets.Count
 I = read(imgSets, i);
 thumbnail = imresize(I, [300 300]);
 thumbnailGallery = cat(4, thumbnailGallery, thumbnail);
end

figure
montage(thumbnailGallery);

 indexImages

3-515

Train a bag of features using a custom feature extractor.

extractor = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imgSets,'CustomExtractor',extractor);

Creating Bag-Of-Features.

* Image category 1: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeaturesExtractor.

* Extracting features from 6 images in image set 1...done. Extracted 115200 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 92160

3 Functions Alphabetical

3-516

* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 16/100 iterations (~0.28 seconds/iteration)...converged in 16 iterations.

* Finished creating Bag-Of-Features

Use the trained bag of features to index the image set.

imageIndex = indexImages(imgSets,bag,'Verbose',false)

imageIndex =
 invertedImageIndex with properties:

 ImageLocation: {6x1 cell}
 ImageWords: [6x1 vision.internal.visualWords]
 WordFrequency: [1x500 double]
 BagOfFeatures: [1x1 bagOfFeatures]
 MatchThreshold: 0.0100
 WordFrequencyRange: [0.0100 0.9000]

queryImage = read(imgSets,4);

figure
imshow(queryImage)

 indexImages

3-517

3 Functions Alphabetical

3-518

Search for the image from image index using query image.

indices = retrieveImages(queryImage,imageIndex);
bestMatch = imageIndex.ImageLocation{indices(1)};
figure
imshow(bestMatch)

 indexImages

3-519

3 Functions Alphabetical

3-520

Input Arguments
imds — Images
imageDatastore object

Images, specified as an imageDatastore object. The object stores a collection of images.

bag — Bag of visual words
bagOfFeatures object

Bag of visual words, specified as a bagOfFeatures object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Verbose',true sets the 'Verbose' property to true

SaveFeatureLocations — Save feature locations
true (default) | false

Save feature locations, specified as the comma-separated pair consisting of
'SaveFeatureLocations' and a logical scalar. When set to true, the image feature
locations are saved in the imageIndex output object. Use location data to verify spatial
or geometric image search results. If you do not require feature locations, set this
property to false to reduce memory consumption.

Verbose — Display progress information
true (default) | false

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and a logical scalar.

 indexImages

3-521

Output Arguments
imageIndex — Image search index
invertedImageIndex object

Image search index, returned as an invertedImageIndex object.

Algorithms
imageIndex uses the bag-of-features framework with the speeded-up robust features
(SURF) detector and extractor to learn a vocabulary of 20,000 visual words. The visual
words are then used to create an index that maps visual words to the images in imds. You
can use the index to search for images within imds that are similar to a given query
image.

See Also
bagOfFeatures | evaluateImageRetrieval | imageDatastore |
invertedImageIndex | retrieveImages

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

3 Functions Alphabetical

3-522

integralFilter
Filter using integral image

Syntax
J = integralFilter(intI,H)

Description
J = integralFilter(intI,H) filters an image, given its integral image, intI, and
filter object, H. The integralKernel function returns the filter object used for the input
to the integralFilter.

This function uses integral images for filtering an image with box filters. You can obtain
the integral image, intI, by calling the integralImage function. The filter size does not
affect the speed of the filtering operation. Thus, the integralFilter function is ideally
suited to use for fast analysis of images at different scales, as demonstrated by the Viola-
Jones algorithm [1].

Tips
Because the integralFilter function uses correlation for filtering, the filter is not
rotated before computing the result.

Input Arguments
intI

Integral image. You can obtain the integral image, intI, by calling the integralImage
function. The class for this value can be double or single.

H

Filter object. You can obtain the filter object, H, by calling the integralKernel function.

 integralFilter

3-523

Output Arguments
J

Filtered image. The filtered image, J, returns only the parts of correlation that are
computed without padding. This results in size(J) = size(intI) – H.Size for an
upright filter, and size(J) = size(intI) – H.Size – [0 1] for a rotated filter. This
function uses correlation for filtering.

Examples

Blur an Image Using an Average Filter

Read and display the input image.

 I = imread('pout.tif');
 imshow(I);

3 Functions Alphabetical

3-524

Compute the integral image.

 intImage = integralImage(I);

Apply a 7-by-7 average filter.

 avgH = integralKernel([1 1 7 7], 1/49);
 J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.

 J = uint8(J);
 figure
 imshow(J);

 integralFilter

3-525

Find Vertical and Horizontal Edges in Image

Construct Haar-like wavelet filters to find vertical and horizontal edges in an image.

Read the input image and compute the integral image.

I = imread('pout.tif');
intImage = integralImage(I);

Construct Haar-like wavelet filters. Use the dot notation to find the vertical filter from the
horizontal filter.

horiH = integralKernel([1 1 4 3; 1 4 4 3],[-1, 1]);
vertH = horiH.'

3 Functions Alphabetical

3-526

vertH =
 integralKernel with properties:

 BoundingBoxes: [2x4 double]
 Weights: [-1 1]
 Coefficients: [4x6 double]
 Center: [2 3]
 Size: [4 6]
 Orientation: 'upright'

Display the horizontal filter.

imtool(horiH.Coefficients, 'InitialMagnification','fit');

 integralFilter

3-527

Compute the filter responses.

horiResponse = integralFilter(intImage,horiH);
vertResponse = integralFilter(intImage,vertH);

Display the results.

3 Functions Alphabetical

3-528

figure;
imshow(horiResponse,[]);
title('Horizontal edge responses');

figure;
imshow(vertResponse,[]);
title('Vertical edge responses');

 integralFilter

3-529

Compute a Rotated Edge Response Using Integral Filter

Read the input image.

I = imread('pout.tif');

Compute 45 degree edge responses of the image.

intImage = integralImage(I,'rotated');
figure;
imshow(I);
title('Original Image');

3 Functions Alphabetical

3-530

Construct 45 degree rotated Haar-like wavelet filters.

rotH = integralKernel([2 1 2 2;4 3 2 2],[1 -1],'rotated');
rotHTrans = rotH.';

Visualize the filter rotH.

figure;
imshow(rotH.Coefficients, [],'InitialMagnification','fit');

 integralFilter

3-531

Compute filter responses.

rotHResponse = integralFilter(intImage,rotH);
rotHTransResponse = integralFilter(intImage,rotHTrans);

Display results.

figure;
imshow(rotHResponse, []);
title('Response for SouthWest-NorthEast edges');

3 Functions Alphabetical

3-532

figure;
imshow(rotHTransResponse, []);
title('Response for NorthWest-SouthEast edges');

 integralFilter

3-533

References
[1] Viola, Paul and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of

Simple Features”, Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511–518.

See Also
cumsum | integralImage | integralKernel

Topics
“Compute an Integral Image” on page 3-537

3 Functions Alphabetical

3-534

Introduced in R2012a

 integralFilter

3-535

integralImage
Integral image

Syntax
J = integralImage(I)
J = integralImage(I,orientation)

Description
J = integralImage(I) computes an integral image of the input intensity image, I.
The function zero-pads the top and left side of the output integral image, J.

J = integralImage(I,orientation) computes the integral image with the specified
orientation.

An integral image lets you rapidly calculate summations over image subregions. Use of
integral images was popularized by the Viola-Jones algorithm [1]. Integral images
facilitate summation of pixels and can be performed in constant time, regardless of the
neighborhood size.

Input Arguments
I — Intensity image

Intensity image, specified as an M-by-N grayscale image. This value can be any numeric
class.

orientation — Image orientation
'upright' (default) | 'rotated'

Image orientation, specified as 'upright' or 'rotated'. If you set the orientation to
'rotated', integralImage returns the integral image for computing sums over
rectangles rotated by 45 degrees. To facilitate easy computation of pixel sums along all
image boundaries, the output integral images are padded as follows:

3 Functions Alphabetical

3-536

Upright integral image — Zero-padded on top and left, resulting in size(J) = size(I) +
1
Rotated integral image — Zero-padded at the top, left, and right, resulting in size(J) =
size(I) + [1 2]

Output Arguments
J

Integral image. The function zero-pads the top and left side of the integral image. The
class of the output is double. The resulting size of the output integral image equals:

size(J) = size(I) + 1

Such sizing facilitates easy computation of pixel sums along all image boundaries. The
integral image, J, is essentially a padded version of the value cumsum(cumsum(I,2)).

Examples

Compute an Integral Image

Compute the integral image and use it to compute the sum of pixels over a rectangular
region of an intensity image.

Create an image matrix.

I = magic(5)

I = 5×5

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Define rectangular region as [startingRow, startingColumn, endingRow, endingColumn].

[sR sC eR eC] = deal(1,3,2,4);

 integralImage

3-537

Compute the sum over the region using the integral image.

J = integralImage(I);
regionSum = J(eR+1,eC+1) - J(eR+1,sC) - J(sR,eC+1) + J(sR,sC)

regionSum = 30

Algorithms

How Integral Image Summation Works
An integral image helps you rapidly calculate summations over image subregions. Every
pixel in an integral image is the summation of the pixels above and to the left of it.

To calculate the summation of a subregion of an image, you can use the corresponding
region of its integral image. For example, in the input image below, the summation of the
shaded region becomes a simple calculation using four reference values of the
rectangular region in the corresponding integral image. The calculation becomes, 46 – 22
– 20 + 10 = 14. The calculation subtracts the regions above and to the left of the shaded
region. The area of overlap is added back to compensate for the double subtraction.

3 Functions Alphabetical

3-538

In this way, you can calculate summations in rectangular regions rapidly, irrespective of
the filter size.

References
[1] Viola, Paul and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of

Simple Features”, Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511–518.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cumsum | integralFilter | integralKernel

Topics
“Blur an Image Using an Average Filter”

 integralImage

3-539

“Find Vertical and Horizontal Edges in Image”

Introduced in R2012a

3 Functions Alphabetical

3-540

insertMarker
Insert markers in image or video

Syntax
RGB = insertMarker(I,position)
RGB = insertMarker(I,position,marker)
RGB = insertMarker(___,Name,Value)

Description
RGB = insertMarker(I,position) returns a truecolor image with inserted plus (+)
markers. The input image, I, can be either a truecolor or grayscale image. You draw the
markers by overwriting pixel values. The input position can be either an M-by-2 matrix
of M number of [x y] pairs or one of the “Point Feature Types”.

RGB = insertMarker(I,position,marker) returns a truecolor image with the
marker type of markers inserted.

RGB = insertMarker(___,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Draw Markers on an Image

Read the image.

I = imread('peppers.png');

Insert a plus (+) marker.

RGB = insertMarker(I,[147 279]);

Draw four x-marks.

 insertMarker

3-541

pos = [120 248;195 246;195 312;120 312];
color = {'red','white','green','magenta'};
RGB = insertMarker(RGB,pos,'x','color',color,'size',10);

Display the image.

imshow(RGB);

3 Functions Alphabetical

3-542

Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

position — Position of marker
M-by-2 matrix | vector

Position of marker, specified as either an M-by-2 matrix of M number of [x y] pairs or one
of the “Point Feature Types”. The center positions for the markers are defined by the [xy]
pairs of the matrix or by the Location property of the point feature object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

marker — Type of marker
'plus' (default) | character vector

Type of marker, specified as a character vector. The vector can be full text or the
corresponding symbol.

Character Vector Symbol
'circle' 'o'
'x-mark' 'x'
'plus' '+'
'star' '*'
'square' 's'

Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 insertMarker

3-543

Example: 'Color','yellow' specifies yellow for the marker color.

Size — Size of marker
3 (default) | scalar value

Size of marker in pixels, specified as the comma-separated pair consisting of 'Size' and a
scalar value in the range [1, inf).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Color — Marker color
'green' (default) | character vector | cell array of character vectors | vector | matrix

Marker color, specified as the comma-separated pair consisting of 'Color' and either a
character vector, cell array of character vectors, vector, or matrix. You can specify a
different color for each marker or one color for all markers.

To specify a color for each marker, set Color to a cell array of color character vectors or
an M-by-3 matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all markers, set Color to either a color character vector or an [R
G B] vector. The [R G B] vector contains the red, green, and blue values.

Supported colors are: 'blue', 'green', 'red', 'cyan', 'magenta',
'yellow','black', and 'white'.
Data Types: cell | char | uint8 | uint16 | int16 | double | single

Output Arguments
RGB — Output image
M-by-N-by-3 truecolor

Output image, returned as a truecolor image.

3 Functions Alphabetical

3-544

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Shape' and 'Color' must be compile-time constants.

See Also
“Point Feature Types” | BRISKPoints | MSERRegions | ORBPoints | SURFPoints |
cornerPoints | insertObjectAnnotation | insertShape | insertText

Topics
“Insert Circle and Filled Shapes on an Image” on page 3-555
“Insert Numbers and Text on Image” on page 3-563

Introduced in R2013a

 insertMarker

3-545

insertObjectAnnotation
Annotate truecolor or grayscale image or video stream

Syntax
RGB = insertObjectAnnotation(I,shape,position,label)
RGB = insertObjectAnnotation(I,shape,position,label,Name,Value)

insertObjectAnnotation(I,'rectangle',position,label)
insertObjectAnnotation(I,'circle',position,label)

Description
RGB = insertObjectAnnotation(I,shape,position,label) returns a truecolor
image annotated with shape and label at the location specified by position.

RGB = insertObjectAnnotation(I,shape,position,label,Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

insertObjectAnnotation(I,'rectangle',position,label) inserts rectangles
and labels at the location indicated by the position matrix.

insertObjectAnnotation(I,'circle',position,label) inserts circles and
corresponding labels at the location indicated by the position matrix.

Examples

Annotate Image with Numbers and Strings

Read image.

I = imread('board.tif');

Create labels of floating point numbers. The floating point numbers relate to confidence
value labels.

3 Functions Alphabetical

3-546

label_str = cell(3,1);
conf_val = [85.212 98.76 78.342];
for ii=1:3
 label_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end

Set the position for the rectangles as [x y width height].

 position = [23 373 60 66;35 185 77 81;77 107 59 26];

Insert the labels.

RGB = insertObjectAnnotation(I,'rectangle',position,label_str,...
 'TextBoxOpacity',0.9,'FontSize',18);

Display the annotated image.

figure
imshow(RGB)
title('Annotated chips');

 insertObjectAnnotation

3-547

3 Functions Alphabetical

3-548

Annotate Image with Integer Numbers

Read image.

I = imread('coins.png');

Set positions for the circles. The first two values represents the center at (x,y) and the
third value is the radius.

position = [96 146 31;236 173 26];

Set the label to display the integers 5 and 10 (U.S. cents).

label = [5 10];

Insert the annotations.

RGB = insertObjectAnnotation(I,'circle',position,label,'LineWidth',3,'Color',{'cyan','yellow'},'TextColor','black');

Display.

figure
imshow(RGB)
title('Annotated coins');

 insertObjectAnnotation

3-549

Input Arguments
I — Truecolor or grayscale image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Truecolor or grayscale image, specified as an image or video stream. The input image can
be either an M-by-N-by-3 truecolor or a M-by-N 2-D grayscale image.
Data Types: double | single | uint8 | uint16 | int16

shape — Rectangle or circle annotation
‘rectangle’ | ‘circle’

Rectangle or circle annotation, specified as a character vector indicating the annotation
shape.
Data Types: char

3 Functions Alphabetical

3-550

position — Location and size of the annotation shape
M-by-3 matrix | M-by-4 matrix

Location and size of the annotation shape, specified as an M-by-3 or M-by-4 matrix. When
you specify a rectangle, the position input matrix must be an M-by-4 matrix. Each row, M,
specifies a rectangle as a four-element vector, [x y width height]. The elements, x and y,
indicate the upper-left corner of the rectangle, and the width and height specify the size.

When you specify a circle, the position input matrix must be an M-by-3 matrix, where
each row, M, specifies a three-element vector [x y r]. The elements, x and y, indicate the
center of the circle and r specifies the radius.
Example: position = [50 120 75 75]

A rectangle with top-left corner located at x=50, y=120, with a width and height of 75
pixels.
Example: position = [96 146 31]

A circle with center located at x=96, y=146 and a radius of 31 pixels.
Example: position = [23 373 60 66;35 185 77 81;77 107 59 26]

Location and size for three rectangles.

label — Label to associate with a shape
numeric scalar | numeric vector | ASCII character vector | cell array of ASCII character
vectors

Label to associate with a shape, specified as a numeric vector or a cell array of ASCII
strings. The cell array must be the of length equal to the number of shape positions. You
can also specify a single numeric scalar or string for all shapes.
Example: label = [5 10], where the function marks the first shape with the label, 5, and
the second shape with the label, 10.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color', 'white' sets the color for the label text box to white.

 insertObjectAnnotation

3-551

Font — Font face of text
'LucidaSansRegular' (default) | character vector

Font face of text, specified as the comma-separated pair consisting of 'Font' and a
character vector. The font face must be one of the available truetype fonts installed on
your system. To get a list of available fonts on your system, type listTrueTypeFonts at
the MATLAB command prompt.
Data Types: char

FontSize — Label text font size
12 (default) | integer in the range of [8 72]

Label text font size, specified as the comma-separated pair consisting of 'FontSize' and
an integer corresponding to points in the range of [8 72].
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LineWidth — Shape border line width
1 (default)

Shape border line width, specified as the comma-separated pair consisting of
'LineWidth' and a positive scalar integer in pixels.

Color — Color for shape and corresponding label text box
'yellow' (default) | color character vector | [R G B] vector | cell array | M-by-3 matrix

Color for shape and for corresponding label text box, specified as the comma-separated
pair consisting of 'Color' and either a character vector, an [R G B] vector, a cell array,
or an M-by-3 matrix.

To specify one color for all shapes, set this parameter to either a character vector or an [R
G B] vector. To specify a color for each of the M shapes, set this parameter to a cell array
of M character vectors. Alternatively, you can specify an M-by-3 matrix of RGB values for
each annotation. RGB values must be in the range of the input image data type.

Supported colors: 'blue', 'green', 'cyan', 'red', 'magenta', 'black', and
'white'.
Data Types: char | uint8 | uint16 | int16 | double | single | cell

TextColor — Color of text in text label
'black' (default) | color character vector | [R G B] vector | cell array | M-by-3 matrix

3 Functions Alphabetical

3-552

Color of text in text label, specified as the comma-separated pair consisting of
'TextColor' and either a character vector, an [R G B] vector, a cell array, or an M-by-3
matrix. To specify one color for all text, set this parameter to either a character vector or
an [R G B] vector. To specify a color for each of the M text labels, set this parameter to a
cell array of M character vectors. Alternatively, you can specify an M-by-3 matrix of RGB
values for each annotation. RGB values must be in the range of the input image data type.

Supported colors: 'blue', 'green', 'cyan', 'red', 'magenta', 'yellow', and
'white'.
Data Types: char | uint8 | uint16 | int16 | double | single | cell

TextBoxOpacity — Opacity of text label box background
0.6 (default) | range of [0 1]

Opacity of text label box background, specified as the comma-separated pair consisting of
'TextBoxOpacity' and a scalar defining the opacity of the background of the label text
box. Specify this value in the range of 0 to 1.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
RGB — Truecolor or grayscale image with annotation
M-by-N-by-3 truecolor

Truecolor image with annotation, returned as an image or video stream.
Data Types: double | single | uint8 | uint16 | int16

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 insertObjectAnnotation

3-553

• Input image must be bounded. See “Specify Upper Bounds for Variable-Size Arrays”
(MATLAB Coder).

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
insertMarker | insertShape | insertText

Introduced in R2012b

3 Functions Alphabetical

3-554

insertShape
Insert shapes in image or video

Syntax
RGB = insertShape(I,shape,position)
RGB = insertShape(___ ,Name,Value)

Description
RGB = insertShape(I,shape,position) returns a truecolor image with shape
inserted. The input image, I, can be either a truecolor or grayscale image. You draw the
shapes by overwriting pixel values.

RGB = insertShape(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Insert Circle and Filled Shapes on an Image

Read the image.

I = imread('peppers.png');

Draw a circle with a border line width of 5.

RGB = insertShape(I,'circle',[150 280 35],'LineWidth',5);

Draw a filled triangle and a filled hexagon.

pos_triangle = [183 297 302 250 316 297];
pos_hexagon = [340 163 305 186 303 257 334 294 362 255 361 191];
RGB = insertShape(RGB,'FilledPolygon',{pos_triangle,pos_hexagon},...
 'Color', {'white','green'},'Opacity',0.7);

 insertShape

3-555

Display the image.

imshow(RGB);

Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16

3 Functions Alphabetical

3-556

shape — Type of shape
character vector

Type of shape, specified as a character vector. The vector can be, 'Rectangle',
'FilledRectangle', 'Line', 'Polygon', 'FilledPolygon', 'Circle', or
'FilledCircle'.
Data Types: char

position — Position of shape
matrix | vector | cell array

Position of shape, specified according to the type of shape, described in the table.

Shape Position Shape Drawn
'Rectangle'
'FilledRectangle
'

M-by-4 matrix where each row specifies a
rectangle as x y width height .

x1 y1 width1 height1
x2 y2 width2 height2
⋮ ⋮ ⋮ ⋮
xM yM widthM heightM

'Line' For one or more disconnected lines, an M-by-4
matrix, where each four-element vector [x1, y1,
x2,y2], describe a line with endpoints, [x1 y1] and
[x2 y2].

x y x y

x y x y

x y x xM M M M

11 11 12 12

21 21 22 22

1 1 2 2

M M M M

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 insertShape

3-557

Shape Position Shape Drawn
For one or more line segments, an M-by-2L
matrix, where each row is a vector representing
a polyline with L number of vertices.

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

.

The polyline always contains (L-1) number of
segments because the first and last vertex
points do not connect. For lines with fewer
segments, repeat the ending coordinates to fill
the matrix.

You can also specify the shapes as a cell array
of M vectors.

{[x11,y11,x12,y12,...,x1p,y1p],
[x21,y21,x22,y22,.....,x2q,y2q], ...
[xM1,yM1,xM2,yM2,.......,xMr,yMr]}

p, q, and r specify the number of vertices.

3 Functions Alphabetical

3-558

Shape Position Shape Drawn
'Polygon'
'FilledPolygon'

An M-by-2L matrix, where each row represents
a polygon with L number of vertices. Each row
of the matrix corresponds to a polygon. For
polygons with fewer segments, repeat the
ending coordinates to fill the matrix.

x11 y11 x12 y12 ⋯ x1L y1L

x21 y21 x22 y22 ⋯ x2L y2L

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xM1 yM1 xM2 yM2 ⋯ xML yML

You can also specify the shapes as a cell array
of M vectors:

{[x11,y11,x12,y12,...,x1p,y1p],
[x21,y21,x22,y22,.....,x2q,y2q], ...
[xM1,yM1,xM2,yM2,.......,xMr,yMr]}

p, q, and r specify the number of vertices.
'Circle'
'FilledCircle'

An M-by-3 matrix, where each row is a vector
specifying a circle as x y radius . The x y
coordinates represent the center of the circle.

x1 y1 radius1

x2 y2 radius2

⋮ ⋮ ⋮
xM yM radiusM

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 insertShape

3-559

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','yellow' specifies yellow for the shape color.

LineWidth — Shape border line width
1 (default) | positive scalar integer

Shape border line width, specified in pixels, as a positive scalar integer. This property
only applies to the 'Rectangle', 'Line', 'Polygon', or 'Circle' shapes.
Data Types: uint8 | uint16 | int16 | double | single

Color — Shape color
'yellow' (default) | character vector | cell array of character vectors | [R G B] vector |
M-by-3 matrix

Shape color, specified as the comma-separated pair consisting of 'Color' and either a
character vector, cell array of character vector, or matrix. You can specify a different color
for each shape, or one color for all shapes.

To specify a color for each shape, set Color to a cell array of color character vectors or
an M-by-3 matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all shapes, set Color to either a color character vector or an [R G
B] vector. The [R G B] vector contains the red, green, and blue values.

Supported colors: 'blue', 'green', 'red', 'cyan', 'magenta', 'black','black',
and 'white'.
Data Types: cell | char | uint8 | uint16 | int16 | double | single

Opacity — Opacity of filled shape
0.6 (default) | range of [0 1]

Opacity of filled shape, specified as the comma-separated pair consisting of 'Opacity'
and a scalar value in the range [0 1]. The Opacity property applies for the
FilledRectangle, FilledPolygon, and FilledCircle shapes.

3 Functions Alphabetical

3-560

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SmoothEdges — Smooth shape edges
true (default) | false

Smooth shape edges, specified as the comma-separated pair consisting of 'SmoothEdges'
and a logical value of true or false. A true value enables an anti-aliasing filter to
smooth shape edges. This value applies only to nonrectangular shapes. Enabling anti-
aliasing requires additional time to draw the shapes.
Data Types: logical

Output Arguments
RGB — Output image
M-by-N-by-3 truecolor

Output image, returned as a truecolor image.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'Color' and 'SmoothEdges' must be compile-time constants.

See Also
insertMarker | insertObjectAnnotation | insertText

Topics
“Draw Markers on an Image” on page 3-541
“Insert Numbers and Text on Image” on page 3-563

 insertShape

3-561

Introduced in R2014a

3 Functions Alphabetical

3-562

insertText
Insert text in image or video

Syntax
RGB = insertText(I,position,text)
RGB = insertText(I,position,numericValue)
RGB = insertText(___ ,Name,Value)

Description
RGB = insertText(I,position,text) returns a truecolor image with text inserted.
The input image, I, can be either a truecolor or grayscale image.

RGB = insertText(I,position,numericValue) returns a truecolor image with
numeric values inserted.

RGB = insertText(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Insert Numbers and Text on Image

Read the image.

I = imread('board.tif');

Create texts that contain fractions.

text_str = cell(3,1);
conf_val = [85.212 98.76 78.342];
for ii=1:3
 text_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end

 insertText

3-563

Define the positions and colors of the text boxes.

position = [23 373;35 185;77 107];
box_color = {'red','green','yellow'};

Insert the text with new font size, box color, opacity, and text color.

RGB = insertText(I,position,text_str,'FontSize',18,'BoxColor',...
 box_color,'BoxOpacity',0.4,'TextColor','white');

Display the image.

figure
imshow(RGB)
title('Board');

3 Functions Alphabetical

3-564

 insertText

3-565

Insert Numeric Text on Image

Read the image.

I = imread('peppers.png');

Define the (x,_y_) position for the text and the value.

position = [1 50; 100 50];
value = [555 pi];

Insert text using the bottom-left as the anchor point.

RGB = insertText(I,position,value,'AnchorPoint','LeftBottom');

Display the image with the numeric text inserted.

figure
imshow(RGB),title('Numeric values');

3 Functions Alphabetical

3-566

Display non-ASCII character (U+014C)

OWithMacron=native2unicode([hex2dec('C5') hex2dec('8C')],'UTF-8');
RGB = insertText(RGB,[256 50],OWithMacron,'Font','LucidaBrightRegular','BoxColor','w');

Display the image with the numeric text inserted.

figure
imshow(RGB),title('Numeric values');

 insertText

3-567

Input Arguments
I — Input image
M-by-N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified as M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16

text — Unicode text character vector
text character vector | cell array of text character vectors

3 Functions Alphabetical

3-568

Unicode text, specified as a single UNICODE text string or a cell array of UNICODE
strings of length M, where M is the number of rows in position. The function overwrites
pixels with the value of text. The length of the cell array must equal the number of rows
in the position matrix. If you specify a single string, the function uses it for all positions
in the position matrix. Most unicode fonts contain ASCII characters. You can display
non-English and English characters, including English numeric values, with a single font.
Data Types: char

numericValue — Numeric value text
scalar | vector

Numeric value text, specified as a scalar or a vector. If you specify a scalar value, that
value is used for all positions. The vector length must equal the number of rows in the
position matrix. Numeric values are converted to a character vector using the sprintf
format '%0.5g'.
Data Types: char

position — Position of inserted text
vector | matrix

Position of inserted text, specified as a vector or an M-by-2 matrix of [x y] coordinates.
Each row represents the [x y] coordinate for the AnchorPoint of the text bounding box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'AnchorPoint','LeftTop'

Font — Font face of text
'LucidaSansRegular' (default) | character vector

Font face of text, specified as the comma-separated pair consisting of 'Font' and a
character vector. The font face must be one of the available truetype fonts installed on

 insertText

3-569

your system. To get a list of available fonts on your system, type listTrueTypeFonts at
the MATLAB command prompt.
Data Types: char

FontSize — Font size
12 (default) | positive integer in the range [1,200]

Font size, specified as the comma-separated pair consisting of 'FontSize' and a positive
integer in the range [1,200].
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TextColor — Text color
'black' (default) | character vector | cell array of character vectors | [R G B] vector | M-
by-3 matrix

Text color, specified as the comma-separated pair consisting of 'TextColor' and a
character vector, cell array of character vectors, or matrix. You can specify a different
color for each character vector or one color for all character vectors.

• To specify a color for each text character vector, set TextColor to a cell array of M
number of color character vectors. Or, you can set it to an M-by-3 matrix of RGB
character vector color values.

• To specify one color for all text character vectors, set TextColor to either a color
character vector or an [R G B] vector of red, green, and blue values.

• RGB values must be in the range of the image data type. Supported colors: 'blue',
'green', 'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell | char | uint8 | uint16 | int16 | double | single

BoxColor — Text box color
'yellow' (default) | character vector | cell array of character vectors | [R G B] vector | M-
by-3 matrix

Text box color, specified as the comma-separated pair consisting of 'BoxColor' and a
character vector, cell array of character vector, or matrix. You can specify a different color
for each text box or one color for all the boxes.

• To specify a color for each text box, set BoxColor to a cell array of M number of color
character vectors. Or, you can set it to an M-by-3 matrix of M number of RGB (red,
green, and blue) character vector color values.

3 Functions Alphabetical

3-570

• To specify one color for all the text boxes, set BoxColor to either a color character
vector or an [R G B] vector. The [R G B] vector contains the red, green, and blue
values.

• RGB values must be in the range of the image data type. Supported colors: 'blue',
'green', 'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell | char | uint8 | uint16 | int16 | double | single

BoxOpacity — Opacity of text box
0.6 (default) | scalar value in the range of [0 1]

Opacity of text box, specified as the comma-separated pair consisting of 'BoxOpacity'
and a scalar value in the range [0,1]. A value of 0 corresponds to a fully transparent text
box, or no box. A value of 1 corresponds to a fully opaque text box.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

AnchorPoint — Text box reference point
'LeftTop' (default) | 'LeftCenter' | 'LeftBottom' | 'CenterTop' | 'Center' |
'CenterBottom' | 'RightTop' | 'RightCenter' | 'RightBottom'

Text box reference point, specified as the comma-separated pair consisting of
'AnchorPoint' and a character vector value. The anchor point defines a relative location
on the text box. You can position the text box by placing its anchor point at the [x,y]
coordinate defined by the corresponding position for the text. For example, to place the
center of the text box to be at the [x,y] coordinate you specified with the position input,
then set AnchorPoint to Center.

Supported positions are LeftTop, LeftCenter, LeftBottom, CenterTop, Center,
CenterBottom, RightTop, RightCenter, and RightBottom.
Data Types: char

Output Arguments
RGB — Output image
M-by-N-by-3 truecolor image

Output image, returned as an M-by-N-by-3 truecolor image with the specified text
inserted.

 insertText

3-571

Limitations
• If you do not see characters in the output image, it means that the font did not contain

the character. Select a different font. To get a list of available fonts on your system, at
the MATLAB prompt, type listTrueTypeFonts.

• Increasing the font size also increases the preprocessing time and memory usage.
• The insertText function does not work for certain composite characters. For

example, you cannot insert text when the rendering of one glyph corresponding to a
character code influences the position, shape, or size of the adjacent glyph.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Font, FontSize must be compile-time constants.
• Non-ASCII characters are not supported.

See Also
insertMarker | insertObjectAnnotation | insertShape | listTrueTypeFonts

Topics
“Draw Markers on an Image” on page 3-541
“Insert Circle and Filled Shapes on an Image” on page 3-555

Introduced in R2013a

3 Functions Alphabetical

3-572

isEpipoleInImage
Determine whether image contains epipole

Syntax
isIn = isEpipoleInImage(F,imageSize)
isIn = isEpipoleInImage(F',imageSize)
[isIn,epipole] = isEpipoleInImage(___)

Description
isIn = isEpipoleInImage(F,imageSize) determines whether the first stereo image
associated with the fundamental matrix F contains an epipole. imageSize is the size of
the first image, and is in the format returned by the function size.

isIn = isEpipoleInImage(F',imageSize) determines whether the second stereo
image associated with the fundamental matrix F' contains an epipole.

[isIn,epipole] = isEpipoleInImage(___) also returns the epipole.

Examples

Determine Epipole Location in an Image
% Load stereo point pairs.
 load stereoPointPairs
 f = estimateFundamentalMatrix(matchedPoints1, matchedPoints2, 'NumTrials', 2000);
 imageSize = [200 300];

% Determine whether the image contains epipole and epipole location.
 [isIn,epipole] = isEpipoleInImage(f,imageSize)

isIn = logical
 1

 isEpipoleInImage

3-573

epipole = 1×2

 256.5465 100.0140

Input Arguments
F — Fundamental matrix
3-by-3 matrix (default)

Fundamental matrix, specified as a 3-by-3 matrix computed from stereo images. F must
be double or single. If P1 represents a point in the first image I1 that corresponds to P2, a
point in the second image I2, then:
[P2,1] * F * [P1,1]’ = 0

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates
corresponding points in stereo images. When two cameras view a 3-D scene from two
distinct positions, there are a number of geometric relations between the 3-D points and
their projections onto the 2-D images that lead to constraints between the image points.
Two images of the same scene are related by epipolar geometry.

imageSize — Image size
row vector

Image size, specified in the format returned by the size function.

Output Arguments
isIn — Valid epipole
logical

Valid epipole logical, specified as true when the image contains an epipole, and false
when the image does not contain an epipole.

When the image planes are at a great enough angle to each other, you can expect the
epipole to be located in the image.

3 Functions Alphabetical

3-574

epipolar plane

eL eR

Point

Right Observation PointLeft Observation Point

epipolar line

epipoles

projection point
image

When the image planes are at a more subtle angle to each other, you can expect the
epipole to be located outside of the image, (but still in the image plane).

Point

Right Observation PointLeft Observation Point eL eReL eR

image

image plane

epipole — Location of epipole
1-by-2 vector

Location of epipole, returned as a 1-by-2 vector.

 isEpipoleInImage

3-575

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
epipolarLine | estimateFundamentalMatrix |
estimateUncalibratedRectification

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2011a

3 Functions Alphabetical

3-576

isfilterseparable
Determine whether filter coefficients are separable

Syntax
S = isfilterseparable(H)
[S, HCOL, HROW] = isfilterseparable(H)

Description
S = isfilterseparable(H) takes in the filter kernel H and returns 1 (true) when the
filter is separable, and 0 (false) otherwise.

[S, HCOL, HROW] = isfilterseparable(H) uses the filter kernel, H, to return its
vertical coefficients HCOL and horizontal coefficients HROW when the filter is separable.
Otherwise, HCOL and HROW are empty.

Input Arguments
H

H numeric or logical, 2-D, and nonsparse.

Output Arguments
HCOL

HCOL is the same data type as input H when H is either single or double floating point.
Otherwise, HCOL becomes double floating point. If S is true, HCOL is a vector of vertical
filter coefficients. Otherwise, HCOL is empty.

 isfilterseparable

3-577

HROW

HROW is the same data type as input H when H is either single or double floating point.
Otherwise, HROW becomes double floating point. If S is true, HROW is a vector of horizontal
filter coefficients. Otherwise, HROW is empty.

S

Logical variable that is set to true, when the filter is separable, and false, when it is
not.

Examples

Determine if Gaussian Filter is Separable

Determine if the Gaussian filter created using the fspecial function is separable.

Create a Gaussian filter.

twoDimensionalFilter = fspecial('gauss');

Test the filter.

[isseparable,hcol,hrow] = isfilterseparable(twoDimensionalFilter)

isseparable = logical
 1

hcol = 3×1

 -0.1065
 -0.7870
 -0.1065

hrow = 1×3

 -0.1065 -0.7870 -0.1065

3 Functions Alphabetical

3-578

Definitions

Separable two dimensional filters
Separable two-dimensional filters reflect the outer product of two vectors. Separable
filters help reduce the number of calculations required.

A two-dimensional convolution calculation requires a number of multiplications equal to
the width × height for each output pixel. The general case equation for a two-dimensional
convolution is:

Y(m, n) = ∑
k
∑
l

H(k, l)U(m− k, n− l)

If the filter H is separable then,

H(k, l) = Hrow(k)Hcol(l)

Shifting the filter instead of the image, the two-dimensional equation becomes:

Y(m, n) = ∑
k

Hrow(k)∑
l

Hcol(l) U(m− k, n− l)

This calculation requires only (width + height) number of multiplications for each pixel.

Algorithms
The isfilterseparable function uses the singular value decomposition svd function to
determine the rank of the matrix.

See Also
2-D FIR Filter | rank | svd

External Websites
MATLAB Central — Separable Convolution

Introduced in R2006a

 isfilterseparable

3-579

https://blogs.mathworks.com/steve/2006/10/04/separable-convolution/

lineToBorderPoints
Intersection points of lines in image and image border

Syntax
points = lineToBorderPoints(lines,imageSize)

Description
points = lineToBorderPoints(lines,imageSize) computes the intersection
points between one or more lines in an image with the image border.

Examples

Find Intersection Points Between a Line and Image Border

Load and display an image.

I = imread('rice.png');
figure;
imshow(I);
hold on;

3 Functions Alphabetical

3-580

Define a line with the equation, 2 * x + y - 300 = 0.

aLine = [2,1,-300];

Compute the intersection points of the line and the image border.

points = lineToBorderPoints(aLine,size(I))

points = 1×4

 149.7500 0.5000 21.7500 256.5000

line(points([1,3]),points([2,4]));

 lineToBorderPoints

3-581

Input Arguments
lines — Line matrix
M-by-3 matrix (default)

Line matrix, specified as an M-by-3 matrix, where each row must be in the format,
[A,B,C]. This matrix corresponds to the definition of the line:
A * x + B * y + C = 0.
M represents the number of lines.

lines must be double or single.

imageSize — Image size
integer (default) | row vector

Image size, specified as a row vector in the format returned by the size function.

3 Functions Alphabetical

3-582

Output Arguments
points — Intersection points
M-by-4 matrix

Intersection points, returned as an M-by-4 matrix. The function returns the matrix in the
format of [x1, y1, x2, y2]. In this matrix, [x1 y1] and [x2 y2] are the two intersection points.
When a line in the image and the image border do not intersect, the function returns
[-1,-1,-1,-1].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
epipolarLine | line | size

Introduced in R2011a

 lineToBorderPoints

3-583

matchFeatures
Find matching features

Syntax
indexPairs = matchFeatures(features1,features2)
[indexPairs,matchmetric] = matchFeatures(features1,features2)
[indexPairs,matchmetric] = matchFeatures(features1,features2,
Name,Value)

Description
indexPairs = matchFeatures(features1,features2) returns indices of the
matching features in the two input feature sets. The input feature must be either
binaryFeatures objects or matrices.

[indexPairs,matchmetric] = matchFeatures(features1,features2) also
returns the distance between the matching features, indexed by indexPairs.

[indexPairs,matchmetric] = matchFeatures(features1,features2,
Name,Value) includes additional options specified by one or more Name,Value pair
arguments.

Examples

Find Corresponding Interest Points Between Pair of Images

Find corresponding interest points between a pair of images using local neighbhorhoods
and the Harris algorithm.

Read the stereo images.

I1 = rgb2gray(imread('viprectification_deskLeft.png'));
I2 = rgb2gray(imread('viprectification_deskRight.png'));

3 Functions Alphabetical

3-584

Find the corners.

points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);

Extract the neighborhood features.

[features1,valid_points1] = extractFeatures(I1,points1);
[features2,valid_points2] = extractFeatures(I2,points2);

Match the features.

indexPairs = matchFeatures(features1,features2);

Retrieve the locations of the corresponding points for each image.

matchedPoints1 = valid_points1(indexPairs(:,1),:);
matchedPoints2 = valid_points2(indexPairs(:,2),:);

Visualize the corresponding points. You can see the effect of translation between the two
images despite several erroneous matches.

figure; showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);

 matchFeatures

3-585

Find Corresponding Points Using SURF Features

Use the SURF local feature detector function to find the corresponding points between
two images that are rotated and scaled with respect to each other.

Read the two images.

I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20),1.2);

Find the SURF features.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

3 Functions Alphabetical

3-586

Extract the features.

[f1,vpts1] = extractFeatures(I1,points1);
[f2,vpts2] = extractFeatures(I2,points2);

Retrieve the locations of matched points.

indexPairs = matchFeatures(f1,f2) ;
matchedPoints1 = vpts1(indexPairs(:,1));
matchedPoints2 = vpts2(indexPairs(:,2));

Display the matching points. The data still includes several outliers, but you can see the
effects of rotation and scaling on the display of matched features.

figure; showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
legend('matched points 1','matched points 2');

 matchFeatures

3-587

Input Arguments
features1 — Feature set 1
binaryFeatures object | M1-by-N matrix

Features set 1, specified as a binaryFeatures object or an M1-by-N matrix. The matrix
contains M1 features, and N corresponds to the length of each feature vector. You can

3 Functions Alphabetical

3-588

obtain the binaryFeatures object using the extractFeatures function with the fast
retina keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust
invariant scalable keypoints (BRISK) descriptor method.

features2 — Feature set 2
M2-by-N matrix | binaryFeatures object

Features set 2, specified as a binaryFeatures object or an M2-by-N matrix. The matrix
contains M2 features and N corresponds to the length of each feature vector. You can
obtain the binaryFeatures object using the extractFeatures function with the fast
retina keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust
invariant scalable keypoints (BRISK) descriptor method.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Metric','SSD' specifies the sum of squared differences for the feature
matching metric.

Method — Matching method
'Exhaustive' (default) | 'Approximate'

Matching method, specified as the comma-separated pair consisting of 'Method' and
either 'Exhaustive' or 'Approximate'. The method specifies how nearest neighbors
between features1 and features2 are found. Two feature vectors match when the
distance between them is less than the threshold set by the MatchThreshold parameter.

'Exhaustive' Compute the pairwise distance between feature
vectors in features1 and features2.

'Approximate' Use an efficient approximate nearest neighbor search.
Use this method for large feature sets. [3]

MatchThreshold — Matching threshold
10.0 or 1.0 (default) | percent value in the range (0, 100]

Matching threshold threshold, specified as the comma-separated pair consisting of
'MatchThreshold' and a scalar percent value in the range (0,100]. The default values

 matchFeatures

3-589

are set to either 10.0 for binary feature vectors or to 1.0 for nonbinary feature vectors.
You can use the match threshold for selecting the strongest matches. The threshold
represents a percent of the distance from a perfect match.

Two feature vectors match when the distance between them is less than the threshold set
by MatchThreshold. The function rejects a match when the distance between the
features is greater than the value of MatchThreshold. Increase the value to return more
matches.

Inputs that are binaryFeatures objects typically require a larger value for the match
threshold. The extractFeatures function returns the binaryFeatures objects when
extracting FREAK, ORB, or BRISK descriptors.

MaxRatio — Ratio threshold
0.6 (default) | ratio in the range (0,1]

Ratio threshold, specified as the comma-separated pair consisting of 'MaxRatio' and a
scalar ratio value in the range (0,1]. Use the max ratio for rejecting ambiguous matches.
Increase this value to return more matches.

Metric — Feature matching metric
'SSD' (default) | 'SAD'

Feature matching metric, specified as the comma-separated pair consisting of 'Metric'
and either 'SAD' or 'SSD'.

'SAD' Sum of absolute differences
'SSD' Sum of squared differences

This property applies when the input feature sets, features1 and features2, are not
binaryFeatures objects. When you specify the features as binaryFeatures objects,
the function uses the Hamming distance to compute the similarity metric.

Unique — Unique matches
false (default) | true

Unique matches, specified as the comma-separated pair consisting of 'Unique' and either
false or true. Set this value to true to return only unique matches between
features1 and features2.

3 Functions Alphabetical

3-590

When you set Unique to false, the function returns all matches between features1
and features2. Multiple features in features1 can match to one feature in
features2.

features1

.

.

.

f1

f2

f3

f4

fm

1

2

3

4

m

features2

.

.

.

f1

f2

f3

f4

fn

1

2

3

4

n

When you set Unique to true, the function performs a forward-backward match to select
a unique match. After matching features1 to features2, it matches features2 to
features1 and keeps the best match.

Output Arguments
indexPairs — Indices to corresponding features
P-by-2 matrix

Indices of corresponding features between the two input feature sets, returned as a P-
by-2 matrix of P number of indices. Each index pair corresponds to a matched feature
between the features1 and features2 inputs. The first element indexes the feature in
features1. The second element indexes the matching feature in features2.

 matchFeatures

3-591

featu
res1 in

dex

featu
res2 in

dex

3 2

1 4

5 8

7 12
.

.

.

.

.

.

indexPairs

i1

i2

i3

i4

ip

features1

.

.

.

f1

f2

f3

f4

fm

1

2

3

4

m

features2

.

.

.

f1

f2

f3

f4

fn

1

2

3

4

n

matchmetric — Distance between matching features
p-by-1 vector

Distance between matching features, returned as a p-by-1 vector. The value of the
distances are based on the metric selected. Each ith element in matchmetric
corresponds to the ith row in the indexPairs output matrix. When Metric is set to
either SAD or SSD, the feature vectors are normalized to unit vectors before computation.

Metric Range Perfect Match Value
SAD [0, 2*sqrt(size(features1, 2))]. 0
SSD [0,4] 0
Hamming [0, features1.NumBits] 0

Note You cannot select the Hamming metric. It is invoked automatically when
features1 and features2 inputs are binaryFeatures.

3 Functions Alphabetical

3-592

References
[1] Lowe, David G. "Distinctive Image Features from Scale-Invariant Keypoints."

International Journal of Computer Vision. Volume 60, Number 2, pp. 91–110.

[2] Muja, M., and D. G. Lowe. "Fast Matching of Binary Features. "Conference on
Computer and Robot Vision. CRV, 2012.

[3] Muja, M., and D. G. Lowe. "Fast Approximate Nearest Neighbors with Automatic
Algorithm Configuration." International Conference on Computer Vision Theory
and Applications.VISAPP, 2009.

[4] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to
SIFT or SURF." In Proceedings of the 2011 International Conference on Computer
Vision, 2564–2571. Barcelona, Spain, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generates platform-dependent library for MATLAB host only when using the
Exhaustive method.

• Generates portable C code for non-host target only when using the Exhaustive
method.

• Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0)
libraries when not using the Exhaustive method. See “Portable C Code Generation
for Functions That Use OpenCV Library”.

• 'Method' and 'Metric' must be compile-time constants.

See Also
binaryFeatures | detectBRISKFeatures | detectFASTFeatures |
detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures |

 matchFeatures

3-593

detectORBFeatures | detectSURFFeatures | estimateFundamentalMatrix |
estimateGeometricTransform | extractFeatures | showMatchedFeatures

Topics
“Structure from Motion”

Introduced in R2011a

3 Functions Alphabetical

3-594

mplay
View video from MATLAB workspace, multimedia file, or Simulink model.

Syntax

Description

Note The mplay function will be removed in a future release. Use the implay function
with functionality identical to mplay.

Introduced in R2006a

 mplay

3-595

ocr
Recognize text using optical character recognition

Syntax
txt = ocr(I)
txt = ocr(I, roi)

[___] = ocr(___ ,Name,Value)

Description
txt = ocr(I) returns an ocrText object containing optical character recognition
information from the input image, I. The object contains recognized text, text location,
and a metric indicating the confidence of the recognition result.

txt = ocr(I, roi) recognizes text in I within one or more rectangular regions. The
roi input contains an M-by-4 matrix, with M regions of interest.

[___] = ocr(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments, using any of the preceding syntaxes.

Examples

Recognize Text Within an Image

 businessCard = imread('businessCard.png');
 ocrResults = ocr(businessCard)

ocrResults =
 ocrText with properties:

 Text: '‘ MathWorks®...'
 CharacterBoundingBoxes: [103x4 double]

3 Functions Alphabetical

3-596

 CharacterConfidences: [103x1 single]
 Words: {16x1 cell}
 WordBoundingBoxes: [16x4 double]
 WordConfidences: [16x1 single]

 recognizedText = ocrResults.Text;
 figure;
 imshow(businessCard);
 text(600, 150, recognizedText, 'BackgroundColor', [1 1 1]);

Recognize Text in Regions of Interest (ROI)

Read image.

I = imread('handicapSign.jpg');

 ocr

3-597

Define one or more rectangular regions of interest within I.

roi = [360 118 384 560];

You may also use IMRECT to select a region using a mouse: figure; imshow(I); roi =
round(getPosition(imrect))

ocrResults = ocr(I, roi);

Insert recognized text into original image

Iocr = insertText(I,roi(1:2),ocrResults.Text,'AnchorPoint',...
 'RightTop','FontSize',16);
figure; imshow(Iocr);

3 Functions Alphabetical

3-598

Display Bounding Boxes of Words and Recognition Confidences
 businessCard = imread('businessCard.png');
 ocrResults = ocr(businessCard)

ocrResults =
 ocrText with properties:

 Text: '‘ MathWorks®...'
 CharacterBoundingBoxes: [103x4 double]

 ocr

3-599

 CharacterConfidences: [103x1 single]
 Words: {16x1 cell}
 WordBoundingBoxes: [16x4 double]
 WordConfidences: [16x1 single]

 Iocr = insertObjectAnnotation(businessCard, 'rectangle', ...
 ocrResults.WordBoundingBoxes, ...
 ocrResults.WordConfidences);
 figure; imshow(Iocr);

Find and Highlight Text in an Image

businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);

3 Functions Alphabetical

3-600

Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image | M-by-N binary image

Input image, specified in M-by-N-by-3 truecolor, M-by-N 2-D grayscale, or binary format.
The input image must be a real, nonsparse value. The function converts truecolor or
grayscale input images to a binary image, before the recognition process. It uses the
Otsu’s thresholding technique for the conversion. For best ocr results, the height of a
lowercase ‘x’, or comparable character in the input image, must be greater than 20
pixels. From either the horizontal or vertical axes, remove any text rotations greater than
+/- 10 degrees, to improve recognition results.

 ocr

3-601

Data Types: single | double | int16 | uint8 | uint16 | logical

roi — Region of interest
M-by-4 element matrix

One or more rectangular regions of interest, specified as an M-by-4 element matrix. Each
row, M, specifies a region of interest within the input image, as a four-element vector, [x y
width height]. The vector specifies the upper-left corner location, [x y], and the size of a
rectangular region of interest, [width height], in pixels. Each rectangle must be fully
contained within the input image, I. Before the recognition process, the function uses the
Otsu’s thresholding to convert truecolor and grayscale input regions of interest to binary
regions. The function returns text recognized in the rectangular regions as an array of
objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

TextLayout — Input text layout
'Auto' (default) | 'Block' | 'Line' | 'Word'

Input text layout, specified as the comma-separated pair consisting of 'TextLayout' and
the character vector 'Auto', 'Block', 'Line', or 'Word'.

The table lists how the function treats the text for each TextLayout setting.

TextLayout Text Treatment
'Auto' Determines the layout and reading order of

text blocks within the input image.
'Block' Treats the text in the image as a single

block of text.
'Line' Treats the text in the image as a single line

of text.

3 Functions Alphabetical

3-602

TextLayout Text Treatment
'Word' Treats the text in the image as a single

word of text.

Use the automatic layout analysis to recognize text from a scanned document that
contains a specific format, such as a double column. This setting preserves the reading
order in the returned text. You may get poor results if your input image contains a few
regions of text or the text is located in a cluttered scene. If you get poor OCR results, try
a different layout that matches the text in your image. If the text is located in a cluttered
scene, try specifying an ROI around the text in your image in addition to trying a different
layout.

Language — Language
'English' (default) | 'Japanese' | character vector | cell array of character vectors

Language to recognize, specified as the comma-separated pair consisting of 'Language'
and the character vector 'English', 'Japanese', or a cell array of character vectors.
You can also install the “Install OCR Language Data Files” package for additional
languages or add a custom language. Specifying multiple languages enables simultaneous
recognition of all the selected languages. However, selecting more than one language
may reduce the accuracy and increase the time it takes to perform ocr.

To specify any of the additional languages which are contained in the “Install OCR
Language Data Files” package, use the language character vector the same way as the
built-in languages. You do not need to specify the path.

txt = ocr(img,'Language','Finnish');

List of Support Package OCR Languages

• 'Afrikaans'
• 'Albanian'
• 'AncientGreek'
• 'Arabic'
• 'Azerbaijani'
• 'Basque'
• 'Belarusian'
• 'Bengali'

 ocr

3-603

• 'Bulgarian'
• 'Catalan'
• 'Cherokee'
• 'ChineseSimplified'
• 'ChineseTraditional'
• 'Croatian'
• 'Czech'
• 'Danish'
• 'Dutch'
• 'English'
• 'Esperanto'
• 'EsperantoAlternative'
• 'Estonian'
• 'Finnish'
• 'Frankish'
• 'French'
• 'Galician'
• 'German'
• 'Greek'
• 'Hebrew'
• 'Hindi'
• 'Hungarian'
• 'Icelandic'
• 'Indonesian'
• 'Italian'
• 'ItalianOld'
• 'Japanese'
• 'Kannada'
• 'Korean'
• 'Latvian'

3 Functions Alphabetical

3-604

• 'Lithuanian'
• 'Macedonian'
• 'Malay'
• 'Malayalam'
• 'Maltese'
• 'MathEquation'
• 'MiddleEnglish'
• 'MiddleFrench'
• 'Norwegian'
• 'Polish'
• 'Portuguese'
• 'Romanian'
• 'Russian'
• 'SerbianLatin'
• 'Slovakian'
• 'Slovenian'
• 'Spanish'
• 'SpanishOld'
• 'Swahili'
• 'Swedish'
• 'Tagalog'
• 'Tamil'
• 'Telugu'
• 'Thai'
• 'Turkish'
• 'Ukrainian'

To use your own custom languages, specify the path to the trained data file as the
language character vector. You must name the file in the format,
<language>.traineddata. The file must be located in a folder named 'tessdata'. For
example:

txt = ocr(img,'Language','path/to/tessdata/eng.traineddata');

 ocr

3-605

You can load multiple custom languages as a cell array of character vectors:

txt = ocr(img,'Language', ...
 {'path/to/tessdata/eng.traineddata',...
 'path/to/tessdata/jpn.traineddata'});

The containing folder must always be the same for all the files specified in the cell array.
In the preceding example, all of the traineddata files in the cell array are contained in
the folder ‘path/to/tessdata’. Because the following code points to two different
containing folders, it does not work.

txt = ocr(img,'Language', ...
 {'path/one/tessdata/eng.traineddata',...
 'path/two/tessdata/jpn.traineddata'});

Some language files have a dependency on another language. For example, Hindi training
depends on English. If you want to use Hindi, the English traineddata file must also
exist in the same folder as the Hindi traineddata file. The ocr only supports
traineddata files created using tesseract-ocr 3.02 or using the OCR Trainer.

For deployment targets generated by MATLAB Coder: Generated ocr executable and
language data file folder must be colocated. The tessdata folder must be named
tessdata:

• For English: C:/path/tessdata/eng.traineddata
• For Japanese: C:/path/tessdata/jpn.traineddata
• For custom data files: C:/path/tessdata/customlang.traineddata
• C:/path/ocr_app.exe

You can copy the English and Japanese trained data files from:

fullfile(matlabroot, 'toolbox','vision','visionutilities','tessdata');

CharacterSet — Character subset
'' all characters (default) | character vector

Character subset, specified as the comma-separated pair consisting of 'CharacterSet'
and a character vector. By default, CharacterSet is set to the empty character vector,
''. The empty vector sets the function to search for all characters in the language
specified by the Language property. You can set this property to a smaller set of known
characters to constrain the classification process.

3 Functions Alphabetical

3-606

The ocr function selects the best match from the CharacterSet. Using deducible
knowledge about the characters in the input image helps to improve text recognition
accuracy. For example, if you set CharacterSet to all numeric digits, '0123456789',
the function attempts to match each character to only digits. In this case, a non-digit
character can incorrectly get recognized as a digit.

Output Arguments
txt — Recognized text and metrics
ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the
recognized text, the location of the recognized text within the input image, and the
metrics indicating the confidence of the results. The confidence values range is [0 1] and
represents a percent probability. When you specify an M-by-4 roi, the function returns
ocrText as an M-by-1 array of ocrText objects.

If your ocr results are not what you expect, try one or more of the following options:

• Increase the image 2-to-4 times the original size.
• If the characters in the image are too close together or their edges are touching, use

morphology to thin out the characters. Using morphology to thin out the characters
separates the characters.

• Use binarization to check for non-uniform lighting issues. Use the graythresh and
imbinarize functions to binarize the image. If the characters are not visible in the
results of the binarization, it indicates a potential non-uniform lighting issue. Try top
hat, using the imtophat function, or other techniques that deal with removing non-
uniform illumination.

• Use the region of interest roi option to isolate the text. Specify the roi manually or
use text detection.

• If your image looks like a natural scene containing words, like a street scene, rather
than a scanned document, try using an ROI input. Also, you can set the TextLayout
property to 'Block' or 'Word'.

 ocr

3-607

References
[1] R. Smith. An Overview of the Tesseract OCR Engine, Proceedings of the Ninth

International Conference on Document Analysis and Recognition (ICDAR 2007)
Vol 2 (2007), pp. 629-633.

[2] Smith, R., D. Antonova, and D. Lee. Adapting the Tesseract Open Source OCR Engine
for Multilingual OCR. Proceedings of the International Workshop on Multilingual
OCR, (2009).

[3] R. Smith. Hybrid Page Layout Analysis via Tab-Stop Detection. Proceedings of the 10th
international conference on document analysis and recognition. 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• 'TextLayout', 'Language', and 'CharacterSet' must be compile-time constants.
• Generated code for this function uses a precompiled platform-specific shared library.

See Also
OCR Trainer | graythresh | imbinarize | imtophat | insertShape | ocrText

Topics
“Automatically Detect and Recognize Text in Natural Images”
“Recognize Text Using Optical Character Recognition (OCR)”
“Train Optical Character Recognition for Custom Fonts”
“Install OCR Language Data Files”
“Install Computer Vision Toolbox Add-on Support Files”

Introduced in R2014a

3 Functions Alphabetical

3-608

https://www.mathworks.com/support/sysreq.html

pcdenoise
Remove noise from 3-D point cloud

Syntax
ptCloudOut = pcdenoise(ptCloudIn)
[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn)
[ptCloudOut, ___] = pcdenoise(___ Name,Value)

Description
ptCloudOut = pcdenoise(ptCloudIn) returns a filtered point cloud that removes
outliers.

[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn)
additionally returns the linear indices to the points that are identified as inliers and
outliers.

[ptCloudOut, ___] = pcdenoise(___ Name,Value) uses additional options
specified by one or more Name,Value pair arguments, using any of the preceding
syntaxes.

Examples

Remove Outliers from Noisy Point Cloud

Create a plane point cloud.

gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
ptCloud = pointCloud([X(:),Y(:),0.5*ones(numel(X),1)]);

figure
pcshow(ptCloud);
title('Original Data');

 pcdenoise

3-609

Add uniformly distributed random noise.

noise = rand(500, 3);
ptCloudA = pointCloud([ptCloud.Location; noise]);

figure
pcshow(ptCloudA);
title('Noisy Data');

3 Functions Alphabetical

3-610

Remove outliers.

ptCloudB = pcdenoise(ptCloudA);

figure;
pcshow(ptCloudB);
title('Denoised Data');

 pcdenoise

3-611

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

3 Functions Alphabetical

3-612

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Threshold','1.0' sets the threshold to 1.0.

NumNeighbors — Number of nearest neighbor points
4 (default) | positive integer

Number of nearest neighbor points, specified as the comma-separated pair consisting of
'NumNeighbors' and a positive integer in pixels. The value is used to estimate the mean
of the average distance to neighbors of all points. Decreasing this value makes the filter
more sensitive to noise. Increasing this value increases the number of computations.

Threshold — Outlier threshold
1.0 (default) | scalar

Outlier threshold, specified as the comma-separated pair consisting of 'Threshold' and a
scalar. By default, the threshold is one standard deviation from the mean of the average
distance to neighbors of all points. A point is considered to be an outlier if the average
distance to its k-nearest neighbors is above the specified threshold.

Output Arguments
ptCloudOut — Filtered point cloud
pointCloud object

Filtered point cloud, returned as a pointCloud object.

inlierIndices — Linear index of inlier points
1-by-N vector

Linear index of inlier points, returned as a 1-by-N vector.
Data Types: uint32

outlierIndices — Linear index of outlier points
1-by-N vector

Linear index of outlier points, returned as a 1-by-N vector of linear indices.
Data Types: uint32

 pcdenoise

3-613

References
[1] Rusu, R. B., Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. “Towards 3D Point

Cloud Based Object Maps for Household Environments”. Robotics and
Autonomous Systems Journal. 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions Alphabetical

3-614

pcmerge
Merge two 3-D point clouds

Syntax
ptCloudOut = pcmerge(ptCloudA,ptCloudB,gridStep)

Description
ptCloudOut = pcmerge(ptCloudA,ptCloudB,gridStep) returns a merged point
cloud using a box grid filter. gridStep specifies the size of the 3-D box for the filter.

Examples

Merge Two Identical Point Clouds Using Box Grid Filter

Create two identical point clouds.

ptCloudA = pointCloud(100*rand(1000,3));
ptCloudB = copy(ptCloudA);

Merge the two point clouds.

ptCloud = pcmerge(ptCloudA,ptCloudB,1);
pcshow(ptCloud);

 pcmerge

3-615

Input Arguments
ptCloudA — Point cloud A
pointCloud object

Point cloud A, specified as a pointCloud object.

ptCloudB — Point cloud B
pointCloud object

Point cloud B, specified as a pointCloud object.

3 Functions Alphabetical

3-616

gridStep — Size of 3-D box for grid filter
numeric value

Size of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep
when there are not enough resources to construct a large fine-grained grid.
Data Types: single | double

Output Arguments
ptCloudOut — Merged point cloud
pointCloud object

Merged point cloud, returned as a pointCloud object. The function computes the axis-
aligned bounding box for the overlapped region between two point clouds. The bounding
box is divided into grid boxes of the size specified by gridStep. Points within each grid
box are merged by averaging their locations, colors, and normals. Points outside the
overlapped region are untouched.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcdenoise | pcdownsample | pcfitplane | pcplayer | pcread | pcregistericp |
pcshow | pctransform | pcwrite | planeModel | pointCloud

 pcmerge

3-617

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions Alphabetical

3-618

pcdownsample
Downsample a 3-D point cloud

Syntax
ptCloudOut = pcdownsample(ptCloudIn,'random',percentage)
ptCloudOut = pcdownsample(ptCloudIn,'gridAverage',gridStep)
ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample',
maxNumPoints)

Description
ptCloudOut = pcdownsample(ptCloudIn,'random',percentage) returns a
downsampled point cloud with random sampling and without replacement. The
percentage input specifies the portion of the input to return to the output.

ptCloudOut = pcdownsample(ptCloudIn,'gridAverage',gridStep) returns a
downsampled point cloud using a box grid filter. The gridStep input specifies the size of
a 3-D box.

ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample',
maxNumPoints) returns a downsampled point cloud using nonuniform box grid filter. You
must set the maximum number of points in the grid box, maxNumPoints, to at least 6.

Examples

Downsample Point Cloud Using Box Grid Filter

Read a point cloud.

ptCloud = pcread('teapot.ply');

Set the 3-D resolution to be (0.1 x 0.1 x 0.1).

 pcdownsample

3-619

gridStep = 0.1;
ptCloudA = pcdownsample(ptCloud,'gridAverage',gridStep);

Visualize the downsampled data.

figure;
pcshow(ptCloudA);

Compare the point cloud to data that is downsampled using a fixed step size.

stepSize = floor(ptCloud.Count/ptCloudA.Count);
indices = 1:stepSize:ptCloud.Count;
ptCloudB = select(ptCloud, indices);

3 Functions Alphabetical

3-620

figure;
pcshow(ptCloudB);

Remove Redundant Points from Point Cloud

Create a point cloud with all points sharing the same coordinates.

ptCloud = pointCloud(ones(100,3));

Set the 3-D resolution to a small value.

gridStep = 0.01;

 pcdownsample

3-621

The output now contains only one unique point.

ptCloudOut = pcdownsample(ptCloud,'gridAverage',gridStep)

ptCloudOut =
 pointCloud with properties:

 Location: [1 1 1]
 Color: [0x3 uint8]
 Normal: [0x3 double]
 Intensity: [0x1 double]
 Count: 1
 XLimits: [1 1]
 YLimits: [1 1]
 ZLimits: [1 1]

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

'random' — Random downsample method
'random'

Random downsample method, specified as the character vector, 'random'. This method
is more efficient than the 'gridAverage' downsample method, especially when it is
applied before point cloud registration.

Downsample the point cloud using 'random', 'gridAverage', or
'nonuniformGridSample' inputs, according to the Metric you use in the
pcregistericp function for registration.

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

3 Functions Alphabetical

3-622

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample

'

percentage — Percentage of input
positive scalar

Percentage of input, specified as a positive scalar in the range [0, 1]. The percentage
input specifies the portion of the input for the function to return.

'gridAverage' — Grid average downsample method
'gridAverage'

Grid average downsample method, specified as the character vector, 'gridAverage'.
Points within the same box are merged to a single point in the output. Their color and
normal properties are averaged accordingly. This method preserves the shape of the point
cloud better than the 'random' downsample method.

The function computes the axis-aligned bounding box for the entire point cloud. The
bounding box is divided into grid boxes of size specified by gridStep. Points within each
grid box are merged by averaging their locations, colors, and normals.

Downsample the point cloud using 'random', 'gridAverage', or
'nonuniformGridSample' inputs, according to the Metric you use in the
pcregistericp function for registration.

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample

'

gridStep — Size of 3-D box for grid filter
numeric value

 pcdownsample

3-623

Size of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep
when there are not enough resources to construct a large fine-grained grid.
Data Types: single | double

'nonuniformGridSample' — Nonuniform grid sample method
'nonuniformGridSample'

Nonuniform grid sample method, specified as the character vector
'nonuniformGridSample'. The best use of this method is to apply it as a preprocessing
step to the pcregistericp function for point cloud registration, when you use the
'pointToPlane' metric. When you use the 'nonuniformGridSample' algorithm, the
normals are computed on the original data prior to downsampling. The downsampled
output preserves more accurate normals.

Downsample the point cloud using 'random', 'gridAverage', or
'nonuniformGridSample' inputs, according to the Metric you use in the
pcregistericp function for registration.

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample

'

maxNumPoints — Maximum number of points in grid box
integer

Maximum number of points in grid box, specified as an integer greater than 6. The
method randomly selects a single point from each box. If the normal was not provided in
the input point cloud, this method automatically fills in the normal property in the
ptCloudOut output.

Output Arguments
ptCloudOut — Downsampled point cloud
pointCloud object

3 Functions Alphabetical

3-624

Downsampled point cloud, returned as a pointCloud object.

References
[1] Pomerleau, F., F. Colas, R. Siegwart, and S. Magnenat. “Comparing ICP variants on

real-world data sets.” Autonomous Robots. Vol. 34, Issue 3, April 2013, pp. 133–
148.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | pcdenoise | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcregisterndt | pcshow | pctransform | pcwrite | planeModel |
pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

 pcdownsample

3-625

pcread
Read 3-D point cloud from PLY or PCD file

Syntax
ptCloud = pcread(filename)

Description
ptCloud = pcread(filename) reads a point cloud from the PLY or PCD file specified
by the input filename character vector. The function returns a pointCloud object,
ptCloud.

Examples

Read Point Cloud from a PLY File

ptCloud = pcread('teapot.ply');
pcshow(ptCloud);

3 Functions Alphabetical

3-626

Input Arguments
filename — File name
character vector

File name, specified as a character vector. The input file type must be a PLY or a PCD
format file.

The polygon (PLY) file format , also known as the Stanford triangle format stores three-
dimensional data from 3-D scanners. It is a format for storing graphical objects that are
described as a collection of polygons. A PLY file consists of a header, followed by a list of

 pcread

3-627

vertices and then, a list of polygons. The header specifies how many vertices and
polygons are in the file. It also states what properties are associated with each vertex,
such as (x,y,z) coordinates, normals, and color. The file format has two sub-formats: an
ASCII representation and a binary version for compact storage and for rapid saving and
loading. The header of both ASCII and binary files is ASCII text. Only the numeric data
that follows the header is different between the two versions. See “The PLY Format” for
details on the contents of a PLY file.

The point cloud data (PCD) file format also stores three-dimensional data. It was created
by the authors of the widely used point cloud library (PCL) to accommodate additional
point cloud data requirements. See The PCD (Point Cloud Data) file format.

Note This function only supports PCD file formats saved in version 0.7 (PCD_V7). It also
only supports the header entries with the COUNT entry set to 1. It does not support the
COUNT entry set to a feature descriptor.

Output Arguments
ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, returned as a pointCloud object that contains the
following PLY or PCD fields:

• Location property, stores the x, y, and z values.
• Color property, stores the red, green, and blue values.
• Normal property, stores the normal vectors for each point.
• Intensity property, stores the grayscale intensity for each point.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcregistericp |
pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”
“The PLY Format”

3 Functions Alphabetical

3-628

http://pointclouds.org/documentation/tutorials/pcd_file_format.php

External Websites
The PCD (Point Cloud Data) file format

Introduced in R2015a

 pcread

3-629

http://pointclouds.org/documentation/tutorials/pcd_file_format.php

pcregistericp
Register two point clouds using ICP algorithm

Syntax
tform = pcregistericp(moving,fixed)
[tform,movingReg] = pcregistericp(moving,fixed)
[___ ,rmse] = pcregistericp(moving,fixed)
[___] = pcregistericp(moving,fixed,Name,Value)

Description
tform = pcregistericp(moving,fixed) returns a rigid transformation that
registers a moving point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best
performance of this iterative process requires adjusting properties for your data.
Consider downsampling point clouds using pcdownsample before using pcregistericp
to improve accuracy and efficiency of registration.

Point cloud normals are required by the registration algorithm when you select the
'pointToPlane' metric. Therefore, if the input point cloud’s Normal property is empty,
the function fills it. When the function fills the Normal property, it uses 6 points to fit the
local plane. Six points may not work under all circumstances. If registration with the
'pointToPlane' metric fails, consider calling the pcnormals function which allows you
to select the number of points to use.

[tform,movingReg] = pcregistericp(moving,fixed) additionally returns the
transformed point cloud that aligns with the fixed point cloud.

[___ ,rmse] = pcregistericp(moving,fixed) additionally returns the root mean
squared error of the Euclidean distance between the aligned point clouds, using any of
the preceding syntaxes.

[___] = pcregistericp(moving,fixed,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

3 Functions Alphabetical

3-630

Examples

Align Two Point Clouds Using ICP Algorithm

Load point cloud data.

ptCloud = pcread('teapot.ply');

pcshow(ptCloud);
title('Teapot');

Create a transform object with 30 degree rotation along z -axis and translation [5,5,10].

 pcregistericp

3-631

A = [cos(pi/6) sin(pi/6) 0 0; ...
 -sin(pi/6) cos(pi/6) 0 0; ...
 0 0 1 0; ...
 5 5 10 1];
tform1 = affine3d(A);

Transform the point cloud.

ptCloudTformed = pctransform(ptCloud,tform1);

pcshow(ptCloudTformed);
title('Transformed Teapot');

Apply the rigid registration.

3 Functions Alphabetical

3-632

tform = pcregistericp(ptCloudTformed,ptCloud,'Extrapolate',true);

Compare the result with the true transformation.

disp(tform1.T);

 0.8660 0.5000 0 0
 -0.5000 0.8660 0 0
 0 0 1.0000 0
 5.0000 5.0000 10.0000 1.0000

tform2 = invert(tform);
disp(tform2.T);

 0.8660 0.5000 0.0000 0
 -0.5000 0.8660 -0.0000 0
 -0.0000 -0.0000 1.0000 0
 5.0000 5.0000 10.0000 1.0000

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Metric','pointToPoint' sets the metric for the ICP algorithm to the
'pointToPoint' character vector.

 pcregistericp

3-633

Metric — Minimization metric
'pointToPoint' (default) | 'pointToPlane'

Minimization metric, specified as the comma-separated pair consisting of 'Metric' and
the 'pointToPoint' or 'pointToPlane' character vector. The rigid transformation
between the moving and fixed point clouds are estimated by the iterative closest point
(ICP) algorithm. The ICP algorithm minimizes the distance between the two point clouds
according to the given metric.

Setting 'Metric' to 'pointToPlane' can reduce the number of iterations to process.
However, this metric requires extra algorithmic steps within each iteration. The
'pointToPlane' metric improves the registration of planar surfaces.

Downsample Method Selection:
Downsample the point clouds using the pcdownsample function. Use either the
'random' or 'gridAverage' input for the pcdownsample function according to the
Metric table below.

Metric Moving PointCloud
Downsample Method

Fixed Point Cloud
Downsample Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample

'

Extrapolate — Extrapolation
false (default) | true

Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and
the boolean true or false. When you set this property to true, the function adds an
extrapolation step that traces out a path in the registration state space, that is described
in [2]. Setting this property to true can reduce the number of iterations to converge.

InlierRatio — Percentage of inliers
1 (default) | scalar

Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio'
and a scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of

3 Functions Alphabetical

3-634

matched points is considered an inlier if its Euclidean distance falls within the percentage
set of matching distances. By default, all matching pairs are used.

MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. This value specifies the maximum number of
iterations before ICP stops.

Tolerance — Tolerance between consecutive ICP iterations
[0.01, 0.05] (default) | 2-element vector

Tolerance between consecutive ICP iterations, specified as the comma-separated pair
consisting of 'Tolerance' and a 2-element vector. The 2-element vector, [Tdiff, Rdiff],
represents the tolerance of absolute difference in translation and rotation estimated in
consecutive ICP iterations. Tdiff measures the Euclidean distance between two
translation vectors. Rdiff measures the angular difference in degrees. The algorithm stops
when the average difference between estimated rigid transformations in the three most
recent consecutive iterations falls below the specified tolerance value.

InitialTransform — Initial rigid transformation
affine3d() object (default)

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and an affine3d object. The initial rigid transformation is useful
when you provide an external coarse estimation.

Verbose — Display progress information
true (default) | false

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and a logical scalar. Set Verbose to true to display progress information.

Output Arguments
tform — Rigid transformation
affine3d object

Rigid transformation, returned as an affine3d object. The rigid transformation registers
a moving point cloud to a fixed point cloud. The affine3d object describes the rigid 3-D

 pcregistericp

3-635

transform. The iterative closest point (ICP) algorithm estimates the rigid transformation
between the moving and fixed point clouds.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud
is aligned with the fixed point cloud.

rmse — Root mean square error
positive numeric

Root mean square error, returned as the Euclidean distance between the aligned point
clouds.

3 Functions Alphabetical

3-636

Algorithms

 pcregistericp

3-637

References
[1] Chen, Y. and G. Medioni. “Object Modelling by Registration of Multiple Range

Images.” Image Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3,
April 1992, pp. 145-155.

[2] Besl, Paul J., N. D. McKay. “A Method for Registration of 3-D Shapes.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Los Alamitos, CA:
IEEE Computer Society. Vol. 14, Issue 2, 1992, pp. 239-256.

See Also
affine3d | pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread
| pcregistercpd | pcregisterndt | pcshow | pctransform | pcwrite | planeModel
| pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2018a

3 Functions Alphabetical

3-638

pcregisterndt
Register two point clouds using NDT algorithm

Syntax
tform = pcregisterndt(moving,fixed,gridStep)
[tform,movingReg] = pcregisterndt(moving,fixed,gridStep)
[___ ,rmse] = pcregisterndt(moving,fixed,gridStep)
[___] = pcregisterndt(moving,fixed,gridStep,Name,Value)

Description
tform = pcregisterndt(moving,fixed,gridStep) returns the rigid
transformation that registers the moving point cloud with the fixed point cloud. The point
clouds are voxelized into cubes of size gridStep.

The registration algorithm is based on the normal-distributions transform (NDT)
algorithm [1] [2]. Best performance of this iterative process requires adjusting properties
for your data. To improve accuracy and efficiency of registration, consider downsampling
the point clouds by using pcdownsample before using pcregisterndt.

[tform,movingReg] = pcregisterndt(moving,fixed,gridStep) also returns the
transformed point cloud that aligns with the fixed point cloud.

[___ ,rmse] = pcregisterndt(moving,fixed,gridStep) also returns the root
mean square error of the Euclidean distance between the aligned point clouds, using any
of the preceding syntaxes.

[___] = pcregisterndt(moving,fixed,gridStep,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Examples

 pcregisterndt

3-639

Align Two Point Clouds Using NDT Algorithm

Load point cloud data.

ld = load('livingRoom.mat');
moving = ld.livingRoomData{1};
fixed = ld.livingRoomData{2};
pcshowpair(moving,fixed,'VerticalAxis','Y','VerticalAxisDir','Down')

To improve the efficiency and accuracy of the NDT registration algorithm, downsample
the moving point cloud.

movingDownsampled = pcdownsample(moving,'gridAverage',0.1);

3 Functions Alphabetical

3-640

Voxelize the point cloud into cubes of sidelength 0.5. Apply the rigid registration using the
NDT algorithm.

gridStep = 0.5;
tform = pcregisterndt(movingDownsampled,fixed,gridStep);

Visualize the alignment.

movingReg = pctransform(moving,tform);
pcshowpair(movingReg,fixed,'VerticalAxis','Y','VerticalAxisDir','Down')

 pcregisterndt

3-641

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

gridStep — Size of voxels
positive scalar

Size of the 3-D cube that voxelizes the fixed point cloud, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxIterations',20 stops the NDT algorithm after 20 iterations.

InitialTransform — Initial rigid transformation
affine3d object

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and an affine3d object. The initial rigid transformation is useful
when you provide an external coarse estimation.

OutlierRatio — Percentage of outliers
0.55 (default) | scalar in the range [0, 1)

Expected percentage of outliers with respect to a normal distribution, specified as the
comma-separated pair consisting of 'OutlierRatio' and a scalar in the range [0, 1). The
NDT algorithm assumes a point is generated by a mixture of a normal distribution for

3 Functions Alphabetical

3-642

inliers and a uniform distribution for outliers. A larger value of 'OutlierRatio' reduces
the influence of outliers.
Data Types: single | double

MaxIterations — Maximum number of iterations
30 (default) | nonnegative integer

Maximum number of iterations before NDT stops, specified as the comma-separated pair
consisting of 'MaxIterations' and a nonnegative integer.
Data Types: single | double

Tolerance — Tolerance between consecutive NDT iterations
[0.01 0.5] (default) | 2-element vector

Tolerance between consecutive NDT iterations, specified as the comma-separated pair
consisting of 'Tolerance' and a 2-element vector with nonnegative values. The vector,
[Tdiff Rdiff], represents the tolerance of absolute difference in translation and rotation
estimated in consecutive NDT iterations. Tdiff measures the Euclidean distance between
two translation vectors. Rdiff measures the angular difference in degrees. The algorithm
stops when the difference between estimated rigid transformations in the most recent
consecutive iterations falls below the specified tolerance value.
Data Types: single | double

Verbose — Display progress information
false (default) | true

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and a logical scalar. Set Verbose to true to display progress information.
Data Types: logical

Output Arguments
tform — Rigid transformation
affine3d object

Rigid transformation, returned as an affine3d object. tform describes the rigid 3-D
transformation that registers the moving point cloud, moving, to the fixed point cloud,
fixed.

 pcregisterndt

3-643

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud
is aligned with the fixed point cloud, fixed.

rmse — Root mean square error
positive number

Root mean square error, returned as a positive number. rmse is the Euclidean distance
between the aligned point clouds.

References
[1] Biber, P., and W. Straßer. “The Normal Distributions Transform: A New Approach to

Laser Scan Matching.” Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Las Vegas, NV. Vol. 3, November 2003, pp.
2743–2748.

[2] Magnusson, M. “The Three-Dimensional Normal-Distributions Transform — an
Efficient Representation for Registration, Surface Analysis, and Loop Detection.”
Ph.D. Thesis. Örebro University, Örebro, Sweden, 2013.

See Also
affine3d | pcdenoise | pcdownsample | pcmerge | pcregistercpd |
pcregistericp | pcshow | pcshowpair | pctransform | pointCloud

Introduced in R2018a

3 Functions Alphabetical

3-644

pcregrigid
Register two point clouds using ICP algorithm

Note pcregrigid is not recommended. Use pcregistericp instead.

Syntax
tform = pcregrigid(moving,fixed)
[tform,movingReg] = pcregrigid(moving,fixed)
[___ ,rmse] = pcregrigid(moving,fixed)
[___] = pcregrigid(moving,fixed,Name,Value)

Description
tform = pcregrigid(moving,fixed) returns a rigid transformation that registers a
moving point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best
performance of this iterative process requires adjusting properties for your data.
Consider downsampling point clouds using pcdownsample before using pcregrigid to
improve accuracy and efficiency of registration.

Point cloud normals are required by the registration algorithm when you select the
'pointToPlane' metric. Therefore, if the input point cloud’s Normal property is empty,
the function fills it. When the function fills the Normal property, it uses 6 points to fit the
local plane. Six points may not work under all circumstances. If registration with the
'pointToPlane' metric fails, consider calling the pcnormals function which allows you
to select the number of points to use.

[tform,movingReg] = pcregrigid(moving,fixed) additionally returns the
transformed point cloud that aligns with the fixed point cloud.

[___ ,rmse] = pcregrigid(moving,fixed) additionally returns the root mean
squared error of the Euclidean distance between the aligned point clouds, using any of
the preceding syntaxes.

 pcregrigid

3-645

[___] = pcregrigid(moving,fixed,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Align Two Point Clouds

Load point cloud data.

ptCloud = pcread('teapot.ply');
figure
pcshow(ptCloud);
title('Teapot');

3 Functions Alphabetical

3-646

Create a transform object with 30 degree rotation along z -axis and translation [5,5,10].

A = [cos(pi/6) sin(pi/6) 0 0; ...
 -sin(pi/6) cos(pi/6) 0 0; ...
 0 0 1 0; ...
 5 5 10 1];
tform1 = affine3d(A);

Transform the point cloud.

ptCloudTformed = pctransform(ptCloud,tform1);

figure
pcshow(ptCloudTformed);
title('Transformed Teapot');

 pcregrigid

3-647

Apply the rigid registration.

tform = pcregrigid(ptCloudTformed,ptCloud,'Extrapolate',true);

Compare the result with the true transformation.

disp(tform1.T);

 0.8660 0.5000 0 0
 -0.5000 0.8660 0 0
 0 0 1.0000 0
 5.0000 5.0000 10.0000 1.0000

tform2 = invert(tform);
disp(tform2.T);

3 Functions Alphabetical

3-648

 0.8660 0.5000 0.0000 0
 -0.5000 0.8660 -0.0000 0
 -0.0000 -0.0000 1.0000 0
 5.0000 5.0000 10.0000 1.0000

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Metric','pointToPoint' sets the metric for the ICP algorithm to the
'pointToPoint' character vector.

Metric — Minimization metric
'pointToPoint' (default) | 'pointToPlane'

Minimization metric, specified as the comma-separated pair consisting of 'Metric' and
the 'pointToPoint' or 'pointToPlane' character vector. The rigid transformation
between the moving and fixed point clouds are estimated by the iterative closest point
(ICP) algorithm. The ICP algorithm minimizes the distance between the two point clouds
according to the given metric.

Setting 'Metric' to 'pointToPlane' can reduce the number of iterations to process.
However, this metric requires extra algorithmic steps within each iteration. The
'pointToPlane' metric improves the registration of planar surfaces.

 pcregrigid

3-649

Downsample Method Selection:
Downsample the point clouds using the pcdownsample function. Use either the
'random' or 'gridAverage' input for the pcdownsample function according to the
Metric table below.

Metric Point Cloud A Downsample
Method

Point Cloud B Downsample
Method

'pointToPoint' 'random' 'random'
'gridAverage' 'gridAverage'

'pointToPlane' 'gridAverage' 'gridAverage'
'random' 'nonuniformGridSample'

Extrapolate — Extrapolation
false (default) | true

Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and
the boolean true or false. When you set this property to true, the function adds an
extrapolation step that traces out a path in the registration state space, that is described
in [2]. Setting this property to true can reduce the number of iterations to converge.

InlierRatio — Percentage of inliers
1 (default) | scalar

Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio'
and a scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of
matched points is considered an inlier if its Euclidean distance falls within the percentage
set of matching distances. By default, all matching pairs are used.

MaxIterations — Maximum number of iterations
20 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. This value specifies the maximum number of
iterations before ICP stops.

Tolerance — Tolerance between consecutive ICP iterations
[0.01, 0.009] (default) | 2-element vector

Tolerance between consecutive ICP iterations, specified as the comma-separated pair
consisting of 'Tolerance' and a 2-element vector. The 2-element vector, [Tdiff, Rdiff],

3 Functions Alphabetical

3-650

represents the tolerance of absolute difference in translation and rotation estimated in
consecutive ICP iterations. Tdiff measures the Euclidean distance between two
translation vectors. Rdiff measures the angular difference in radians. The algorithm stops
when the average difference between estimated rigid transformations in the three most
recent consecutive iterations falls below the specified tolerance value.

InitialTransform — Initial rigid transformation
affine3d() object (default)

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and an affine3d object. The initial rigid transformation is useful
when you provide an external coarse estimation.

Verbose — Display progress information
true (default) | false

Display progress information, specified as the comma-separated pair consisting of
'Verbose' and a logical scalar. Set Verbose to true to display progress information.

Output Arguments
tform — Rigid transformation
affine3d object

Rigid transformation, returned as an affine3d object. The rigid transformation registers
a moving point cloud to a fixed point cloud. The affine3d object describes the rigid 3-D
transform. The iterative closest point (ICP) algorithm estimates the rigid transformation
between the moving and fixed point clouds.

movingReg — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud
is aligned with the fixed point cloud.

rmse — Root mean square error
positive numeric

Root mean square error, returned as the Euclidean distance between the aligned point
clouds.

 pcregrigid

3-651

References
[1] Chen, Y. and G. Medioni. “Object Modelling by Registration of Multiple Range

Images.” Image Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3,
April 1992, pp. 145-155.

[2] Besl, Paul J., N. D. McKay. “A Method for Registration of 3-D Shapes.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Los Alamitos, CA:
IEEE Computer Society. Vol. 14, Issue 2, 1992, pp. 239-256.

See Also
pcregistericp | pcregisterndt | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions Alphabetical

3-652

pcsegdist
Segment point cloud into clusters based on Euclidean distance

Syntax
labels = pcsegdist(ptCloud,minDistance)
[labels,numClusters] = pcsegdist(ptCloud,minDistance)

Description
labels = pcsegdist(ptCloud,minDistance) segments a point cloud into clusters,
with a minimum Euclidean distance of minDistance between points from different
clusters. pcsegdist assigns an integer cluster label to each point in the point cloud, and
returns the labels of all points.

[labels,numClusters] = pcsegdist(ptCloud,minDistance) also returns the
number of clusters.

Examples

Cluster Point Cloud Based on Euclidean Distance

Create two concentric spheres and combine them into a point cloud.

[X,Y,Z] = sphere(100);
loc1 = [X(:),Y(:),Z(:)];
loc2 = 2*loc1;
ptCloud = pointCloud([loc1;loc2]);
pcshow(ptCloud)
title('Point Cloud')

 pcsegdist

3-653

Set the minimum Euclidean distance between clusters.

minDistance = 0.5;

Segment the point cloud.

[labels,numClusters] = pcsegdist(ptCloud,minDistance);

Plot the labeled results. The points are grouped into two clusters.

pcshow(ptCloud.Location,labels)
colormap(hsv(numClusters))
title('Point Cloud Clusters')

3 Functions Alphabetical

3-654

Cluster Lidar Point Cloud Based on Euclidean Distance

Load an organized lidar point cloud named ptCloud.

load('drivingLidarPoints.mat')
pcshow(ptCloud)
title('Unclustered Point Cloud')

 pcsegdist

3-655

Detect the ground plane and store the points in inliers. Distance is measured in
meters.

maxDistance = 0.3;
referenceVector = [0,0,1];
[~,inliers,outliers] = pcfitplane(ptCloud,maxDistance,referenceVector);

Cluster the points, ignoring the ground plane points. Specify a minimum Euclidean
distance of 0.5 meters between clusters.

ptCloudWithoutGround = select(ptCloud,outliers,'OutputSize','full');
distThreshold = 0.5;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);

3 Functions Alphabetical

3-656

Add an additional label for the ground plane.

numClusters = numClusters+1;
labels(inliers) = numClusters;

Plot the labeled results. Display the ground plane in black.

labelColorIndex = labels+1;
pcshow(ptCloud.Location,labelColorIndex)
colormap([hsv(numClusters);[0 0 0]])
title('Point Cloud Clusters')

 pcsegdist

3-657

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

minDistance — Minimum Euclidean distance
positive scalar

Minimum Euclidean distance between points from two different clusters, specified as a
positive scalar.
Data Types: single | double

Output Arguments
labels — Cluster labels
M-by-1 vector | M-by-N matrix

Cluster labels, returned as one of the following.

• If the point cloud, ptCloud, stores point locations as an unorganized M-by-3 matrix,
then labels is an M-by-1 vector.

• If the point cloud, ptCloud, stores point locations as an organized M-by-N-by-3 array,
then labels is an M-by-N matrix.

Each point in the point cloud has a cluster label, specified by the corresponding element
in labels. The value of each label is an integer from 0 to the number of clusters of valid
points, numClusters. The value 0 is reserved for invalid points, such as points with Inf
or NaN coordinates.

numClusters — Number of clusters
positive integer

Number of clusters, returned as a positive integer. The number of clusters does not
include the cluster corresponding to invalid points.

3 Functions Alphabetical

3-658

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcdenoise | pcfitplane | pcshow | pointCloud

Introduced in R2018a

 pcsegdist

3-659

pcwrite
Write 3-D point cloud to PLY or PCD file

Syntax
pcwrite(ptCloud,filename)
pcwrite(ptCloud,filename,'Encoding',encodingType)

Description
pcwrite(ptCloud,filename) writes the point cloud object, ptCloud, to the PLY or
PCD file specified by the input filename character vector.

pcwrite(ptCloud,filename,'Encoding',encodingType) writes a pointCloud
object, ptCloud, to a PLY file that is in the specified format.

Examples

Write 3-D Point Cloud to PLY File

ptCloud = pcread('teapot.ply');
pcshow(ptCloud);

3 Functions Alphabetical

3-660

pcwrite(ptCloud,'teapotOut','PLYFormat','binary');

Write 3-D Organized Point Cloud to PCD File

load('object3d.mat');
pcwrite(ptCloud,'object3d.pcd','Encoding','ascii');
pc = pcread('object3d.pcd');
pcshow(pc);

 pcwrite

3-661

Input Arguments
filename — File name
character vector

File name, specified as a character vector. The input file type must be a PLY or PCD
format file.

For a PLY-file, the pcwrite function converts an organized M-by-N-by-3 point cloud to an
unorganized M-by-3 format. It converts the format because PLY files do not support

3 Functions Alphabetical

3-662

organized point clouds. To preserve the organized format, you can save the point cloud as
a PCD-file.

If you do not specify the file name with an extension, the function writes the file in a PLY-
format.

ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, specified as a pointCloud object.

encodingType — PLY or PCD file
'ascii' (default) | 'ascii' | 'binary' | 'compressed'

PLY or PCD formatted file, specified as the comma-separated pair consisting of the
character vector 'Encoding', and a character vector for the file format.

File Format Valid Encodings
PLY 'ascii', 'binary'
PCD 'ascii', 'binary', or 'compressed'

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshow | pctransform | planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

 pcwrite

3-663

pctransform
Transform 3-D point cloud

Syntax
ptCloudOut = pctransform(ptCloudIn,tform)
ptCloudOut = pctransform(ptCloudIn,D)

Description
ptCloudOut = pctransform(ptCloudIn,tform) applies the specified 3-D affine
transform, tform to the point cloud, ptCloudIn. The transformation can be a rigid or
nonrigid transform.

ptCloudOut = pctransform(ptCloudIn,D) applies the displacement field D to the
point cloud. Point cloud transformation using a displacement field define translations with
respect to each point in the point cloud.

Examples

Affine Transformations of 3-D Point Cloud

This example shows affine transformation of a 3-D point cloud. The specified forward
transform can be a rigid or nonrigid transform. The transformations shown includes
rotation (rigid transform) and shearing (nonrigid transform) of the input point cloud.

Read a point cloud into the workspace.

ptCloud = pcread('teapot.ply');

Rotation of 3-D Point Cloud

Create an affine transform object that defines a 45 degree rotation along the z-axis.

3 Functions Alphabetical

3-664

A = [cos(pi/4) sin(pi/4) 0 0; ...
 -sin(pi/4) cos(pi/4) 0 0; ...
 0 0 1 0; ...
 0 0 0 1];
tform = affine3d(A);

Transform the point cloud.

ptCloudOut1 = pctransform(ptCloud,tform);

Shearing of 3-D point cloud

Create an affine transform object that defines shearing along the x-axis.

A = [1 0 0 0; ...
 0.75 1 0 0; ...
 0.75 0 1 0; ...
 0 0 0 1];
tform = affine3d(A);

Transform the point cloud.

ptCloudOut2 = pctransform(ptCloud,tform);

Display the Original and Affine Transformed 3-D Point Clouds

Plot the original 3-D point cloud.

figure1 = figure('WindowState','maximized');
axes1 = axes('Parent',figure1,'Position',[0.28 0.54 0.46 0.41]);
pcshow(ptCloud,'Parent',axes1);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('3-D Point Cloud','FontSize',14)

Plot the rotation and shear affine transformed 3-D point clouds.

axes2 = axes('Parent',figure1,'Position',[0.15 0.02 0.35 0.42]);
pcshow(ptCloudOut1,'Parent',axes2);
xlabel('X');
ylabel('Y');
zlabel('Z');
title({'Rotation of 3-D Point Cloud'},'FontSize',14)

 pctransform

3-665

axes3 = axes('Parent',figure1,'Position',[0.5 0.02 0.35 0.42]);
pcshow(ptCloudOut2,'Parent',axes3);
xlabel('X');
ylabel('Y');
zlabel('Z');
title({'Shearing of 3-D Point Cloud'},'FontSize',14)

Point Cloud Transformation Using Displacement Field

Read a point cloud into the workspace.

3 Functions Alphabetical

3-666

ptCloud = pcread('teapot.ply');

Create a displacement field D of same size as the point cloud.

D = zeros(size(ptCloud.Location));

Set the displacement field value along x-axis for the first half of the points to 7.

pthalf = ptCloud.Count/2;
D(1:pthalf,1) = 7;

Extract the indices of points within a region-of-interest (ROI) using the pointCloud
method findNeighborsInRadius. Set the displacement field value along the x-, y-, and
z-axis for points within the ROI to 4, 4, and -2, respectively.

indices = findNeighborsInRadius(ptCloud,[0 0 3.1],1.5);
D(indices,1:2) = 4;
D(indices,3) = -2;

Transform the point cloud using the displacement field.

ptCloudOut = pctransform(ptCloud,D);

Display the original and transformed point cloud.

figure1 = figure('WindowState','maximized');
axes1 = axes('Parent',figure1,'Position',[0.03 0.4 0.35 0.42]);
pcshow(ptCloud,'Parent',axes1)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Original 3-D Point Cloud','FontSize',14)

axes2 = axes('Parent',figure1,'Position',[0.4 0.4 0.38 0.42]);
pcshow(ptCloudOut,'Parent',axes2)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Transformed 3-D Point Cloud Using Displacement Field','FontSize',14)

 pctransform

3-667

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

tform — 3-D affine geometric transformation
affine3d object

3-D affine geometric transformation, specified as an affine3d object. See “Define
Transformation Matrix” (Image Processing Toolbox) for details on how to set up the
tform input.

D — Displacement field
M-by-3 matrix | M-by-N-by-3 array

3 Functions Alphabetical

3-668

Displacement field, specified as either M-by-3 or an M-by-N-by-3 array. The displacement
field is a set of displacement vectors that specify the magnitude and direction of
translation for each point in the point cloud. The size of the displacement field must be
the same as the size of the Location property of the pointCloud object.
Data Types: single | double

Output Arguments
ptCloudOut — Transformed point cloud
pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformation applies
to the coordinates of points and their normal vectors.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
Classes
pointCloud

Objects
affine3d | planeModel

 pctransform

3-669

Functions
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshow | pcwrite

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015a

3 Functions Alphabetical

3-670

pcnormals
Estimate normals for point cloud

Syntax
normals = pcnormals(ptCloud)
normals = pcnormals(ptCloud,k)

Description
normals = pcnormals(ptCloud) returns a matrix that stores a normal for each point
in the input ptCloud. The function uses six neighboring points to fit a local plane to
determine each normal vector.

normals = pcnormals(ptCloud,k) additionally specifies k, the number of points
used for local plane fitting.

Examples

Estimate Normals of Point Cloud

Load a point cloud.

load('object3d.mat');

Estimate the normal vectors.

normals = pcnormals(ptCloud);

figure
pcshow(ptCloud)
title('Estimated Normals of Point Cloud')
hold on

 pcnormals

3-671

x = ptCloud.Location(1:10:end,1:10:end,1);
y = ptCloud.Location(1:10:end,1:10:end,2);
z = ptCloud.Location(1:10:end,1:10:end,3);
u = normals(1:10:end,1:10:end,1);
v = normals(1:10:end,1:10:end,2);
w = normals(1:10:end,1:10:end,3);

Plot the normal vectors.

quiver3(x,y,z,u,v,w);
hold off

3 Functions Alphabetical

3-672

Flip the normals to point towards the sensor location. This step is necessary only for
determining the inward or outward direction of the surface. The sensor center is set in x ,
y , z coordinates.

sensorCenter = [0,-0.3,0.3];
for k = 1 : numel(x)
 p1 = sensorCenter - [x(k),y(k),z(k)];
 p2 = [u(k),v(k),w(k)];
 % Flip the normal vector if it is not pointing towards the sensor.
 angle = atan2(norm(cross(p1,p2)),p1*p2');
 if angle > pi/2 || angle < -pi/2
 u(k) = -u(k);
 v(k) = -v(k);
 w(k) = -w(k);

 pcnormals

3-673

 end
end

Plot the adjusted normals.

figure
pcshow(ptCloud)
title('Adjusted Normals of Point Cloud')
hold on
quiver3(x, y, z, u, v, w);
hold off

3 Functions Alphabetical

3-674

Input Arguments
ptCloud — Object for storing point cloud
pointCloud object

Object for storing point cloud, returned as a pointCloud object.

k — Number of points used for local plane fitting
integer greater than or equal to 3

Number of points used for local plane fitting, specified as an integer greater than or equal
to 3. Increasing this value improves accuracy but slows down computation time.

Output Arguments
normals — Normals used to fit a local plane
M-by-3 | M-by-N-by-3

Normals used to fit a local plane, returned as an M-by-3 or an M-by-N-by-3 vector. The
normal vectors are computed locally using six neighboring points. The direction of each
normal vector can be set based on how you acquired the points. The “Estimate Normals of
Point Cloud” on page 3-671 example, shows how to set the direction when the normal
vectors are pointing towards the sensor.

References
[1] Hoppe, H., T. DeRose, T. Duchamp, J. Mcdonald, and W. Stuetzle. "Surface

Reconstruction from Unorganized Points". Computer Graphics (SIGGRAPH 1992
Proceedings). 1992, pp. 71–78.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 pcnormals

3-675

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcregistericp |
pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”
“The PLY Format”

Introduced in R2015b

3 Functions Alphabetical

3-676

pcfitcylinder
Fit cylinder to 3-D point cloud

Syntax
model = pcfitcylinder(ptCloudIn,maxDistance)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance)

[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn,
maxDistance)
[___ ,meanError] = pcfitcylinder(ptCloudIn,maxDistance)
[___] = pcfitcylinder(___ ,Name,Value)

Description
model = pcfitcylinder(ptCloudIn,maxDistance) fits a cylinder to a point cloud
with a maximum allowable distance from an inlier point to the cylinder. This function uses
the M-estimator SAmple Consensus (MSAC) algorithm to find the cylinder.

model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector) fits a
cylinder to the point cloud with additional orientation constraints specified by the 1-by-3
reference orientation input vector.

model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance) additionally specifies the maximum allowed absolute angular
distance.

[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn,
maxDistance) additionally returns linear indices to the inlier and outlier points in the
point cloud input.

[___ ,meanError] = pcfitcylinder(ptCloudIn,maxDistance) additionally
returns the mean error of the distance of the inlier points to the model.

 pcfitcylinder

3-677

[___] = pcfitcylinder(___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

Examples

Extract Cylinder from Point Cloud

Load the point cloud.

load('object3d.mat');

Display the point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')

3 Functions Alphabetical

3-678

Set the maximum point-to-cylinder distance (5 mm) for cylinder fitting.

maxDistance = 0.005;

Set the region of interest to constrain the search.

roi = [0.4,0.6,-inf,0.2,0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder and extract it from the point cloud by specifying the inlier points.

 pcfitcylinder

3-679

[model,inlierIndices] = pcfitcylinder(ptCloud,maxDistance,...
 referenceVector,'SampleIndices',sampleIndices);
pc = select(ptCloud,inlierIndices);

Plot the extracted cylinder.

figure
pcshow(pc)
title('Cylinder Point Cloud')

3 Functions Alphabetical

3-680

Detect Cylinder in Point Cloud

Load the point cloud.

load('object3d.mat');

Display point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')

 pcfitcylinder

3-681

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting.

maxDistance = 0.005;

Set the region of interest to constrain the search.

roi = [0.4,0.6;-inf,0.2;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Set the orientation constraint.

referenceVector = [0,0,1];

Detect the cylinder in the point cloud and extract it.

model = pcfitcylinder(ptCloud,maxDistance,referenceVector,...
 'SampleIndices',sampleIndices);

Plot the cylinder.

hold on
plot(model)

3 Functions Alphabetical

3-682

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. If the Normal property of the input
ptCloud is empty, the function populates it with values to meet the requirements of the
fitting algorithm.

maxDistance — Maximum distance from an inlier point to the cylinder
scalar value

 pcfitcylinder

3-683

Maximum distance from an inlier point to the cylinder, specified as a scalar value. Specify
the distance in units that are consistent with the units you are using for the point cloud.
Data Types: single | double

referenceVector — Reference orientation
1-by-3 vector

Reference orientation, specified as a 1-by-3 vector.

maxAngularDistance — Maximum absolute angular distance
5 (default) | scalar value

Maximum absolute angular distance, specified as a scalar value. The maximum angular
distance is measured in degrees between the direction of the fitted cylinder and the
reference orientation.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SampleIndices',[].

SampleIndices — Linear indices of points to sample
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the comma-
separated pair consisting of 'SampleIndices' and a column vector. An empty vector
means that all points are candidates to sample when fitting the cylinder during the
RANSAC iteration. If you specify a subset of points, the function fits the model by
sampling only those points in the subset. Providing a subset of points can significantly
speed up the process by reducing the number of trials. You can generate the indices
vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated
pair consisting of 'MaxNumTrials' and a positive integer. To improve robustness of the
output, increase this value. However, doing so adds additional computations.

3 Functions Alphabetical

3-684

Confidence — Percentage for finding maximum number of inliers
99 (default) | numeric scalar in the range (0,100)

Percentage for finding maximum number of inliers, specified as the comma-separated pair
consisting of 'Confidence' and a numeric scalar, in the range (0 100). To improve the
robustness of the output, increase this value. However, doing so adds additional
computations.

Output Arguments
model — Geometric model of cylinder
cylinderModel object.

Geometric model of cylinder, returned as a cylinderModel object.

The coefficients for the output model are set to zero when:

• The input point cloud does not contain enough valid points.
• The algorithm cannot find enough inlier points.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of the inlier points in the input point cloud, returned as a column vector.

outlierIndices — Linear indices of outlier points
column vector

Linear indices of the outlier points in the input point cloud returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

Algorithms
The function returns a geometric model that describes the cylinder. This function uses the
M-estimator SAmple Consensus (MSAC) algorithm to find the cylinder. The MSAC
algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.

 pcfitcylinder

3-685

The fitting algorithm for the pcfitcylinder function requires point cloud normals.
Therefore, if the Normal property for the input point cloud is empty, the function fills it.
When the function fills the Normal property, it uses six points to fit the local cylinder. If
six points do not work and the fitting fails, consider calling the pcnormals function
which enables you to select the number of points to use.

References
[1] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application

to Estimating Image Geometry.” Computer Vision and Image Understanding.
Volume 78, Issue 1, April 2000, pp. 138-156.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | cylinderModel | pcdenoise | pcfitplane | pcfitsphere | pcmerge |
pcplayer | pcread | pcregistericp | pcshow | pctransform | pcwrite |
planeModel | pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

3 Functions Alphabetical

3-686

pcfitplane
Fit plane to 3-D point cloud

Syntax
model = pcfitplane(ptCloudIn,maxDistance)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance)

[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn,
maxDistance)
[___ ,meanError] = pcfitplane(ptCloudIn,maxDistance)
[___] = pcfitplane(ptCloudIn,maxDistance,Name,Value)

Description
model = pcfitplane(ptCloudIn,maxDistance) fits a plane to a point cloud that
has a maximum allowable distance from an inlier point to the plane. The function returns
a geometrical model that describes the plane.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the
plane. The MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC)
algorithm.

model = pcfitplane(ptCloudIn,maxDistance,referenceVector) fits a plane to
a point cloud that has additional orientation constraints specified by the 1-by-3
referenceVector input.

model = pcfitplane(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance) fits a plane to a point cloud that has a specified maximum
angular distance.

[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn,
maxDistance) additionally returns the linear indices to the inlier and outlier points in
the point cloud input.

 pcfitplane

3-687

[___ ,meanError] = pcfitplane(ptCloudIn,maxDistance) additionally returns
the mean error of the distance of inlier points to the model, using any of the preceding
syntaxes.

[___] = pcfitplane(ptCloudIn,maxDistance,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.

load('object3d.mat')

Display and label the point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')

3 Functions Alphabetical

3-688

Set the maximum point-to-plane distance (2cm) for plane fitting.

maxDistance = 0.02;

Set the normal vector of the plane.

referenceVector = [0,0,1];

Set the maximum angular distance to 5 degrees.

maxAngularDistance = 5;

Detect the first plane, the table, and extract it from the point cloud.

[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
 maxDistance,referenceVector,maxAngularDistance);

 pcfitplane

3-689

plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);

Set the region of interest to constrain the search for the second plane, left wall.

roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);

Detect the left wall and extract it from the remaining point cloud.

[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
 maxDistance,'SampleIndices',sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);

Plot the two planes and the remaining points.

figure
pcshow(plane1)
title('First Plane')

3 Functions Alphabetical

3-690

figure
pcshow(plane2)
title('Second Plane')

 pcfitplane

3-691

figure
pcshow(remainPtCloud)
title('Remaining Point Cloud')

3 Functions Alphabetical

3-692

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

maxDistance — Maximum distance from an inlier point to the plane
scalar value

Maximum distance from an inlier point to the plane, specified as a scalar value. Specify
the distance in units that are consistent with the units you are using for the point cloud.

 pcfitplane

3-693

Data Types: single | double

referenceVector — Reference orientation constraint
1-by-3 vector

Reference orientation constraint, specified as a 1-by-3 vector.
Data Types: single | double

maxAngularDistance — Maximum absolute angular distance
5 degrees (default) | scalar value

Maximum absolute angular distance between the normal vector of the fitted plane and
the reference orientation, specified as a scalar value in degrees.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SampleIndices',[].

SampleIndices — Linear indices of points to be sampled
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the comma-
separated pair consisting of 'SampleIndices' and a column vector. An empty vector
means that all points are candidates to sample in the RANSAC iteration to fit the plane.
When you specify a subset, only points in the subset are sampled to fit a model.

Providing a subset of points can significantly speed up the process and reduce the
number of trials. You can generate the indices vector using the findPointsInROI
method of the pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

3 Functions Alphabetical

3-694

Maximum number of random trials for finding inliers, specified as the comma-separated
pair consisting of 'MaxNumTrials' and a positive integer. Increasing this value makes the
output more robust but adds additional computations.

Confidence — Confidence percentage for finding maximum number of inliers
99 (default) | numeric scalar

Confidence percentage for finding maximum number of inliers, specified as the comma-
separated pair consisting of 'Confidence' and a numeric scalar, in the range [0 100].
Increasing this value makes the output more robust but adds additional computations.

Output Arguments
model — Geometric model of plane
planeModel object

Geometric model of plane, returned as a planeModel object.

When the input point cloud does not contain enough valid points, or when the function
cannot find enough inlier points, the coefficients for the output model are set to zero.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of inlier points within the input point cloud, returned as a column vector.

outlierIndices — Linear indices of outlier points
column vector

Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

References
[1] Torr, P. H. S., and A. Zisserman. “MLESAC: A New Robust Estimator with Application

to Estimating Image Geometry.” Computer Vision and Image Understanding.
2000.

 pcfitplane

3-695

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | pcdenoise | pcfitcylinder | pcfitsphere | pcmerge | pcplayer |
pcread | pcregistericp | pcshow | pctransform | pcwrite | planeModel |
pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

3 Functions Alphabetical

3-696

pcfitsphere
Fit sphere to 3-D point cloud

Syntax
model = pcfitsphere(ptCloudIn,maxDistance)
[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn,
maxDistance)
[___ ,meanError] = pcfitsphere(ptCloudIn,maxDistance)
[___] = pcfitsphere(___ ,Name,Value)

Description
model = pcfitsphere(ptCloudIn,maxDistance) fits a sphere to a point cloud tha
has a maximum allowable distance from an inlier point to the sphere. The function
returns a geometrical model that describes the sphere.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the
sphere. The MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC)
algorithm.

[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn,
maxDistance) additionally returns linear indices to the inlier and outlier points in the
point cloud input.

[___ ,meanError] = pcfitsphere(ptCloudIn,maxDistance) additionally returns
the mean error of the distance of inlier points to the model, using any of the preceding
syntaxes.

[___] = pcfitsphere(___ ,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Examples

 pcfitsphere

3-697

Detect Sphere from Point Cloud

Load data file.

load('object3d.mat');

Display original point cloud.

figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')

3 Functions Alphabetical

3-698

Set a maximum point-to-sphere distance of 1cm for sphere fitting.

maxDistance = 0.01;

Set the roi to constrain the search.

roi = [-inf,0.5,0.2,0.4,0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);

Detect the sphere, a globe, and extract it from the point cloud.

[model,inlierIndices] = pcfitsphere(ptCloud,maxDistance,...
 'SampleIndices',sampleIndices);
globe = select(ptCloud,inlierIndices);

Plot the globe.

hold on
plot(model)

 pcfitsphere

3-699

figure
pcshow(globe)
title('Globe Point Cloud')

3 Functions Alphabetical

3-700

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

maxDistance — Maximum distance from an inlier point to the sphere
scalar value

Maximum distance from an inlier point to the sphere, specified as a scalar value. Specify
the distance in units that are consistent with the units you are using for the point cloud.

 pcfitsphere

3-701

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SampleIndices',[].

SampleIndices — Linear indices of points to be sampled
[] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the comma-
separated pair consisting of 'SampleIndices' and a column vector. An empty vector
means that all points are candidates to sample in the RANSAC iteration to fit the sphere.
When you specify a subset, only points in the subset are sampled to fit a model. Providing
a subset of points can significantly speed up the process and reduce the number of trials.
You can generate the indices vector using the findPointsInROI method of the
pointCloud object.

MaxNumTrials — Maximum number of random trials
1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated
pair consisting of 'MaxNumTrials' and a positive integer. Increasing this value makes the
output more robust but adds additional computations.

Confidence — Confidence percentage for finding maximum number of inliers
99 (default) | numeric scalar in the range [0,100]

Confidence percentage for finding maximum number of inliers, specified as the comma-
separated pair consisting of 'Confidence' and a numeric scalar representing percentage,
in the range [0,100]. Increasing this value makes the output more robust but adds
additional computations.

3 Functions Alphabetical

3-702

Output Arguments
model — Geometric model of sphere
sphereModel object

Geometric model of sphere, returned as a sphereModel object.

When the input point cloud does not contain enough valid points, or when the function
cannot find enough inlier points, the coefficients for the output model are set to zero.

inlierIndices — Linear indices of inlier points
column vector

Linear indices of inlier points within the input point cloud, returned as a column vector.

outlierIndices — Linear indices of outlier points
column vector

Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError — Mean square error
scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

References
[1] Torr, P. H. S. and A. Zisserman. “MLESAC: A New Robust Estimator with Application to

Estimating Image Geometry.” Computer Vision and Image Understanding. 2000.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 pcfitsphere

3-703

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
affine3d | pcdenoise | pcfitcylinder | pcfitplane | pcmerge | pcplayer |
pcread | pcregistericp | pcshow | pctransform | pcwrite | planeModel |
pointCloud

Topics
“3-D Point Cloud Registration and Stitching”

Introduced in R2015b

3 Functions Alphabetical

3-704

pixelLabelImageSource
(To be removed) Create datastore for semantic segmentation networks

Note pixelLabelImageSource will be removed in a future release. Create a pixel label
image datastore using the pixelLabelImageDatastore function instead. For more
information, see “Compatibility Considerations”.

Syntax
pximds = pixelLabelImageSource(gTruth)
pximds = pixelLabelImageSource(imds,pxds)
pximds = pixelLabelImageSource(___ ,Name,Value)

Description
pximds = pixelLabelImageSource(gTruth) returns a pixel label image datastore
for training a semantic segmentation network based on the input array of groundTruth
objects. Use the output pixelLabelImageDatastore object with the Deep Learning
Toolbox function trainNetwork to train convolutional neural networks for semantic
segmentation.

pximds = pixelLabelImageSource(imds,pxds) returns a pixel label image
datastore based on the input image datastore and the pixel label datastore objects. imds
is an ImageDatastore object that represents the training input to the network. pxds is
a PixelLabelDatastore object that represents the required network output.

pximds = pixelLabelImageSource(___ ,Name,Value) sets properties of the
returned pixel label image datastore using name-value pairs. You can specify multiple
name-value pairs. Enclose each argument name in quotes.

 pixelLabelImageSource

3-705

Examples

Augment Data While Training Using PixelLabelImageSource
Configure a pixel label image datastore to augment data while training. This example
uses the pixelLabelImageSource function to create a pixel label image datastore
object. For an example of the recommended workflow that uses the
pixelLabelImageDatastore function to create a pixel label image datastore object,
see “Augment Data While Training” on page 2-12.

Load training images and pixel labels.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

Create an imageDatastore object to hold the training images.

imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

classNames = ["triangle","background"];
labelIDs = [255 0];

Create a pixelLabelDatastore object to hold the ground truth pixel labels for the
training images.

pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Create an imageDataAugmenter object to randomly rotate and mirror image data.

augmenter = imageDataAugmenter('RandRotation',[-10 10],'RandXReflection',true)

augmenter =
 imageDataAugmenter with properties:

 FillValue: 0
 RandXReflection: 1
 RandYReflection: 0
 RandRotation: [-10 10]
 RandScale: [1 1]
 RandXScale: [1 1]

3 Functions Alphabetical

3-706

 RandYScale: [1 1]
 RandXShear: [0 0]
 RandYShear: [0 0]
 RandXTranslation: [0 0]
 RandYTranslation: [0 0]

Use the pixelLabelImageSource function to create a pixelLabelImageDatastore
object that can be used to train the network with augmented data.

plimds = pixelLabelImageSource(imds,pxds,'DataAugmentation',augmenter)

plimds =
 pixelLabelImageDatastore with properties:

 Images: {200x1 cell}
 PixelLabelData: {200x1 cell}
 ClassNames: {2x1 cell}
 DataAugmentation: [1x1 imageDataAugmenter]
 ColorPreprocessing: 'none'
 OutputSize: []
 OutputSizeMode: 'resize'
 MiniBatchSize: 1
 NumObservations: 200
 DispatchInBackground: 0

Input Arguments
gTruth — Ground truth data
groundTruth object

Ground truth data, specified as a groundTruth object. You can use the Image Labeler
to create a groundTruth object for training a semantic segmentation network.

imds — Collection of images
ImageDatastore object

Collection of images, specified as an ImageDatastore object.

pxds — Collection of pixel labeled images
PixelLabelDatastore object

 pixelLabelImageSource

3-707

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The
object contains the pixel labeled images for each image contained in the imds input
object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ColorProcessing','rgb2gray'

DataAugmentation — Image data augmentation
'none' (default) | imageDataAugmenter object

Image data augmentation, specified as 'none' or an imageDataAugmenter object. This
argument sets the DataAugmentation on page 2-0 property of the returned pixel
label image datastore, pximds.

ColorPreprocessing — Color channel preprocessing
'none' (default) | 'gray2rgb' | 'rgb2gray'

Color channel preprocessing, specified as 'none', 'gray2rgb', or 'rgb2gray'. This
argument sets the ColorPreprocessing on page 2-0 property of the returned
pixel label image datastore, pximds. Use this property when you need the image data
created by the data source must be only color or grayscale, but the training set includes
both. Suppose you need to train a network that expects color images but some of your
training images are grayscale. Set ColorPreprocessing to 'gray2rgb' to replicate
the color channels of the grayscale images in the input image set. Using the 'gray2rgb'
option creates M-by-N-by-3 output images.

OutputSize — Size of images produced by data source
[] (default) | 2-element vector

Size of images produced by data source, specified as a 2-element vector indicating the
number of rows and columns. This argument sets the OutputSize on page 2-0
property of the returned pixel label image datastore, pximds. When you specify the
OutputSize, image sizes are adjusted as necessary. By default, this property is empty,
which means that the images are not adjusted.

3 Functions Alphabetical

3-708

OutputSizeMode — Technique used to adjust image sizes
'false' (default) | 'resize' | 'centercrop' | 'randcrop'

Technique used to adjust image sizes, specified as 'false', 'resize', 'centercrop',
or 'randcrop'. This argument sets the OutputSizeMode on page 2-0 property
of the returned pixel label image datastore, pximds. This property applies only when you
set OutputSize to a value other than [].

BackgroundExecution — Preprocess images in parallel
false (default) | true

Preprocess images in parallel, specified as false or true. This argument sets the
DispatchInBackground on page 2-0 property of the returned pixel label image
datastore object, pximds. If BackgroundExecution is true and you have Parallel
Computing Toolbox, then the pixel label image datastore asynchronously reads,
augments, and queues pixel labeled images for use in training.

Output Arguments
pximds — Pixel label image datastore
pixelLabelImageDatastore object

Pixel label image datastore, returned as a pixelLabelImageDatastore object.

Compatibility Considerations

pixelLabelImageSource object is removed

In R2017b, you could create a pixelLabelImageSource object for training semantic
segmentation networks. Starting in R2018a, the pixelLabelImageSource object has
been removed. Use a pixelLabelImageDatastore object instead.

A pixelLabelImageDatastore has additional properties and methods to assist with
data preprocessing. Unlike pixelLabelImageSource, which could be used for training
only, you can use a pixelLabelImageDatastore for both training and prediction.

 pixelLabelImageSource

3-709

To create a pixelLabelImageDatastore object, you can use either the
pixelLabelImageDatastore function (recommended) or the
pixelLabelImageSource function.

pixelLabelImageSource function will be removed
Not recommended starting in R2018a

The pixelLabelImageSource function will be removed in a future release. Create a
pixelLabelImageDatastore using the pixelLabelImageDatastore function
instead.

To update your code, change instances of the function name pixelLabelImageSource
to pixelLabelImageDatastore. You do not need to change the input arguments.

See Also
pixelLabelImageDatastore

Introduced in R2017b

3 Functions Alphabetical

3-710

pixelLabelTrainingData
Create training data for semantic segmentation from ground truth

Syntax
[imds,pxds] = pixelLabelTrainingData(gTruth)
[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value)

Description
[imds,pxds] = pixelLabelTrainingData(gTruth) creates image datastore imds
and pixel label datastore pxds from the specified ground truth. Use these datastores with
the trainNetwork function to train deep learning segmentation networks, or with the
evaluateSemanticSegmentation function to evaluate the result from deep learning or
classical segmentation methods.

This function supports parallel computing using multiple MATLAB workers. Enable
parallel computing using the “Computer Vision Toolbox Preferences” dialog box.

[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value) returns image
and pixel label datastores with additional options specified by one or more name-value
pair arguments.

• If the groundTruth objects in gTruth were created using a video file or a custom
data source, then you can specify any combination of name-value pair arguments.

• If the groundTruth objects were created from an image collection or image sequence
data source, then you can specify only the SamplingFactor name-value pair
argument

Examples

 pixelLabelTrainingData

3-711

Prepare Data for Evaluating Semantic Segmentation Algorithm

Load a groundTruth object named gTruth. The ground truth contains pixel labels for
triangles and background, annotated on a video with 100 frames.

visiondataPath = fullfile(matlabroot,'toolbox','vision','visiondata');
addpath(fullfile(visiondataPath,'triangleImages'));
addpath(fullfile(visiondataPath, 'triangleImages', 'testLabels'));
load(fullfile(visiondataPath,'triangleImages','triangleGroundTruth.mat'));

Create a temporary folder.

tempf = 'C:\temp\';
mkdir(tempf)

Warning: Directory already exists.

Create an imageDatastore and a pixelLabelDatastore from the video file and
corresponding pixel labels. Write every fifth image to the temporary folder.

[imds,pxdsTruth] = pixelLabelTrainingData(gTruth,...
 'SamplingFactor',5,'WriteLocation',tempf);

Write images extracted for training to folder:
 C:\temp\

Writing 20 images extracted from triangleVideo.avi...Completed.

Confirm that the temporary folder contains every fifth image.

imds.Files

ans = 20×1 cell array
 {'C:\temp\triangleVideo01.png'}
 {'C:\temp\triangleVideo06.png'}
 {'C:\temp\triangleVideo11.png'}
 {'C:\temp\triangleVideo16.png'}
 {'C:\temp\triangleVideo21.png'}
 {'C:\temp\triangleVideo26.png'}
 {'C:\temp\triangleVideo31.png'}
 {'C:\temp\triangleVideo36.png'}
 {'C:\temp\triangleVideo41.png'}
 {'C:\temp\triangleVideo46.png'}
 {'C:\temp\triangleVideo51.png'}
 {'C:\temp\triangleVideo56.png'}

3 Functions Alphabetical

3-712

 {'C:\temp\triangleVideo61.png'}
 {'C:\temp\triangleVideo66.png'}
 {'C:\temp\triangleVideo71.png'}
 {'C:\temp\triangleVideo76.png'}
 {'C:\temp\triangleVideo81.png'}
 {'C:\temp\triangleVideo86.png'}
 {'C:\temp\triangleVideo91.png'}
 {'C:\temp\triangleVideo96.png'}

Remove the video and images from the path.

rmpath(fullfile(visiondataPath,'triangleImages','testImages'));

Warning: "D:\jobarchive\Bvision\2018_11_29_h16m30s59_job1011195_pass\matlab\toolbox\vision\visiondata\triangleImages\testImages" not found in path.

delete([tempf,'triangleVideo*.png'])

Input Arguments
gTruth — Ground truth data
scalar groundTruth object | array of groundTruth objects

Ground truth data, specified as a scalar groundTruth object or an array of
groundTruth objects. When gTruth is an array of groundTruth objects, the
LabelDefinitions property of each object must contain the same pixel label names.

If you use custom data sources in gTruth with parallel computing enabled, then the
reader function is expected to work with a pool of MATLAB workers to read images from
the data source in parallel.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SamplingFactor',5

 pixelLabelTrainingData

3-713

SamplingFactor — Factor at which to subsample images
1 (default) | integer | vector of integers

Factor at which to subsample images in the ground truth data source, specified as the
comma-separated pair consisting of 'SamplingFactor' and an integer or a vector of
integers. For a sampling factor of N, the returned image datastore imds includes every
Nth image in the ground truth data source. Ground truth images with empty pixel labels
are ignored.

SamplingFactor Sampling Factor Applied
Integer All ground truth data sources in gTruth

are sampled with the same sampling factor,
N.

Vector of integers The kth ground truth data source in
gTruth is sampled with a sampling factor
of N(k).

WriteLocation — Folder name
pwd (current working folder) (default) | string scalar | character vector

Folder name to which extracted images are written, specified as the comma-separated
pair consisting of 'WriteLocation' and a string scalar or character vector. The
specified folder must exist and have write permissions. This argument applies only for
groundTruth objects created using a video file or a custom data source.

ImageFormat — Image file format
PNG (default) | string scalar | character vector

Image file format, specified as the comma-separated pair consisting of 'ImageFormat'
and a string scalar or character vector. File formats must be supported by imwrite. This
argument applies only for groundTruth objects created using a video file or a custom
data source.

NamePrefix — Prefix applied to file names
string scalar | character vector

Prefix applied to file names of the output images, specified as the comma-separated pair
consisting of 'NamePrefix' and a string scalar or character vector. The image files are
named as:

<name_prefix><image_number>.<image_format>

3 Functions Alphabetical

3-714

The default value of NamePrefix is the name of the video file or data source containing
the images. This argument applies only for groundTruth objects created using a video
file or a custom data source.

Verbose — Display training progress
true (default) | false

Display training progress on the MATLAB command line, specified as the comma-
separated pair consisting of 'Verbose' and true or false. This argument applies only
for groundTruth objects created using a video file or a custom data source.

Output Arguments
imds — Collection of images
ImageDatastore object

Collection of images extracted from the ground truth, gTruth, returned as an
ImageDatastore object. Each image in imds has annotations with at least one class of
pixel labels. imds ignores images that with no annotations.

pxds — Collection of pixel-labeled images
PixelLabelDatastore object

Collection of pixel-labeled images extracted from the ground truth, gTruth, returned as a
PixelLabelDatastore object. The object contains a categorical matrix of pixel labels
for each image contained in the image datastore, imds. Labels that do not correspond to
pixel labels are ignored.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
evaluateSemanticSegmentation | objectDetectorTrainingData | semanticseg

Objects
ImageDatastore | PixelLabelDatastore | PixelLabelImageDatastore |
groundTruth

 pixelLabelTrainingData

3-715

Introduced in R2018a

3 Functions Alphabetical

3-716

plotCamera
Plot a camera in 3-D coordinates

Syntax
cam = plotCamera()
cam = plotCamera(cameraTable)
cam = plotCamera(Name,Value)

Description
cam = plotCamera() creates a camera visualization object rendered in the current
axes.

cam = plotCamera(cameraTable) returns an array of camera visualization objects
rendered in the current axes.

cam = plotCamera(Name,Value) creates a camera visualization object with the
property values specified by one or more Name,Value pair arguments.

Examples

Create Animated Camera Plot

Plot a camera pointing along the y-axis.

 R = [1 0 0;
 0 0 -1;
 0 1 0];

Set the opacity of the camera to zero for faster animation.

 cam = plotCamera('Location',[10 0 20],'Orientation',R,'Opacity',0);

 plotCamera

3-717

Set the view properties.

 grid on
 axis equal
 axis manual

3 Functions Alphabetical

3-718

Make the space large enough for the animation.

 xlim([-15,20]);
 ylim([-15,20]);
 zlim([15,25]);

 plotCamera

3-719

Rotate the camera about the camera's y-axis.

 for theta = 0:pi/64:10*pi
 T = [cos(theta) 0 sin(theta);
 0 1 0;
 -sin(theta) 0 cos(theta)];
 cam.Orientation = T * R;
 cam.Location = [10 * cos(theta),10 * sin(theta),20];
 drawnow();
 end

3 Functions Alphabetical

3-720

Visualize Camera Extrinsics

Create a set of calibration images.

images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','slr'));

Detect the checkerboard corners in the images.

[imagePoints, boardSize] = detectCheckerboardPoints(images.ImageLocation);

Generate the world coordinates of the checkerboard corners in the pattern-centric
coordinate system, with the upper-left corner at (0,0). Set the square size to 29 mm.

 plotCamera

3-721

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

cameraParams = estimateCameraParameters(imagePoints,worldPoints);

Load an image at its new location.

imOrig = imread(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','slr','image9.jpg'));
figure; imshow(imOrig,'InitialMagnification',50);
title('Input Image');

Undistort the image.

im = undistortImage(imOrig,cameraParams);

3 Functions Alphabetical

3-722

Find the reference object in the new image.

[imagePoints,boardSize] = detectCheckerboardPoints(im);

Compute the new extrinsics.

[rotationMatrix,translationVector] = extrinsics(imagePoints,...
 worldPoints,cameraParams);

Plot the world points.

figure;
plot3(worldPoints(:,1),worldPoints(:,2),zeros(size(worldPoints, 1),1),'*');
hold on

 plotCamera

3-723

Mark the origin.

plot3(0,0,0,'g*');

Compute the camera location and orientation.

orientation = rotationMatrix';
location = -translationVector * orientation;

Plot the camera.

cam = plotCamera('Location',location,'Orientation',orientation,'Size',20);

3 Functions Alphabetical

3-724

Make the z -axis point down.

set(gca,'CameraUpVector',[0 0 -1]);

 plotCamera

3-725

Set the view parameters.

camorbit(gca,-110,60,'data',[0 0 1]);
axis equal
grid on

3 Functions Alphabetical

3-726

Turn on 3-D rotation.

cameratoolbar('SetMode','orbit');

 plotCamera

3-727

Label the axes.

xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');

3 Functions Alphabetical

3-728

Input Arguments
cameraTable — Camera visualization object properties
table

Camera visualization object properties, specified as a table. The columns contain the
Name,Value properties of the camera visualization object except for Parent, which
specifies the axes for display. If the table contains a 'ViewId' column, then the view IDs
are used as camera labels.

 plotCamera

3-729

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Location', [0,0,0]

Location — Camera location coordinates
[0,0,0] (default) | three-element vector

Camera location coordinates, specified as the comma-separated pair consisting of
'Location' and a three-element vector. The [x, y, z] coordinates are specified in the data
units of the parent axes.

Orientation — Matrix orientation
eye(3) (default) | 3-by-3 3-D rotation matrix

Matrix orientation, specified as the comma-separated pair consisting of 'Orientation'
and a 3-by-3 3-D rotation matrix.

Size — Camera base width
1 | scalar

Camera base width, specified as the comma-separated pair consisting of 'Size' and a
scalar.

Label — Camera label
'' (default) | character vector

Camera label, specified as the comma-separated pair consisting of 'Label' and a
character vector.

Color — Camera color
[1 0 0] (default) | character vector | three-element vector

Camera color, specified as the comma-separated pair consisting of 'Color' and a
character vector or a three-element vector of RGB values in the range [0 1]. See
colorspec for more information on how to specify an RGB color.

Opacity — Camera opacity
0.2 | scalar in the range [0 1]

3 Functions Alphabetical

3-730

Camera opacity, specified as the comma-separated pair consisting of 'Opacity' and a
scalar in the range [0 1].

Visible — Camera visibility
true (default) | false

Camera visibility, specified as the comma-separated pair consisting of 'Visible' and the
logical true or false.

AxesVisible — Camera axes visibility
false (default) | true

Camera axes visibility, specified as the comma-separated pair consisting of
'AxesVisible' and the logical true or false.

ButtonDownFcn — Callback function
'' | function name

Callback function, specified as the comma-separated pair consisting of 'ButtonDownFcn'
and a function name that executes when you click the camera.

Parent — Output axes
gca handle

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes
handle. The default is set to the current axes handle, gca.

See Also
extrinsics | showExtrinsics

Topics
“Structure From Motion From Two Views”
“3-D Coordinate Systems”
“Single Camera Calibrator App”
“Stereo Camera Calibrator App”

Introduced in R2015a

 plotCamera

3-731

ransac
Fit model to noisy data

Syntax
[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize,
maxDistance)

Description
[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize,
maxDistance) fits a model to noisy data using the M-estimator sample consensus
(MSAC) algorithm, a version of the random sample consensus (RANSAC) algorithm.

Specify your function for fitting a model, fitFcn, and your function for calculating
distances from the model to your data, distFcn. The ransac function takes random
samples from your data using sampleSize and uses the fit function to maximize the
number of inliers within maxDistance.

Examples

Fit Line to 2-D Points Using Least Squares and RANSAC Algorithms

Load and plot a set of noisy 2-D points.

load pointsForLineFitting.mat
plot(points(:,1),points(:,2),'o');
hold on

3 Functions Alphabetical

3-732

Fit a line using linear least squares. Due to outliers, the line is not a good fit.

modelLeastSquares = polyfit(points(:,1),points(:,2),1);
x = [min(points(:,1)) max(points(:,1))];
y = modelLeastSquares(1)*x + modelLeastSquares(2);
plot(x,y,'r-')

 ransac

3-733

Fit a line to the points using the MSAC algorithm. Define the sample size, the maximum
distance for inliers, the fit function, and the distance evaluation function. Call ransac to
run the MSAC algorithm.

sampleSize = 2; % number of points to sample per trial
maxDistance = 2; % max allowable distance for inliers

fitLineFcn = @(points) polyfit(points(:,1),points(:,2),1); % fit function using polyfit
evalLineFcn = ... % distance evaluation function
 @(model, points) sum((points(:, 2) - polyval(model, points(:,1))).^2,2);

[modelRANSAC, inlierIdx] = ransac(points,fitLineFcn,evalLineFcn, ...
 sampleSize,maxDistance);

3 Functions Alphabetical

3-734

Refit a line to the inliers using polyfit.

modelInliers = polyfit(points(inlierIdx,1),points(inlierIdx,2),1);

Display the final fit line. This line is robust to the outliers that ransac identified and
ignored.

inlierPts = points(inlierIdx,:);
x = [min(inlierPts(:,1)) max(inlierPts(:,1))];
y = modelInliers(1)*x + modelInliers(2);
plot(x, y, 'g-')
legend('Noisy points','Least squares fit','Robust fit');
hold off

 ransac

3-735

Input Arguments
data — Data to be modeled
m-by-n matrix

Data to be modeled, specified as an m-by-n matrix. Each row corresponds to a data point
in the set to be modeled. For example, to model a set of 2-D points, specify the point data
as an m-by-2 matrix.
Data Types: single | double

fitFcn — Function to fit a subset of data
function handle

Function to fit a subset of data, specified as a function handle. The function must be of
the form:

model = fitFcn(data)

If it is possible to fit multiple models to the data, then fitFcn returns the model
parameters as a cell array.

distFcn — Function to compute distances from model
function handle

Function to compute distances from the model to the data, specified as a function handle.
The function must be of the form:

distances = distFcn(model,data)

If model is an n-element array, then distances must be an m-by-n matrix. Otherwise,
distances must be an m-by-1 vector.

sampleSize — Minimum sample size
positive scalar

Minimum sample size from data that is required by fitFcn, specified as a positive
scalar.

maxDistance — Maximum distance for inlier points
positive scalar

Maximum distance from the polynomial fit curve to an inlier point, specified as a positive
scalar. Any points further away than this distance are considered outliers. The RANSAC

3 Functions Alphabetical

3-736

algorithm creates a fit from a small sample of points, but tries to maximize the number of
inlier points. Lowering the maximum distance improves the polynomial fit by putting a
tighter tolerance on inlier points.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumTrials',2000

ValidateModelFcn — Function to validate model
function handle

Function to validate model, specified as the comma-separated pair consisting of
'ValidateModelFcn' and a function handle. The function returns true if the model is
accepted based on criteria defined in the function. Use this function to reject specific fits.
The function must be of the form:

isValid = validateModelFcn(model,varargin)

If no function is specified, all polynomials are assumed to be valid.

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | integer

Maximum number of attempts to find a sample that yields a valid polynomial, specified as
the comma-separated pair consisting of 'MaxSamplingAttempts' and an integer.

MaxNumTrials — Maximum number of random trials
1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of
'MaxNumTrials' and an integer. A single trial uses a minimum number of random points
from data to fit a parabolic model. Then, the trial checks the number of inliers within the
maxDistance from the model. After all trials, the model with the highest number of
inliers is selected. Increasing the number of trials improves the robustness of the output
at the expense of additional computation.

 ransac

3-737

Confidence — Confidence of final solution
99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the polynomial
fit, specified as the comma-separated pair consisting of 'Confidence' and a scalar from 0
to 100. Increasing this value improves the robustness of the output at the expense of
additional computation.

Output Arguments
model — Best fit model
parameters defined in fitFcn

Best fit model, returned as the parameters defined in the fitFcn input. This model
maximizes the number of inliers from all the sample attempts.

inlierIdx — Inlier points
logical vector

Inlier points, returned as a logical vector. The vector is the same length as data, and
each element indicates if that point is an inlier for the model fit based on maxDistance.

References
[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application

to Estimating Image Geometry." Computer Vision and Image Understanding. Vol.
18, Issue 1, April 2000, pp. 138–156.

See Also
fitPolynomialRANSAC | polyfit | polyval

Introduced in R2017a

3 Functions Alphabetical

3-738

reconstructScene
Reconstruct 3-D scene from disparity map

Syntax
xyzPoints = reconstructScene(disparityMap,stereoParams)

Description
xyzPoints = reconstructScene(disparityMap,stereoParams) returns an array
of 3-D world point coordinates that reconstruct a scene from a disparity map. The
stereoParams input must be the same input that you use to rectify the stereo images
corresponding to the disparity map.

Examples

Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the images.

[J1, J2] = rectifyStereoImages(I1,I2,stereoParams);

Display the images after rectification.

figure
imshow(cat(3,J1(:,:,1),J2(:,:,2:3)),'InitialMagnification',50);

 reconstructScene

3-739

Compute the disparity.

disparityMap = disparitySGM(rgb2gray(J1),rgb2gray(J2));
figure
imshow(disparityMap,[0,64],'InitialMagnification',50);

3 Functions Alphabetical

3-740

Reconstruct the 3-D world coordinates of points corresponding to each pixel from the
disparity map.

xyzPoints = reconstructScene(disparityMap,stereoParams);

Segment out a person located between 3.2 and 3.7 meters away from the camera.

Z = xyzPoints(:,:,3);
mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);
J1(~mask) = 0;
imshow(J1,'InitialMagnification',50);

 reconstructScene

3-741

Input Arguments
disparityMap — Disparity image
2-D array

Disparity image, specified as a 2-D array of disparity values for pixels in image 1 of a
stereo pair. You can use either disparityBM or disparitySGM functions to generate the
disparity image.

The disparity image can contain invalid values marked as NaN. These values correspond
to pixels in image 1 that did not match with image 2. The function sets the world
coordinates corresponding to invalid disparity value to NaN.

Pixels with zero disparity correspond to world points that are too far away to measure,
given the resolution of the camera. The function sets the world coordinates corresponding
to zero disparity to Inf.

3 Functions Alphabetical

3-742

When you specify the disparityMap input as a double, the function returns the
coordinates as double. Otherwise, the function returns the coordinates as single.
Data Types: single | double

stereoParams — Stereo camera system parameters
stereoParameters object

Stereo camera system parameters, specified as a stereoParameters object.
Data Types: uint8 | uint16 | int16 | single | double

Output Arguments
xyzPoints — Coordinates of world points
M-by-N-by-3 array

Coordinates of world points, returned as an M-by-N-by-3 array. The 3-D world coordinates
are relative to the optical center of camera 1 in the stereo system represented by
stereoParams.

The output array contains the [x, y, z] coordinates of world points that correspond to the
pixels in the disparityMap input. xyzPoints(:, :, 1) contains the x world coordinates of
points corresponding to the pixels in the disparity map. xyzPoints(:, :, 2) contains the y
world coordinates, and xyzPoints(:, :, 3) contains the z world coordinates. The 3-D
world coordinates are relative to the optical center of camera 1 in the stereo system.

When you specify the disparityMap input as double, the function returns the
xyzPoints output as double. Otherwise, the function returns it as single.
Data Types: single | double

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV

Library, Sebastopol, CA: O'Reilly, 2008.

 reconstructScene

3-743

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

See Also
cameraParameters | disparityBM | disparitySGM | estimateCameraParameters |
lineToBorderPoints | rectifyStereoImages | size | stereoParameters

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2014a

3 Functions Alphabetical

3-744

rectifyStereoImages
Rectify a pair of stereo images

Syntax
[J1,J2] = rectifyStereoImages(I1,I2,stereoParams)
[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2)

[J1,J2] = rectifyStereoImages(___ ,interp)
[J1,J2] = rectifyStereoImages(___ ,Name,Value)

Description
[J1,J2] = rectifyStereoImages(I1,I2,stereoParams) returns undistorted and
rectified versions of I1 and I2 input images using the stereo parameters stored in the
stereoParams object.

Stereo image rectification projects images onto a common image plane in such a way that
the corresponding points have the same row coordinates. This image projection makes
the image appear as though the two cameras are parallel. Use the disparityBM or
disparitySGM functions to compute a disparity map from the rectified images for 3-D
scene reconstruction.

[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2) returns rectified
versions of I1 and I2 input images by applying projective transformations tform1 and
tform2. The projective transformations are returned by the
estimateUncalibratedRectification function.

[J1,J2] = rectifyStereoImages(___ ,interp) additionally specifies the
interpolation method to use for rectified images. You can specify the method as
'nearest', 'linear', or 'cubic'.

[J1,J2] = rectifyStereoImages(___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

 rectifyStereoImages

3-745

Examples

Rectify Stereo Images

Specify images containing a checkerboard for calibration.

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(...
 leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.

squareSizeInMillimeters = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMillimeters);

Read in the images.

I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);
imageSize = [size(I1,1),size(I1,2)];

Calibrate the stereo camera system.

stereoParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Rectify the images using 'full' output view.

[J1_full,J2_full] = rectifyStereoImages(I1,I2,stereoParams, ...
 'OutputView','full');

Display the result for 'full' output view.

figure;
imshow(stereoAnaglyph(J1_full,J2_full));

3 Functions Alphabetical

3-746

Rectify the images using 'valid' output view. This is most suitable for computing disparity.

[J1_valid,J2_valid] = rectifyStereoImages(I1,I2,stereoParams, ...
 'OutputView','valid');

Display the result for 'valid' output view.

figure;
imshow(stereoAnaglyph(J1_valid,J2_valid));

 rectifyStereoImages

3-747

Input Arguments
I1 — Input image 1
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image corresponding to camera 1, specified as an M-by-N-by-3 truecolor image or
an M-by-N 2-D grayscale array. Input images I1 and I2 must also be real, finite, and
nonsparse. The input images must be the same class.
Data Types: uint8 | uint16 | int16 | single | double

3 Functions Alphabetical

3-748

I2 — Input image 2
M-by-N-by-3 truecolor image | M-by-N 2-D truecolor image

Input image corresponding to camera 2, specified as an M-by-N-by-3 truecolor image or
an M-by-N 2-D grayscale array. Input images I1 and I2 must be real, finite, and
nonsparse. The input images must also be the same class.
Data Types: uint8 | uint16 | int16 | single | double

stereoParams — Stereo camera system parameters
stereoParameters object

Stereo camera system parameters, specified as a stereoParameters object.
Data Types: uint8 | uint16 | int16 | single | double

tform1 — Projective transformation
3-by-3 matrix | projective2d object

Projective transformations for image 1, specified as a 3-by-3 matrix returned by the
estimateUncalibratedRectification function or a projective2d object.

tform2 — Projective transformation
3-by-3 matrix | projective2d object

Projective transformations for image 2, specified as a 3-by-3 matrix returned by the
estimateUncalibratedRectification function or a projective2d object.

interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method, specified as the character vector 'linear', 'nearest', or
'cubic' character vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OutputView', 'valid' sets the 'OutputView' property to the character
vector 'valid'.

 rectifyStereoImages

3-749

OutputView — Size of rectified images
'valid' (default) | character vector

Size of rectified images, specified as the comma-separated pair consisting of
'OutputView' and the character vector 'full' or 'valid'. When you set this
parameter to 'full', the rectified images include all pixels from the original images.
When you set this value to 'valid', the output images are cropped to the size of the
largest common rectangle containing valid pixels.

When there is no overlap between rectified images, set the OutputView to 'full'.

FillValues — Output pixel fill values
array of scalar values

Output pixel fill values, specified as the comma-separated pair consisting of
'FillValues' and an array of one or more scalar values. When the corresponding
inverse-transformed location in the input image is completely outside the input image
boundaries, use the fill values for output pixels. If I1 and I2 are 2-D grayscale images,
then you must set 'FillValues' to a scalar. If I1 and I2 are truecolor images, then you
can set 'FillValues' to a scalar or a 3-element vector of RGB values.

Output Arguments
J1 — Undistorted and rectified image 1
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted and rectified version of I1, returned as an M-by-N-by-3 truecolor image or as
an M-by-N 2-D grayscale image.

Stereo image rectification projects images onto a common image plane in such a way that
the corresponding points have the same row coordinates. This image projection makes
the image appear as though the two cameras are parallel. Use the disparityBM or
disparitySGM functions to compute a disparity map from the rectified images for 3-D
scene reconstruction.

J2 — Undistorted and rectified image 2
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted and rectified version of I2, returned as an M-by-N-by-3 truecolor image or as
an M-by-N 2-D grayscale image.

3 Functions Alphabetical

3-750

Stereo image rectification projects images onto a common image plane in such a way that
the corresponding points have the same row coordinates. This image projection makes
the image appear as though the two cameras are parallel. Use the disparityBM or
disparitySGM functions to compute a disparity map from the rectified images for 3-D
scene reconstruction.

References
[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV

Library. Sebastopol, CA: O'Reilly, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'interp' and 'OutputView' must be compile-time constants.
• Use the toStruct function to pass stereoParameters to the

rectifyStereoImages function in or to generate code.

See Also
Camera Calibrator | Stereo Camera Calibrator | disparityBM | disparitySGM |
estimateCameraParameters | estimateUncalibratedRectification |
reconstructScene | stereoParameters

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”
“Uncalibrated Stereo Image Rectification”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

 rectifyStereoImages

3-751

Introduced in R2014a

3 Functions Alphabetical

3-752

retrieveImages
Search image set for similar image

Syntax
imageIDs = retrieveImages(queryImage,imageIndex)
[imageIDs,scores] = retrieveImages(queryImage,imageIndex)
[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex)
[imageIDs, ___] = retrieveImages(queryImage,imageIndex,Name,Value)

Description
imageIDs = retrieveImages(queryImage,imageIndex) returns the indices
corresponding to images within imageIndex that are visually similar to the query image.
The imageIDs output contains the indices in ranked order, from the most to least similar
match.

[imageIDs,scores] = retrieveImages(queryImage,imageIndex) optionally
returns the similarity scores used to rank the image retrieval results. The scores output
contains the corresponding scores from 0 to 1.

[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex)
optionally returns the visual words in queryImage that are used to search for similar
images.

[imageIDs, ___] = retrieveImages(queryImage,imageIndex,Name,Value)
uses additional options specified by one or more Name,Value pair arguments, using any
of the preceding syntaxes.

Examples

 retrieveImages

3-753

Search Image Set Using Query Image

Create an image set of book covers.

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Display the data set.

thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
 I = readimage(bookCovers,i);
 thumbnail = imresize(I,[300 300]);
 thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end

figure
montage(thumbnailGallery);

3 Functions Alphabetical

3-754

Index the image set. This step may take a few minutes.

imageIndex = indexImages(bookCovers);

 retrieveImages

3-755

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000

* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.52 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
queryImage = imread([queryDir 'query3.jpg']);

imageIDs = retrieveImages(queryImage,imageIndex);

Show the query image and its best match, side-by-side.

bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});

3 Functions Alphabetical

3-756

figure
imshowpair(queryImage,bestImage,'montage')

Search Image Set for Specific Object Using ROIs

Search an image set for an object using a region of interest (ROI) for the query image.

Define a set of images to search.

imageFiles = ...
 {'elephant.jpg', 'cameraman.tif', ...
 'peppers.png', 'saturn.png',...
 'pears.png', 'stapleRemover.jpg', ...

 retrieveImages

3-757

 'football.jpg', 'mandi.tif',...
 'kids.tif', 'liftingbody.png', ...
 'office_5.jpg', 'gantrycrane.png',...
 'moon.tif', 'circuit.tif', ...
 'tape.png', 'coins.png'};

imds = imageDatastore(imageFiles);

Create a search index.

 imageIndex = indexImages(imds);

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 16 images...done. Extracted 3680 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest 2944 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 2944
* Number of clusters (K) : 2944

* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.10 seconds/iteration)...converged in 1 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 16 images...done.
Finished creating the image index.

3 Functions Alphabetical

3-758

Specify a query image and an ROI. The ROI outlines the object, an elephant, for the
search.

queryImage = imread('clutteredDesk.jpg');
queryROI = [130 175 330 365];

figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor','yellow')

You can also use the imrect function to select an ROI interactively. For example,
queryROI = getPosition(imrect)

 retrieveImages

3-759

Find images that contain the object.

imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)

imageIDs = 12×1

 1
 11
 6
 12
 3
 14
 2
 8
 10
 13
 ⋮

Display the best match.

bestMatch = imageIDs(1);

figure
imshow(imageIndex.ImageLocation{bestMatch})

3 Functions Alphabetical

3-760

Geometric Verification Using estimateGeometricTransform Function

Use the locations of visual words to verify the best search result. To rerank the search
results based on geometric information, repeat this procedure for the top N search
results.

Specify the location of the images.

 retrieveImages

3-761

dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);

Index the image set. This process can take a few minutes.

imageIndex = indexImages(bookCovers);

Creating an inverted image index using Bag-Of-Features.

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.

* Extracting features from 58 images...done. Extracted 29216 features.

* Keeping 80 percent of the strongest features from each category.

* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.

* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000

* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.47 seconds/iteration)...converged in 11 iterations.

* Finished creating Bag-Of-Features

Encoding images using Bag-Of-Features.

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

queryDir = fullfile(dataDir,'queries',filesep);
queryImage = imread([queryDir 'query3.jpg']);

3 Functions Alphabetical

3-762

figure
imshow(queryImage)

 retrieveImages

3-763

3 Functions Alphabetical

3-764

Retrieve the best matches. The queryWords output contains visual word locations
information for the query image. Use this information to verify the search results.

[imageIDs, ~, queryWords] = retrieveImages(queryImage,imageIndex);

Find the best match for the query image by extracting the visual words from the image
index. The image index contains the visual word information for all images in the index.

bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});
bestMatchWords = imageIndex.ImageWords(bestMatch);

Generate a set of tentative matches based on visual word assignments. Each visual word
in the query can have multiple matches due to the hard quantization used to assign visual
words.

queryWordsIndex = queryWords.WordIndex;
bestMatchWordIndex = bestMatchWords.WordIndex;

tentativeMatches = [];
for i = 1:numel(queryWords.WordIndex)

 idx = find(queryWordsIndex(i) == bestMatchWordIndex);

 matches = [repmat(i, numel(idx), 1) idx];

 tentativeMatches = [tentativeMatches; matches];

end

Show the point locations for the tentative matches. There are many poor matches.

points1 = queryWords.Location(tentativeMatches(:,1),:);
points2 = bestMatchWords.Location(tentativeMatches(:,2),:);

figure
showMatchedFeatures(queryImage,bestImage,points1,points2,'montage')

 retrieveImages

3-765

Remove poor visual word assignments using estimateGeometricTransform function.
Keep the assignments that fit a valid geometric transform.

[tform,inlierPoints1,inlierPoints2] = ...
 estimateGeometricTransform(points1,points2,'affine',...
 'MaxNumTrials',2000);

Rerank the search results by the percentage of inliers. Do this when the geometric
verification procedure is applied to the top N search results. Those images with a higher
percentage of inliers are more likely to be relevant.

percentageOfInliers = size(inlierPoints1,1)./size(points1,1);

figure
showMatchedFeatures(queryImage,bestImage,inlierPoints1,...
 inlierPoints2,'montage')

3 Functions Alphabetical

3-766

Apply the estimated transform.

outputView = imref2d(size(bestImage));
Ir = imwarp(queryImage, tform, 'OutputView', outputView);

figure
imshowpair(Ir,bestImage,'montage')

 retrieveImages

3-767

Modify Search Parameters For Image Search

Use the evaluateImageRetrieval function to help select proper search parameters.

Create an image set.

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

Index the image set.
 imageIndex = indexImages(imds,'Verbose',false);

Tune image search parameters.

3 Functions Alphabetical

3-768

imageIndex.MatchThreshold = 0.2;
imageIndex.WordFrequencyRange = [0 1]

imageIndex =
 invertedImageIndex with properties:

 ImageLocation: {6x1 cell}
 ImageWords: [6x1 vision.internal.visualWords]
 WordFrequency: [1x1366 double]
 BagOfFeatures: [1x1 bagOfFeatures]
 MatchThreshold: 0.2000
 WordFrequencyRange: [0 1]

queryImage = readimage(imds, 1);
indices = retrieveImages(queryImage,imageIndex);

Input Arguments
queryImage — Input query image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input query image, specified as either an M-by-N-by-3 truecolor image or an M-by-N 2-D
grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

imageIndex — Image search index
invertedImageIndex object

Image search index, specified as an invertedImageIndex object. The indexImages
function creates the invertedImageIndex object, which stores the data used for the
image search.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 retrieveImages

3-769

Example: 'NumResults',25 sets the 'NumResults' property to 25

NumResults — Maximum number of results
20 (default) | numeric value

Maximum number of results to return, specified as the comma-separated pair consisting
of 'NumResults' and a numeric value. Set this value to Inf to return as many matching
images as possible.

ROI — Query image search region
[1 1 size(queryImage,2) size(queryImage,1)] (default) | [x y width height]
vector

Query image search region, specified as the comma-separated pair consisting of 'ROI' and
an [x y width height] vector.

Output Arguments
imageIDs — Ranked index of retrieved images
M-by-1 vector

Ranked index of retrieved images, returned as an M-by-1 vector. The image IDs are
returned in ranked order, from the most to least similar matched image.

scores — Similarity metric
N-by-1 vector

Similarity metric, returned as an N-by-1 vector. This output contains the scores that
correspond to the retrieved images in the imageIDs output. The scores are computed
using the cosine similarity and range from 0 to 1.

imageWords — Object for storing visual word assignments
visualWords object

Object for storing visual word assignments, returned as a visualWords object. The
object stores the visual word assignments of queryImage and their locations within that
image.

3 Functions Alphabetical

3-770

References
[1] Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching

in videos. ICCV (2003) pg 1470-1477.

[2] Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large
vocabularies and fast spatial matching. CVPR (2007).

See Also
bagOfFeatures | evaluateImageRetrieval | imageDatastore | imageSet |
invertedImageIndex

Topics
“Image Retrieval Using Customized Bag of Features”
“Image Retrieval with Bag of Visual Words”

Introduced in R2015a

 retrieveImages

3-771

rotationMatrixToVector
Convert 3-D rotation matrix to rotation vector

Syntax
rotationVector = rotationMatrixToVector(rotationMatrix)

Description
rotationVector = rotationMatrixToVector(rotationMatrix) returns an axis-
angle rotation vector that corresponds to the input 3-D rotation matrix. The function uses
the Rodrigues formula for the conversion.

Examples

Convert Rotation Matrix to Rotation Vector

Create a matrix representing a 90-degree rotation about the Z -axis.

rotationMatrix = [0, -1, 0; 1, 0, 0; 0, 0, 1];

Find the equivalent rotation vector.

rotationVector = rotationMatrixToVector(rotationMatrix)

rotationVector = 1×3

 0 0 -1.5708

3 Functions Alphabetical

3-772

Input Arguments
rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix by using the
extrinsics function.

Output Arguments
rotationVector — Rotation vector
three-element vector

Rotation vector, returned as a three-element vector. The vector represents the axis of
rotation in 3-D, where the magnitude corresponds to the rotation angle in radians.
Data Types: single | double

References
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice

Hall, 1998.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
extrinsics | relativeCameraPose | rotationVectorToMatrix | triangulate

Topics
“Evaluating the Accuracy of Single Camera Calibration”

 rotationMatrixToVector

3-773

“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016a

3 Functions Alphabetical

3-774

rotationVectorToMatrix
Convert 3-D rotation vector to rotation matrix

Syntax
rotationMatrix = rotationVectorToMatrix(rotationVector)

Description
rotationMatrix = rotationVectorToMatrix(rotationVector) returns a 3-D
rotation matrix that corresponds to the input axis-angle rotation vector. The function uses
the Rodrigues formula for the computation.

Examples

Convert Rotation Vector to Rotation Matrix

Create a vector representing a 90-degree rotation about the Z -axis.

rotationVector = pi/2 * [0, 0, 1];

Find the equivalent rotation matrix.

rotationMatrix = rotationVectorToMatrix(rotationVector)

rotationMatrix = 3×3

 0.0000 1.0000 0
 -1.0000 0.0000 0
 0 0 1.0000

 rotationVectorToMatrix

3-775

Input Arguments
rotationVector — Rotation vector
three-element vector

Rotation vector, specified as a three-element vector. The vector represents the axis of
rotation in 3-D, where the magnitude corresponds to the rotation angle in radians.
Data Types: single | double

Output Arguments
rotationMatrix — Rotation of camera
3-by-3 matrix

Rotation of camera, returned as a 3-by-3 matrix that corresponds to the input axis-angle
rotation vector.

References
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice

Hall, 1998.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
extrinsics | relativeCameraPose | rotationMatrixToVector | triangulate

Topics
“Evaluating the Accuracy of Single Camera Calibration”

3 Functions Alphabetical

3-776

“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2016a

 rotationVectorToMatrix

3-777

segmentLidarData
Segment organized 3-D range data into clusters

Syntax
labels = segmentLidarData(ptCloud,distThreshold)
labels = segmentLidarData(ptCloud,distThreshold,angleThreshold)
[labels,numClusters] = segmentLidarData(___)

Description
labels = segmentLidarData(ptCloud,distThreshold) segments organized 3-D
range data, ptCloud, into clusters. The function assigns an integer cluster label to each
point in the point cloud, and returns the cluster label of all points in labels. Two
neighboring points are grouped into the same cluster if their Euclidean distance is less
than distThreshold.

labels = segmentLidarData(ptCloud,distThreshold,angleThreshold)
segments the data using an additional constraint based on the angle between the sensor
and two neighboring points. The line passing through the sensor and one point forms the
first side of the angle. The line passing through the two neighboring points forms the
second side of the angle. The two points are grouped into the same cluster if the angle is
greater than angleThreshold.

[labels,numClusters] = segmentLidarData(___) also returns the number of
clusters.

Examples

Cluster Organized Synthetic Lidar Data

Create organized synthetic lidar data containing two objects.

3 Functions Alphabetical

3-778

ldr = zeros(5,100);
ldr(:,1:50) = 10;
ldr(:,51:end) = 20;
pitch = linspace(-18,18,5);
pitch = repmat(pitch',1,100);
yaw = linspace(-90,90,100);
yaw = repmat(yaw,5,1);

Convert to Cartesian coordinates.

X = ldr .* cosd(pitch) .* sind(yaw);
Y = ldr .* cosd(pitch) .* cosd(yaw);
Z = ldr .* sind(pitch);
pc = pointCloud(cat(3,X,Y,Z));

figure
pcshow(pc.Location,'k')
title('Unclustered Point Cloud')

 segmentLidarData

3-779

Set the threshold.

distThreshold = 5;

Segment the lidar data.

labels = segmentLidarData(pc,distThreshold);

Plot the results.

figure
hold on
title('Segmented Clusters')

3 Functions Alphabetical

3-780

pc1 = select(pc,find(labels == 1));
pcshow(pc1.Location,'r')

pc2 = select(pc,find(labels == 2));
pcshow(pc2.Location,'b')

Cluster Organized Lidar Point Cloud

Set up the PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

 segmentLidarData

3-781

Wait for 0.3 seconds from the beginning of the file, then read the point cloud from the
next frame.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
ptCloud = readFrame(veloReader);

Segment and remove the ground plane.

groundPtsIdx = segmentGroundFromLidarData(ptCloud);
ptCloudWithoutGround = select(ptCloud,~groundPtsIdx,'OutputSize','full');

Cluster the remaining points. Distance is in meters.

distThreshold = 0.5;
[labels,numClusters] = segmentLidarData(ptCloudWithoutGround,distThreshold);

Add an additional label for the ground plane.

numClusters = numClusters+1;
labels(groundPtsIdx) = numClusters;

Plot the labeled results. Display the ground plane in black.

labelColorIndex = labels+1;
pcshow(ptCloud.Location,labelColorIndex)
colormap([hsv(numClusters);[0 0 0]])
title('Point Cloud Clusters')

3 Functions Alphabetical

3-782

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that
stores point coordinates in an M-by-N-by-3 matrix. The points must be organized by pitch
and yaw angles in a sequential scanning order, as is typically returned by laser range
finders or velodyneFileReader.

 segmentLidarData

3-783

distThreshold — Distance threshold
nonnegative scalar

Distance threshold in world units, specified as a nonnegative scalar. To reduce the
number of output clusters, increase the value of distThreshold.
Data Types: single | double

angleThreshold — Angle threshold
5 (default) | scalar in the range [0, 180]

Angle threshold in degrees, specified as a scalar in the range [0, 180]. To reduce the
number output clusters, decrease the value of angleThreshold.
Data Types: single | double

Output Arguments
labels — Cluster labels
M-by-N matrix

Cluster labels of all points in the point cloud ptCloud, returned as an M-by-N matrix of
integers. Each valid point in ptCloud belongs to a cluster. All points in a cluster are
assigned the same integer cluster label, ranging from 1 to numClusters. Invalid points,
such as points with Inf or NaN coordinates, are assigned the label 0.

numClusters — Number of clusters
nonnegative integer

Number of clusters of valid points, returned as a nonnegative integer. The number of
clusters does not include the cluster corresponding to invalid points.

References
[1] Bogoslavskyi, I. “Efficient Online Segmentation for Sparse 3D Laser Scans.” Journal of

Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Issue 1,
2017, pp. 41–52.

3 Functions Alphabetical

3-784

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

• Generates code that uses a precompiled, platform-specific shared library.

See Also
pcfitplane | pcsegdist | pointCloud | segmentGroundFromLidarData |
velodyneFileReader

Introduced in R2018a

 segmentLidarData

3-785

selectStrongestBbox
Select strongest bounding boxes from overlapping clusters

Syntax
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score)
[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score)
[___] = selectStrongestBbox(___ ,Name,Value)

Description
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score) returns
selected bounding boxes that have a high confidence score. The function uses
nonmaximal suppression to eliminate overlapping bounding boxes from the bbox input.

[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score)
additionally returns the index vector associated with selectedBbox. This vector
contains the indices of the selected boxes in the bbox input.

[___] = selectStrongestBbox(___ ,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Run Nonmaximal Suppression on Bounding Boxes Using People Detector

Load the pretrained people detector and disable bounding box merging.

peopleDetector = vision.PeopleDetector('ClassificationThreshold',...
 0,'MergeDetections',false);

Read an image, run the people detector, and then insert bounding boxes with confidence
scores.

3 Functions Alphabetical

3-786

I = imread('visionteam1.jpg');
[bbox,score] = step(peopleDetector,I);
I1 = insertObjectAnnotation(I,'rectangle',bbox,...
 cellstr(num2str(score)),'Color','r');

Run nonmaximal suppression on the bounding boxes.

[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score);
I2 = insertObjectAnnotation(I,'rectangle',selectedBbox,...
 cellstr(num2str(selectedScore)),'Color','r');

Display detection before and after suppression.

figure, imshow(I1); ...
title('Detected people and detection scores before suppression');

 selectStrongestBbox

3-787

figure, imshow(I2); ...
title('Detected people and detection scores after suppression');

3 Functions Alphabetical

3-788

Input Arguments
bbox — Bounding boxes
M-by-4 matrix

Bounding boxes, specified as an M-by-4 matrix defining M bounding boxes. Each row is
specified in the format [x y width height], where x and y correspond to the upper left
corner of the bounding box. The bbox input must be real, finite, and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 selectStrongestBbox

3-789

score — Confidence score
M-by-1 vector

Confidence score, specified as an M-by-1 vector. The Mth score corresponds to the Mth
bounding box in the bbox input. The selectStrongestBbox function uses nonmaximal
suppression to eliminate overlapping bounding boxes and associate the confidence score
with the boxes. A higher score represents a higher confidence in keeping the bounding
box. The score input must be real, finite, and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

RatioType — Bounding box overlap ratio denominator
'Union' (default) | 'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the minimum area of the two bounding boxes.

bboxA

bboxB

(A

U

B)

(AUB)

area

area
Union:

Min:
(A

U

B)

(A), (B)

area

area area()min

Data Types: char

OverlapThreshold — Overlap ratio threshold
0.5 (default) | scalar in the range [0 1]

3 Functions Alphabetical

3-790

Overlap ratio threshold, specified as the comma-separated pair consisting of
'OverlapThreshold' and a scalar in the range [0 1]. When the overlap ratio is above the
threshold you set, the function removes bounding boxes around the reference box.
Decrease this value to reduce the number of selected bounding boxes. However, if you
decrease the overlap ratio too much, you might eliminate boxes that represent objects
close to each other in the image.
Data Types: single | double

Output Arguments
selectedBbox — Selected bounding boxes
M-by-4 matrix

Selected bounding boxes, returned as an M-by-4 matrix. The selectedBbox output
returns the selected bounding boxes from the bbox input that have the highest
confidence score. The function uses nonmaximal suppression to eliminate overlapping
bounding boxes.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

selectedScore — Scores of selected bounding boxes
M-by-1 vector

Scores of selected bounding boxes, returned as an M-by-1 vector. The Mth score in the
selectedScore output corresponds to the Mth bounding box in the selectedBbox
output.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

index — Index of selected bounding boxes
M-by-1 vector

Index of selected bounding boxes, returned as an M-by-1 vector. The index vector
contains the indices to the selected boxes in the bbox input.
Data Types: double

 selectStrongestBbox

3-791

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bboxOverlapRatio | selectStrongestBboxMulticlass

Introduced in R2014b

3 Functions Alphabetical

3-792

selectStrongestBboxMulticlass
Select strongest multiclass bounding boxes from overlapping clusters

Syntax
selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels)
[selectedBboxes,selectedScores,selectedLabels,index] =
selectStrongestBboxMulticlass(bboxes,scores,labels)
[___] = selectStrongestBboxMulticlass(___ ,Name,Value)

Description
selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels)
returns selected bounding boxes that have high confidence scores. The function uses
greedy nonmaximal suppression (NMS) to eliminate overlapping bounding boxes from the
bboxes input, only if they have the same class label.

[selectedBboxes,selectedScores,selectedLabels,index] =
selectStrongestBboxMulticlass(bboxes,scores,labels) additionally returns
the scores, labels, and index associated with the selected bounding boxes.

[___] = selectStrongestBboxMulticlass(___ ,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Examples

Run Multiclass Nonmaximal Suppression on Bounding Boxes Using People
Detector

Create detectors using two different models. These will be used to generate multiclass
detection results.

detectorInria = peopleDetectorACF('inria-100x41');
detectorCaltech = peopleDetectorACF('caltech-50x21');

 selectStrongestBboxMulticlass

3-793

Apply the detectors.

I = imread('visionteam1.jpg');
[bboxesInria,scoresInria] = detect(detectorInria,I,'SelectStrongest',false);
[bboxesCaltech,scoresCaltech] = detect(detectorCaltech,I,'SelectStrongest',false);

Create categorical labels for each the result of each detector.

labelsInria = repelem("inria",numel(scoresInria),1);
labelsInria = categorical(labelsInria,{'inria','caltech'});
labelsCaltech = repelem("caltech",numel(scoresCaltech),1);
labelsCaltech = categorical(labelsCaltech,{'inria','caltech'});

Combine results from all detectors to for multiclass detection results.

allBBoxes = [bboxesInria;bboxesCaltech];
allScores = [scoresInria;scoresCaltech];
allLabels = [labelsInria;labelsCaltech];

Run multiclass non-maximal suppression.

[bboxes,scores,labels] = selectStrongestBboxMulticlass(allBBoxes,allScores,allLabels,...
 'RatioType','Min','OverlapThreshold',0.65);

Annotate detected people.

annotations = string(labels) + ": " + string(scores);
I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(annotations));
imshow(I)
title('Detected People, Scores, and Labels')

3 Functions Alphabetical

3-794

Input Arguments
bboxes — Bounding boxes
M-by-4 matrix

Bounding boxes, specified as an M-by-4 matrix defining M bounding boxes. Each row is
specified in the format [x y width height], where x and y correspond to the upper left
corner of the bounding box. The bboxes input must be real, finite, and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 selectStrongestBboxMulticlass

3-795

scores — Confidence scores
M-by-1 vector

Confidence scores corresponding to the input bounding boxes, specified as an M-by-1
vector. The selectStrongestBboxMulticlass function uses greedy NMS to eliminate
overlapping bounding boxes and associate the confidence score with the boxes. A higher
score represents a higher confidence in keeping the bounding box. The scores input
must be real, finite, and nonsparse.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

labels — Labels
M-by-1 categorical vector | M-by-1 numeric vector

Labels corresponding to the input bounding boxes, specified as an M-by-1 categorical or
numeric vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
categorical

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

RatioType — Bounding box overlap ratio denominator
'Union' (default) | 'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

• Set the ratio type to 'Union' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the area of the union of the two.

• Set the ratio type to 'Min' to compute the ratio as the area of intersection between
bboxA and bboxB, divided by the minimum area of the two bounding boxes.

3 Functions Alphabetical

3-796

bboxA

bboxB

(A

U

B)

(AUB)

area

area
Union:

Min:
(A

U

B)

(A), (B)

area

area area()min

Data Types: char

OverlapThreshold — Overlap ratio threshold
0.5 (default) | scalar in the range [0 1]

Overlap ratio threshold, specified as the comma-separated pair consisting of
'OverlapThreshold' and a scalar in the range [0 1]. When the overlap ratio is above the
threshold, the function removes bounding boxes around the reference box. Decrease the
threshold to reduce the number of selected bounding boxes. However, if you decrease the
threshold too much, you might eliminate boxes that represent objects close to each other
in the image.
Data Types: single | double

Output Arguments
selectedBboxes — Selected bounding boxes
M-by-4 matrix

Selected bounding boxes, returned as an M-by-4 matrix. The selectedBboxes output
returns the selected bounding boxes from the bboxes input that have the highest
confidence score. The function uses NMS to eliminate overlapping bounding boxes. The
data type of selectedBboxes matches the data type of bboxes.

selectedScores — Scores of selected bounding boxes
M-by-1 vector

Scores of selected bounding boxes, returned as an M-by-1 vector. The Mth score in the
selectedScores output corresponds to the Mth bounding box in the selectedBboxes
output. The data type of selectedScores matches the data type of scores.

selectedLabels — Labels of selected bounding boxes
M-by-1 categorical vector | M-by-1 numeric vector

 selectStrongestBboxMulticlass

3-797

Labels of selected bounding boxes, returned as an M-by-1 categorical or numeric vector.
The Mth label in the selectedLabels output corresponds to the Mth bounding box in
the selectedBboxes output. The data type of selectedLabels matches the data type
of labels.

index — Index of selected bounding boxes
M-by-1 vector

Index of selected bounding boxes, returned as an M-by-1 vector. The index vector
contains the indices to the selected boxes in the bboxes input.
Data Types: double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is only supported for numeric labels.

See Also
bboxOverlapRatio | selectStrongestBbox

Introduced in R2018a

3 Functions Alphabetical

3-798

showExtrinsics
Visualize extrinsic camera parameters

Syntax
showExtrinsics(cameraParams)
showExtrinsics(cameraParams,view)
showExtrinsics(___ ,Name,Value)

ax = showExtrinsics(___)

Description
showExtrinsics(cameraParams) renders a 3-D visualization of extrinsic parameters
of a single calibrated camera or a calibrated stereo pair. The function plots a 3-D view of
the calibration patterns with respect to the camera. The cameraParams input contains
either a cameraParameters, fisheyeParameters, or a stereoParameters object,
which the estimateCameraParameters or estimateFisheyeParameters function
returns.

showExtrinsics(cameraParams,view) displays visualization of the camera extrinsic
parameters using the style specified by the view input.

showExtrinsics(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments, using any of the preceding syntaxes.

ax = showExtrinsics(___) returns the plot axis, using any of the preceding
syntaxes.

Examples

Visualize Single Camera Extrinsic Parameters

Create a set of calibration images.

 showExtrinsics

3-799

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','webcam'));
imageFileNames = images.Files(1:5);

Detect calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in
millimeters.

squareSide = 25;
worldPoints = generateCheckerboardPoints(boardSize,squareSide);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize pattern locations.

figure
showExtrinsics(cameraParams);

3 Functions Alphabetical

3-800

Visualize camera locations.

figure
showExtrinsics(cameraParams,'patternCentric');

 showExtrinsics

3-801

Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

3 Functions Alphabetical

3-802

[imagePoints,boardSize] = detectCheckerboardPoints(...
 leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize pattern locations.

figure;
showExtrinsics(cameraParams);

 showExtrinsics

3-803

Visualize camera locations.

figure;
showExtrinsics(cameraParams,'patternCentric');

3 Functions Alphabetical

3-804

Input Arguments
cameraParams — Object containing parameters of single camera or stereo pair
cameraParameters object | fisheyeParameters object | stereoParameters object

Object containing parameters of single camera or stereo pair, specified as either a
cameraParameters, fisheyeParameters, or stereoParameters object. You can
create the single camera or stereo pair input object using the
estimateCameraParameters function. The fisheye parameters input object is created
using estimateFisheyeParameters.

 showExtrinsics

3-805

You can also use the Camera Calibrator app to create the cameraParameters input
object, or use Stereo Camera Calibrator app to create the stereoParameters input
object. See “Single Camera Calibrator App” and “Stereo Camera Calibrator App”.

view — Camera- or pattern-centric view
'CameraCentric' | 'PatternCentric'

Camera or pattern-centric view, specified as the character vector 'CameraCentric' or
'PatternCentric'. The view input sets the visualization for the camera extrinsic
parameters. If you keep your camera stationary while moving the calibration pattern, set
view to 'CameraCentric'. If the pattern is stationary while you move your camera, set
it to 'PatternCentric'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'HighlightIndex', [1, 4] sets the 'HighlightIndex' to patterns 1 and
4.

HighlightIndex — Highlight selection index
[] (default) | vector | scalar

Highlight selection index, specified as a scalar or a vector of integers. For example, if you
want to highlight patterns 1 and 4, use [1, 4]. Doing so increases the opacity of
patterns 1 and 4 in contrast to the rest of the patterns.

Parent — Output axes
current axes (default)

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes.
You can obtain the current axes handle by returning the function to an output variable:
ax = showExtrinsics(cameraParams)
You can also use the gca function to get the current axes handle.
Example: showExtrinsics(cameraParams,'Parent',ax)

3 Functions Alphabetical

3-806

Output Arguments
ax — Current axes handle
scalar value

Current axes handle, returned as a scalar value. The function returns the handle to the
current axes for the current figure.
Example: ax = showExtrinsics(cameraParams)

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
detectCheckerboardPoints | estimateCameraParameters | fisheyeParameters
| generateCheckerboardPoints | plotCamera | showReprojectionErrors |
stereoParameters | undistortImage

Topics
“Single Camera Calibrator App”

Introduced in R2014a

 showExtrinsics

3-807

showMatchedFeatures
Display corresponding feature points

Syntax
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2)
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,method)

showMatchedFeatures(___ ,PlotOptions, {MarkerStyle1, MarkerStyle2,
LineStyle})

H = showMatchedFeatures(___)

Description
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2) displays a
falsecolor overlay of images I1 and I2 with a color-coded plot of corresponding points
connected by a line. matchedPoints1 and matchedPoints2 contain the coordinates of
corresponding points in I1 and I2. The input points can be M-by-2 matrices of M number
of [x y] coordinates, or SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or
cornerPoints object.

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,method)
displays images I1 and I2 using the visualization style specified by the method
parameter.

showMatchedFeatures(___ ,PlotOptions, {MarkerStyle1, MarkerStyle2,
LineStyle}) lets you specify custom plot options in a cell array containing three
character vector values. The MarkerStyle1, MarkerStyle2, and LineStyle character
vector values correspond to the marker specification in I1, marker specification in I2,
and line style and color. The LineSpec syntax of the plot function defines each of the
specifiers.

H = showMatchedFeatures(___) returns the handle to the image object returned by
showMatchedFeatures.

3 Functions Alphabetical

3-808

Examples

Find Corresponding Points Between Two Images Using Harris Features

Read Images.

I1 = rgb2gray(imread('parkinglot_left.png'));
I2 = rgb2gray(imread('parkinglot_right.png'));

Detect SURF features

points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);

Extract features

[f1, vpts1] = extractFeatures(I1, points1);
[f2, vpts2] = extractFeatures(I2, points2);

Match features.

indexPairs = matchFeatures(f1, f2) ;
matchedPoints1 = vpts1(indexPairs(1:20, 1));
matchedPoints2 = vpts2(indexPairs(1:20, 2));

Visualize candidate matches.

figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','Parent',ax);
title(ax, 'Candidate point matches');
legend(ax, 'Matched points 1','Matched points 2');

 showMatchedFeatures

3-809

Display Corresponding Points Between Two Rotated and Scaled Images

Use SURF features to find corresponding points between two images rotated and scaled
with respect to each other.

Read images.

I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20), 1.2);

Detect SURF features.

points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);

Extract features.

[f1, vpts1] = extractFeatures(I1, points1);
[f2, vpts2] = extractFeatures(I2, points2);

Match features.

indexPairs = matchFeatures(f1, f2) ;
matchedPoints1 = vpts1(indexPairs(:, 1));
matchedPoints2 = vpts2(indexPairs(:, 2));

3 Functions Alphabetical

3-810

Visualize candidate matches.

figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'Parent',ax);
title(ax, 'Putative point matches');
legend(ax,'Matched points 1','Matched points 2');

 showMatchedFeatures

3-811

Input Arguments
I1 — Input image
numeric array

Input image one, specified as a numeric array.

3 Functions Alphabetical

3-812

I2 — Input image
numeric array

Input image two, specified as a numeric array.

matchedPoints1 — Coordinates of points
M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object |
BRISKPoints object | cornerPoints object

Coordinates of points in image one, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or
cornerPoints object.

matchedPoints2 — Coordinates of points
M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object |
BRISKPoints object | cornerPoints object

Coordinates of points in image two, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or
cornerPoints object.

method — Display method
falsecolor (default) | blend | montage

Display style method, specified as one of the following:

falsecolor: Overlay the images by creating a composite red-cyan
image showing I1 as red and I2 as cyan.

blend: Overlay I1 and I2 using alpha blending.
montage: Place I1 and I2 next to each other in the same image.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

 showMatchedFeatures

3-813

PlotOptions — Line style and color
{'ro','g+','y-'} (default) | cell array

Line style and color options, specified as a cell array containing three character vector
values, {MarkerStyle1, MarkerStyle2, LineStyle}, corresponding to a marker
specification in I1, marker specification in I2, and line style and color. The LineSpec
syntax of the plot function defines each of the specifiers.

Parent — Output axes
axes graphics object

Output axes for displaying visualization, specified as an axes graphics object.

Output Arguments
H — Handle to image object
handle

Handle to image object, returned as the handle to the image object returned by
showMatchedFeatures.

See Also
BRISKPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints |
estimateGeometricTransform | imshowpair | legend | matchFeatures

Introduced in R2012b

3 Functions Alphabetical

3-814

showPointCloud
Plot 3-D point cloud

Syntax
showPointCloud

Description
showPointCloud was renamed to pcshow. Please use pcshow in place of
showPointCloud.

Introduced in R2014b

 showPointCloud

3-815

pcshow
Plot 3-D point cloud

Syntax
pcshow(ptCloud)

pcshow(xyzPoints)
pcshow(xyzPoints,color)
pcshow(xyzPoints,colorMap)
pcshow(filename)

pcshow(___ ,Name,Value)

ax = pcshow(___)

Description
pcshow(ptCloud) displays points using the locations and colors stored in the point
cloud object.

pcshow(xyzPoints) displays points specified by the xyzPoints matrix.

pcshow(xyzPoints,color) displays points contained in the xyzPoints matrix, with
colors specified by color.

pcshow(xyzPoints,colorMap) displays points contained in the xyzPoints matrix,
with colors specified by colorMap.

pcshow(filename) displays the point cloud stored in the file specified by filename.

pcshow(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments, using any of the preceding syntaxes.

ax = pcshow(___) returns the plot axes.

3 Functions Alphabetical

3-816

Examples

Plot Spherical Point Cloud with Texture Mapping

Generate a sphere consisting of 600-by-600 faces.

numFaces = 600;
[x,y,z] = sphere(numFaces);

Plot the sphere using the default color map.

figure;
pcshow([x(:),y(:),z(:)]);
title('Sphere with Default Color Map');
xlabel('X');
ylabel('Y');
zlabel('Z');

 pcshow

3-817

Load and display an image for texture mapping.

I = im2double(imread('visionteam1.jpg'));
imshow(I);

3 Functions Alphabetical

3-818

Resize and flip the image for mapping the coordinates.

J = flipud(imresize(I,size(x)));

Plot the sphere with the color texture.

pcshow([x(:),y(:),z(:)],reshape(J,[],3));
title('Sphere with Color Texture');
xlabel('X');
ylabel('Y');
zlabel('Z');

 pcshow

3-819

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations,
intensities, and RGB colors to render the point cloud.

3 Functions Alphabetical

3-820

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the

current color map.
Location and Intensity Maps the intensity to a color value in the

current color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

filename — Point cloud filename
character vector

Point cloud filename, specified as a character vector. The file must be supported by
pcread. pcshow calls pcread to read the point cloud from the file, but does not store the
data in the MATLAB workspace.

xyzPoints — Point cloud x, y, and z locations
M-by-3 matrix | M-by-N-by-3 matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric
matrix. The xyzPoints numeric matrix contains M or M-by-N [x,y,z] points. The z values
in the matrix, which generally corresponds to depth or elevation, determine the color of
each point. When you do not specify the C input color, the function maps the z value to a
color in the current colormap.

color — Point cloud color
1-by-3 RGB Colorspec vector | M-by-3 matrix | M-by-N-by-3 matrix

Point cloud color of points, specified as one of:

• 1-by-3 RGB ColorSpec (Color Specification) vector,
• M-by-3 matrix
• M-by-N-by-3 matrix

You can specify the same color for all points or a different color for each point. When you
set C to single or double, the RGB values range between [0, 1]. When you set C to
uint8, the values range between [0, 255].

 pcshow

3-821

Points
Input

Color
Selection

Valid Values of C

xyzPoints Same color
for all
points

ColorSpec (Color Specification)
color character vector or a 1-by-3 RGB
vector

1-by-3

bgr

Different
color for
each point

M-by-3 matrix or M-by-N-by-3 matrix
containing RGB values for each point.

bgr

M

M-by-3

x1 y1 z1
.

.

.

xm ym zm

M

N

point(m,n)

M-by-N-by-3

g

r

b

colorMap — Point cloud color map
M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

• M-by-1 vector
• M-by-N matrix

3 Functions Alphabetical

3-822

Points
Input

Color
Selection

Valid Values of C

xyzPoints Different
color for
each point

Vector or M-by-N matrix. The matrix must
contain values that are linearly mapped to a
color in the current colormap.

vector

prescaled value

(1)

.

.

.

length(XYZ)
scaling colormap

M

N

point(m,n) prescaled value

M-by-N scaling colormap

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize'
and a positive scalar. The value specifies the approximate diameter of the point marker.
MATLAB graphics define the unit as points. A marker size larger than six can reduce the
rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and a
character vector specifying the vertical axis: 'X', 'Y', or 'Z'.

 pcshow

3-823

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of
'VerticalAxisDir' and a character vector specifying the direction of the vertical axis:
'Up' or 'Down'.

Parent — Output axes
axes graphics object

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes
graphics object that displays the point cloud visualization.

Output Arguments
ax — Plot axes
axes graphics object

Plot axes, returned as an axes graphics object.

You can set the default center of rotation for the point cloud viewer to rotate around the
axes center or around a point. Set the default behavior from the “Computer Vision
Toolbox Preferences”.

Tips
• To improve performance, pcshow automatically downsamples the rendered point

cloud during interaction with the figure. The downsampling occurs only for rendering
the point cloud and does not affect the saved points.

• To view point data or modify color display values, hover over the axes toolbar and
select one of the following options.

3 Functions Alphabetical

3-824

Feature Description
Datatip Click Data Tips to view the data point values for any

point in the point cloud figure. For a normal point cloud,
the Data Tips displays the x,y,z values. Additional data
properties for the depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D
sensor)

Color, row, column

Lidar Intensity, range, azimuth
angle, elevation angle, row,
column

 pcshow

3-825

Feature Description
Background color Click Rotate and then right-click in the figure for

background options.

3 Functions Alphabetical

3-826

Feature Description
Colormap value Click Rotate and then right-click in the figure for

colormap options. You can modify colornap values for the
coordinate and range values available, depending on the
type of point cloud displayed.

View Click Rotate to change the viewing angle of the point
cloud figure to the XZ, ZX,YZ, ZY, XY, or the YX plane.
Click Restore View to reset the viewing angle.

 pcshow

3-827

• pcplayer supports the 'opengl' option for the Renderer figure property only.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshowpair | pcwrite | planeModel | plot3 | pointCloud |
reconstructScene | scatter3 | triangulate

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2015b

3 Functions Alphabetical

3-828

pcshowpair
Visualize difference between two point clouds

Syntax
pcshowpair(ptCloudA,ptCloudB)

pcshowpair(ptCloudA,ptCloudB,Name,Value)

ax = pcshowpair(___)

Description
pcshowpair(ptCloudA,ptCloudB) creates a visualization depicting the differences
between the two input point clouds. The differences are displayed using a blending of
magenta for point cloud A and green for point cloud B.

pcshowpair(ptCloudA,ptCloudB,Name,Value) visualizes the differences using
additional options specified by one or more Name,Value pair arguments.

ax = pcshowpair(___) returns the plot axes to the visualization of the differences,
using any of the preceding syntaxes.

Examples

Visualize the Difference Between Two Point Clouds

Load two point clouds that were captured using a Kinect device in a home setting.

load('livingRoom');

pc1 = livingRoomData{1};
pc2 = livingRoomData{2};

Plot and set the viewpoint of point clouds.

 pcshowpair

3-829

figure
pcshowpair(pc1,pc2,'VerticalAxis','Y','VerticalAxisDir','Down')
title('Difference Between Two Point Clouds')
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')

Input Arguments
ptCloudA — Point cloud
pointCloud object

3 Functions Alphabetical

3-830

Point cloud A, specified as a pointCloud object. The function uses levels of magenta to
represent ptCloudA and a pure magenta when the point cloud contains no color
information.

ptCloudB — Point cloud
pointCloud object

Point cloud B, specified as a pointCloud object. The function uses levels of green to
represent ptCloudB and a pure green when the point cloud contains no color
information.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Approximate diameter of the point marker, specified as the comma-separated pair
consisting of 'MarkerSize' and a positive scalar. The units are in points. A marker size
larger than six can reduce the rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and a
character vector specifying the vertical axis: 'X', 'Y', or 'Z'.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of
'VerticalAxisDir' and a character vector specifying the direction of the vertical axis:
'Up' or 'Down'.

Parent — Output axes
axes graphics object

 pcshowpair

3-831

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes
graphics object that displays the point cloud visualization.

Output Arguments
ax — Plot axes
axes graphics object

Plot axes, returned as an axes graphics object. Points with NaN or Inf coordinates are
not displayed.

You can set the default center of rotation for the point cloud viewer to rotate around the
axes center or around a point. Set the default behavior from the “Computer Vision
Toolbox Preferences”.

Tips
• To improve performance, pcshowpair automatically downsamples the rendered point

cloud during interaction with the figure. The downsampling occurs only for rendering
the point cloud and does not affect the saved points.

• To view point data or modify color display values, hover over the axes toolbar and
select one of the following options.

3 Functions Alphabetical

3-832

Feature Description
Datatip Click Data Tips to view the data point values for any

point in the point cloud figure. For a normal point cloud,
the Data Tips displays the x,y,z values. Additional data
properties for the depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D
sensor)

Color, row, column

Lidar Intensity, range, azimuth
angle, elevation angle, row,
column

 pcshowpair

3-833

Feature Description
Background color Click Rotate and then right-click in the figure for

background options.

3 Functions Alphabetical

3-834

Feature Description
Colormap value Click Rotate and then right-click in the figure for

colormap options. You can modify colornap values for the
coordinate and range values available, depending on the
type of point cloud displayed.

View Click Rotate to change the viewing angle of the point
cloud figure to the XZ, ZX,YZ, ZY, XY, or the YX plane.
Click Restore View to reset the viewing angle.

 pcshowpair

3-835

• pcshowpair supports the 'opengl' option for the Renderer figure property only.

See Also
pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread |
pcregistericp | pcshow | pcwrite | planeModel | plot3 | pointCloud |
reconstructScene | scatter3 | triangulate

Topics
“Structure From Motion From Two Views”
“Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2015b

3 Functions Alphabetical

3-836

showReprojectionErrors
Visualize calibration errors

Syntax
showReprojectionErrors(cameraParams)
showReprojectionErrors(cameraParams,view)
showReprojectionErrors(___ ,Name,Value)

ax = showReprojectionErrors(___)

Description
showReprojectionErrors(cameraParams) displays a bar graph that represents the
calibration accuracy for a single camera or for a stereo pair. The bar graph displays the
mean reprojection error per image. The cameraParams input contains either a
cameraParameters, fisheyeParameters, or a stereoParameters object, which the
estimateCameraParameters or estimateFisheyeParameters function returns.

showReprojectionErrors(cameraParams,view) displays the reprojection errors
using the visualization style specified by the view input.

showReprojectionErrors(___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments, using any of the preceding syntaxes.

ax = showReprojectionErrors(___) returns the plot axis, using any of the
preceding syntaxes.

Examples

Visualize Reprojection Errors for a Single Camera

Create a set of calibration images.

 showReprojectionErrors

3-837

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','webcam'));
imageFileNames = images.Files(1:5);

Detect calibration pattern.

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in
millimeters.

squareSize = 25;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize the errors as a bar graph.

subplot(1,2,1);
showReprojectionErrors(params);

3 Functions Alphabetical

3-838

Visualize the errors as a scatter plot.

subplot(1,2,2);
showReprojectionErrors(params,'ScatterPlot');

 showReprojectionErrors

3-839

Visualize Reprojection Errors for a Stereo Pair of Cameras

Specify calibration images

imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));

Detect the checkerboards.

3 Functions Alphabetical

3-840

[imagePoints, boardSize] = detectCheckerboardPoints(...
 leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints. The square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Here both cameras have the same resolution.

I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Visualize calibration accuracy.

showReprojectionErrors(params);

 showReprojectionErrors

3-841

Input Arguments
cameraParams — Object containing parameters of single camera or stereo pair
cameraParameters object | fisheyeParameters object | stereoParameters object

Object containing parameters of single camera or stereo pair, specified as either a
cameraParameters, fisheyeParameters, or stereoParameters object. You can
create the single camera or stereo pair input object using the
estimateCameraParameters function. The fisheye parameters input object is created
using estimateFisheyeParameters.

3 Functions Alphabetical

3-842

You can also use the Camera Calibrator app to create the cameraParameters input
object, or use Stereo Camera Calibrator app to create the stereoParameters input
object. See “Single Camera Calibrator App” and “Stereo Camera Calibrator App”.

view — Bar graph or scatter plot view
'BarGraph' | 'ScatterPlot'

Bar graph or scatter plot view, specified as the character vector 'BarGraph' or
'ScatterPlot'. The view input sets the visualization for the camera extrinsic
parameters. Set view to 'BarGraph' to display the mean error per image as a bar
graph. Set view to 'ScatterPlot' to display the error for each point as a scatter plot.
The 'ScatterPlot' option applies only to the single camera case.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'view','BarGraph' displays the mean error per image as a bar graph.

HighlightIndex — Highlight selection index
[] (default) | vector | scalar

Highlight selection index, specified as a scalar or a vector of integers. When you set the
view to 'BarGraph', the function highlights the bars corresponding to the selected
images. When you set the view to 'ScatterPlot', the function highlights the points
corresponding to the selected images with circle markers.

Parent — Output axes
current axes (default) | scalar value

Output axes, specified as the comma-separated pair consisting of 'Parent' and a scalar
value. Specify output axes to display the visualization. You can obtain the current axes
handle by returning the function to an output variable:
ax = showReprojectionErrors(cameraParams)
You can also use the gca function to get the current axes handle.
Example: showReprojectionErrors(cameraParams,'Parent',ax)

 showReprojectionErrors

3-843

Output Arguments
ax — Current axes handle
scalar value

Current axes handle, returned as a scalar value. The function returns the handle to the
current axes for the current figure.
Example: ax = showReprojectionErrors(cameraParams)

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
detectCheckerboardPoints | estimateCameraParameters | fisheyeParameters
| generateCheckerboardPoints | showExtrinsics | stereoParameters |
undistortImage

Topics
“Single Camera Calibrator App”

Introduced in R2014a

3 Functions Alphabetical

3-844

stereoAnaglyph
Create red-cyan anaglyph from stereo pair of images

Syntax
J = stereoAnaglyph(I1,I2)

Description
J = stereoAnaglyph(I1,I2) combines images I1 and I2 into a red-cyan anaglyph.
When the inputs are rectified stereo images, you can view the output image with red-blue
stereo glasses to see the stereo effect.

Examples

Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.

load('webcamsSceneReconstruction.mat')

Load a stereo pair of images.

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Rectify the stereo images.

[J1, J2] = rectifyStereoImages(I1, I2, stereoParams);

Create the anaglyph.

A = stereoAnaglyph(J1, J2);

Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.

 stereoAnaglyph

3-845

figure; imshow(A);

Input Arguments
I1 — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image I1, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale
image. I1 and I2 must be real, finite, and nonsparse, and the images must be the same
size. If the images are not the same size, use imfuse to pad the smaller image dimension
with zeros before creating the anaglyph.
Data Types: single | double | int16 | uint8 | uint16 | logical

I2 — Input image
M-by-N 2-D grayscale image | M-by-N-by-3 truecolor image

Input image I2, specified as an M-by-N-by-3 truecolor image or an M-by-N 2-D grayscale
image. I1 and I2 must be real, finite, and nonsparse, and the images must be the same

3 Functions Alphabetical

3-846

size. If the images are not the same size, use imfuse to pad the smaller image dimension
with zeros before creating the anaglyph.
Data Types: single | double | int16 | uint8 | uint16 | logical

Output Arguments
J — Stereo anaglyph output image
M-by-N-by-3 truecolor image

Stereo anaglyph output image, returned as an M-by-N-by-3 truecolor image. Output
image J is the same size as input images I1 and I2.
Data Types: single | double | int16 | uint8 | uint16 | logical

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
estimateUncalibratedRectification | imfuse | imshowpair |
reconstructScene | rectifyStereoImages

Topics
“Structure From Motion From Two Views”
“Structure From Motion From Multiple Views”

Introduced in R2014b

 stereoAnaglyph

3-847

trainCascadeObjectDetector
Train cascade object detector model

Syntax
trainCascadeObjectDetector(outputXMLFilename,positiveInstances,
negativeImages)
trainCascadeObjectDetector(outputXMLFilename,'resume')

trainCascadeObjectDetector(___ ,Name,Value)

Description
trainCascadeObjectDetector(outputXMLFilename,positiveInstances,
negativeImages) writes a trained cascade detector XML file named,
outputXMLFilename. The file name must include an XML extension. For a more detailed
explanation on how this function works, refer to “Train a Cascade Object Detector”.

trainCascadeObjectDetector(outputXMLFilename,'resume') resumes an
interrupted training session. The outputXMLFilename input must match the output file
name from the interrupted session. All arguments saved from the earlier session are
reused automatically.

trainCascadeObjectDetector(___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Examples

Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains a table specifying
bounding boxes for several object categories. The table was exported from the Training
Image Labeler app.

3 Functions Alphabetical

3-848

Load positive samples.

load('stopSignsAndCars.mat');

Select the bounding boxes for stop signs from the table.

positiveInstances = stopSignsAndCars(:,1:2);

Add the image folder to the MATLAB path.

imDir = fullfile(matlabroot,'toolbox','vision','visiondata',...
 'stopSignImages');
addpath(imDir);

Specify the folder for negative images.

negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondata',...
 'nonStopSigns');

Create an imageDatastore object containing negative images.

negativeImages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE:
The command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',positiveInstances, ...
 negativeFolder,'FalseAlarmRate',0.1,'NumCascadeStages',5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

--cascadeParams--
Training stage 1 of 5
[..]
Used 42 positive and 84 negative samples
Time to train stage 1: 1 seconds

Training stage 2 of 5
[..]
Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds

Training stage 3 of 5

 trainCascadeObjectDetector

3-849

[..]
Used 42 positive and 84 negative samples
Time to train stage 3: 3 seconds

Training stage 4 of 5
[..]
Used 42 positive and 84 negative samples
Time to train stage 4: 8 seconds

Training stage 5 of 5
[..]
Used 42 positive and 17 negative samples
Time to train stage 5: 14 seconds

Training complete

Use the newly trained classifier to detect a stop sign in an image.

detector = vision.CascadeObjectDetector('stopSignDetector.xml');

Read the test image.

img = imread('stopSignTest.jpg');

Detect a stop sign.

bbox = step(detector,img);

Insert bounding box rectangles and return the marked image.

 detectedImg = insertObjectAnnotation(img,'rectangle',bbox,'stop sign');

Display the detected stop sign.

figure; imshow(detectedImg);

3 Functions Alphabetical

3-850

Remove the image directory from the path.

rmpath(imDir);

Input Arguments
positiveInstances — Positive samples
table | struct

Positive samples, specified as a two-column table or two-field structure.

The first table column or structure field contains image file names, specified as character
vectors. Each image can be true color, grayscale, or indexed, in any of the formats
supported by imread.

 trainCascadeObjectDetector

3-851

The second table column or structure field contains an M-by-4 matrix of M bounding
boxes. Each bounding box is in the format [x y width height] and specifies an object
location in the corresponding image.

You can use the Image Labeler or Video Labeler app to label objects of interest with
bounding boxes. The app outputs a table or a struct to use as positiveInstances. The
function automatically determines the number of positive samples to use at each of the
cascade stages. This value is based on the number of stages and the true positive rate.
The true positive rate specifies how many positive samples can be misclassified.
Data Types: table | struct

negativeImages — Negative images
ImageDatastore object | cell array | character vector

Negative images, specified as an ImageDatastore object, a path to a folder containing
images, or as a cell array of image file names. Because the images are used to generate
negative samples, they must not contain any objects of interest. Instead, they should
contain backgrounds associated with the object.

outputXMLFilename — Trained cascade detector file name
character vector

Trained cascade detector file name, specified as a character vector with an XML
extension. For example, 'stopSignDetector.xml'.
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FeatureType','Haar' specifies Haar for the type of features to use.

ObjectTrainingSize — Object size for training
'Auto' (default) | two-element vector

Training object size, specified as the comma-separated pair. This pair contains
'ObjectTrainingSize' and either a two-element [height, width] vector, or as 'Auto'.

3 Functions Alphabetical

3-852

Before training, the function resizes the positive and negative samples to
ObjectTrainingSize in pixels. If you select 'Auto', the function determines the size
automatically based on the median width-to-height ratio of the positive instances. For
optimal detection accuracy, specify an object training size close to the expected size of
the object in the image. However, for faster training and detection, set the object training
size to be smaller than the expected size of the object in the image.
Data Types: char | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NegativeSamplesFactor — Negative sample factor
2 (default) | real-valued scalar

Negative sample factor, specified as the comma-separated pair consisting of
'NegativeSamplesFactor' and a real-valued scalar. The number of negative samples to
use at each stage is equal to

NegativeSamplesFactor × [the number of positive samples used at each stage].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumCascadeStages — Number of cascade stages
20 (default) | positive integer

Number of cascade stages to train, specified as the comma-separated pair consisting of
'NumCascadeStages' and a positive integer. Increasing the number of stages may result
in a more accurate detector but also increases training time. More stages can require
more training images, because at each stage, some number of positive and negative
samples are eliminated. This value depends on the values of FalseAlarmRate and
TruePositiveRate. More stages can also enable you to increase the FalseAlarmRate.
See the “Train a Cascade Object Detector” tutorial for more details.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FalseAlarmRate — Acceptable false alarm rate
0.5 (default) | value in the range (0 1]

Acceptable false alarm rate at each stage, specified as the comma-separated pair
consisting of 'FalseAlarmRate' and a value in the range (0 1]. The false alarm rate is the
fraction of negative training samples incorrectly classified as positive samples.

 trainCascadeObjectDetector

3-853

The overall false alarm rate is calculated using the FalseAlarmRate per stage and the
number of cascade stages, NumCascadeStages:

FalseAlarmRateNumCascadeStages

Lower values for FalseAlarmRate increase complexity of each stage. Increased
complexity can achieve fewer false detections but can result in longer training and
detection times. Higher values for FalseAlarmRate can require a greater number of
cascade stages to achieve reasonable detection accuracy.
Data Types: single | double

TruePositiveRate — Minimum true positive rate
0.995 (default) | value in the range (0,1]

Minimum true positive rate required at each stage, specified as the comma-separated pair
consisting of 'TruePositiveRate' and a value in the range (0 1]. The true positive rate
is the fraction of correctly classified positive training samples.

The overall resulting target positive rate is calculated using the TruePositiveRate per
stage and the number of cascade stages, NumCascadeStages:

TruePositiveRateNumCascadeStages

Higher values for TruePositiveRate increase complexity of each stage. Increased
complexity can achieve a greater number of correct detections but can result in longer
training and detection times.
Data Types: single | double

FeatureType — Feature type
'HOG' (default) | 'LBP' | 'Haar'

Feature type, specified as the comma-separated pair consisting of 'FeatureType' and
one of the following:
'Haar'[1] — Haar-like features
'LBP'[2] — Local binary patterns
'HOG'[3] — Histogram of oriented gradients

The function allocates a large amount of memory, especially the Haar features. To avoid
running out of memory, use this function on a 64-bit operating system with a sufficient
amount of RAM.

3 Functions Alphabetical

3-854

Data Types: char

Tips
Training a good detector requires thousands of training samples. Processing time for a
large amount of data varies, but it is likely to take hours or even days. During training,
the function displays the time it took to train each stage in the MATLAB command
window.

References
[1] Viola, P., and M. J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple

Features." Proceedings of the 2001 IEEE Computer Society Conference. Volume
1, 15 April 2001, pp. I-511–I-518.

[2] Ojala, T., M. Pietikainen, and T. Maenpaa. “Multiresolution Gray-scale and Rotation
Invariant Texture Classification With Local Binary Patterns.” IEEE Transactions
on Pattern Analysis and Machine Intelligence. Volume 24, No. 7 July 2002, pp.
971–987.

[3] Dalal, N., and B. Triggs. “Histograms of Oriented Gradients for Human Detection.”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
Volume 1, 2005, pp. 886–893.

See Also
Apps
Image Labeler | Video Labeler

Functions
imrect | insertObjectAnnotation | vision.CascadeObjectDetector

Topics
“Image Category Classification Using Bag of Features”
“Get Started with the Image Labeler”
“Train a Cascade Object Detector”
“Multiple Object Tracking”

 trainCascadeObjectDetector

3-855

External Websites
Cascade Training GUI

Introduced in R2013a

3 Functions Alphabetical

3-856

https://www.mathworks.com/matlabcentral/fileexchange/39627-cascade-trainer--specify-ground-truth--train-a-detector

trainImageCategoryClassifier
Train an image category classifier

Syntax
classifier = trainImageCategoryClassifier(imds,bag)
classifier = trainImageCategoryClassifier(imds,bag,Name,Value)

Description
classifier = trainImageCategoryClassifier(imds,bag) returns an image
category classifier. The classifier contains the number of categories and the category
labels for the input imds images. The function trains a support vector machine (SVM)
multiclass classifier using the input bag, a bagOfFeatures object.

You must have a Statistics and Machine Learning Toolbox license to use this function.

This function supports parallel computing using multiple MATLAB workers. Enable
parallel computing using the “Computer Vision Toolbox Preferences” dialog. To open
Computer Vision Toolbox preferences, on the Home tab, in the Environment section,
click Preferences. Select Computer Vision System Toolbox.

classifier = trainImageCategoryClassifier(imds,bag,Name,Value) returns
a classifier object with optional input properties specified by one or more
Name,Value pair arguments.

Examples

Train, Evaluate, and Apply Image Category Classifier

Load two image categories.

 trainImageCategoryClassifier

3-857

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
 'foldernames');

Split the data set into a training and test data. Pick 30% of images from each set for the
training data and the remainder 70% for the test data.

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

Create bag of visual words.

bag = bagOfFeatures(trainingSet);

Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 4 images...done. Extracted 76800 features.

* Keeping 80 percent of the strongest features from each category.

* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.24 seconds/iteration)...converged in 20 iterations.

* Finished creating Bag-Of-Features

Train a classifier with the training sets.

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

Training an image category classifier for 2 categories.
--
* Category 1: books
* Category 2: cups

* Encoding features for 4 images...done.

* Finished training the category classifier. Use evaluate to test the classifier on a test set.

3 Functions Alphabetical

3-858

Evaluate the classifier using test images. Display the confusion matrix.

confMatrix = evaluate(categoryClassifier,testSet)

Evaluating image category classifier for 2 categories.

* Category 1: books
* Category 2: cups

* Evaluating 8 images...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED
KNOWN | books cups

books | 0.75 0.25
cups | 0.25 0.75

* Average Accuracy is 0.75.

confMatrix = 2×2

 0.7500 0.2500
 0.2500 0.7500

Find the average accuracy of the classification.

mean(diag(confMatrix))

ans = 0.7500

Apply the newly trained classifier to categorize new images.

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

Display the classification label.

categoryClassifier.Labels(labelIdx)

 trainImageCategoryClassifier

3-859

ans = 1x1 cell array
 {'cups'}

Input Arguments
imds — Images
imageDatastore object

Images specified as an imageDatastore object.

bag — Bag of features
bagOfFeatures object

Bag of features, specified as a bagOfFeatures object. The object contains a visual
vocabulary of extracted feature descriptors from representative images of each image
category.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Verbose',true sets 'Verbose' to the logical true.

Verbose — Enable progress display to screen
true (default) | false

Enable progress display to screen, specified as the comma-separated pair consisting of
'Verbose' and the logical true or false.

LearnerOptions — Classifier options
default values of templateSVM function

Classifier options, specified as the comma-separated pair consisting of
'LearnerOptions' and the learner options output returned by the templateSVM
function.

3 Functions Alphabetical

3-860

Example 3.2. Example

To adjust the regularization parameter of templateSVM and to set a custom kernel
function, use the following syntax:

opts = templateSVM('BoxConstraint',1.1,'KernelFunction','gaussian');
classifier = trainImageCategoryClassifier(imds,bag,'LearnerOptions',opts);

Output Arguments
classifier — Image category classifier
imageCategoryClassifier object

Image category classifier, returned as an imageCategoryClassifier object. The
function trains a support vector machine (SVM) multiclass classifier using the error
correcting output codes (ECOC) framework.

References
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with

Bag of Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1
(1-22), 1-2.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

 trainImageCategoryClassifier

3-861

See Also
bagOfFeatures | fitcecoc | imageCategoryClassifier | imageSet |
templateSVM

Topics
“Image Category Classification Using Bag of Features”
“Image Classification with Bag of Visual Words”

Introduced in R2014b

3 Functions Alphabetical

3-862

Image Labeler
Label images for computer vision applications

Description
The Image Labeler app enables you to label ground truth data in a collection of images.
Using the app, you can:

• Define rectangular regions of interest (ROI) labels, pixel ROI labels, and scene labels,
and use these labels to interactively label your ground truth data.

• Use built-in detection or tracking algorithms to label your ground truth data.
• Write, import, and use your own custom automation algorithm to automatically label

ground truth. See “Create Automation Algorithm for Labeling”.
• Evaluate the performance of your label automation algorithms using a visual summary.

See “View Summary of Ground Truth Labels”.
• Export the labeled ground truth as a groundTruth object. You can use this object for

system verification or for training an object detector or semantic segmentation
network. See “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data”.

The Image Labeler app supports all image file formats supported by imread. To add
additional file formats to imread, use imformats.

To learn more about this app, see “Get Started with the Image Labeler”.

Open the Image Labeler App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the app icon.
• MATLAB command prompt: Enter imageLabeler.

 Image Labeler

3-863

Programmatic Use
imageLabeler opens a new session of the app, enabling you to label ground truth data
in images.

imageLabeler(imageFolder) opens the app and loads all the images from the folder
named imageFolder.

The images in the folder can be unordered and can vary in size. To label a video, or a set
of ordered images that resemble a video, use the Video Labeler app instead.

imageLabeler(imageDatastore) opens the app and reads all of the images from an
imageDatastore object. The imageDatastore files are read using imread. For
example, to open the app with a collection of stop sign images:

 stopSignsFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
 imds = imageDatastore(stopSignsFolder)
 imageLabeler(imds)

imageLabeler(sessionFile) opens the app and loads a saved Image Labeler
session, sessionFile. The sessionFile input contains the path and file name. The
MAT-file that sessionFile points to contains the saved session.

Algorithms
The Image Labeler app provides built-in algorithms that you can use to automate
labeling. From the app toolstrip, click Select Algorithm and then select an automation
algorithm.

Built-In Automation Algorithm Description
ACF People Detector Detect and label people using a pretrained

detector based on aggregate channel
features (ACF). With this algorithm, you do
not need to draw any ROI labels.

ACF Vehicle Detector (requires
Automated Driving Toolbox)

Detect and label vehicles using a pretrained
detector based on ACF. With this algorithm,
you do not need to draw any ROI labels.

3 Functions Alphabetical

3-864

See Also
Apps
Ground Truth Labeler | Video Labeler

Functions
objectDetectorTrainingData | pixelLabelTrainingData

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Choose a Labeling App”
“Get Started with the Image Labeler”
“Keyboard Shortcuts and Mouse Actions for Image Labeler”
“Label Pixels for Semantic Segmentation”
“Create Automation Algorithm for Labeling”
“Share and Store Labeled Ground Truth Data”
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data”

Introduced in R2018a

 Image Labeler

3-865

Video Labeler
Label video for computer vision applications

Description
The Video Labeler app enables you to label ground truth data in a video, in an image
sequence, or from a custom data source reader. Using the app, you can:

• Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI
labels, and scene labels, and use these labels to interactively label your ground truth
data.

• Use built-in detection or tracking algorithms to label your ground truth data.
• Write, import, and use your own custom automation algorithm to automatically label

ground truth. See “Create Automation Algorithm for Labeling”.
• Evaluate the performance of your label automation algorithms using a visual summary.

See “View Summary of Ground Truth Labels”.
• Export the labeled ground truth as a groundTruth object. You can use this object for

system verification or for training an object detector or semantic segmentation
network. See “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data”.

To learn more about this app, see “Get Started with the Video Labeler”.

Open the Video Labeler App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer

Vision, click the app icon.
• MATLAB command prompt: Enter videoLabeler.

Examples
• “Get Started with the Video Labeler”

3 Functions Alphabetical

3-866

Programmatic Use
videoLabeler opens a new session of the app, enabling you to label ground truth data
in a video or image sequence.

videoLabeler(videoFileName) opens the app and loads the input video. The video
file must have an extension supported by VideoReader.
Example: videoLabeler('vipmen.avi')

videoLabeler(imageSeqFolder) opens the app and loads the image sequence from
the input folder. An image sequence is an ordered set of images that resemble a video.
The images must be the same size. imageSeqFolder must be a string scalar or character
vector that specifies the folder containing the image files. The image files must have
extensions supported by imformats and are loaded in the order returned by the dir
function.

To label a collection of unordered images that can vary in size, use the Image Labeler
app instead.

videoLabeler(imageSeqFolder,timestamps) opens the app and loads a sequence
of images with their corresponding timestamps. timestamps must be a duration vector
of the same length as the number of images in the sequence.

For example, load a sequence of images and their corresponding timestamps into the app.

imageDir = fullfile(toolboxdir('vision'),'visiondata','NewTsukuba');
timeStamps = seconds(1:150);
videoLabeler(imageDir,timeStamps)

videoLabeler(gtSource) opens the app and loads the data source and corresponding
timestamps from a groundTruthDataSource object, gtSource. To generate this object
for a custom data source, you can specify a custom reader function. For details, see “Use
Custom Data Source Reader for Ground Truth Labeling”.

videoLabeler(sessionFile) opens the app and loads a saved app session,
sessionFile. The sessionFile input contains the path and file name. The MAT-file
that sessionFile points to contains the saved session.

 Video Labeler

3-867

Limitations
• The built-in automation algorithms support the automation of rectangular ROI labels

only. When you select a built-in algorithm and click Automate, scene labels, pixel ROI
labels, polyline ROI labels, sublabels, and attributes are not imported into the
automation session. To automate the labeling of these features, create a custom
automation algorithm. See “Create Automation Algorithm for Labeling”.

• Pixel ROI labels do not support sublabels or attributes.
• The Label Summary window does not support sublabels or attributes

Tips
• To avoid having to relabel ground truth with new labels, organize the labeling scheme

you want to use before marking your ground truth.

Algorithms
The Video Labeler app provides built-in algorithms that you can use to automate
labeling. From the app toolstrip, click Select Algorithm, and then select an automation
algorithm.

Built-In Automation Algorithm Description
ACF People Detector Detect and label people using a pretrained

detector based on aggregate channel
features (ACF). With this algorithm, you do
not need to draw any ROI labels.

Point Tracker Track and label one or more rectangular
ROI labels over short intervals using the
Kanade-Lucas-Tomasi (KLT) algorithm.

Temporal Interpolator Estimate ROIs in intermediate frames using
the interpolation of rectangular ROIs in key
frames. Draw ROIs on a minimum of two
frames (at the beginning and at the end of
the interval). The interpolation algorithm
estimates the ROIs between the frames.

3 Functions Alphabetical

3-868

Built-In Automation Algorithm Description
ACF Vehicle Detector (requires
Automated Driving Toolbox)

Detect and label vehicles using a pretrained
detector based on ACF. With this algorithm,
you do not need to draw any ROI labels.

See Also
Apps
Ground Truth Labeler | Image Labeler

Functions
objectDetectorTrainingData | pixelLabelTrainingData

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Get Started with the Video Labeler”
“Choose a Labeling App”
“Use Custom Data Source Reader for Ground Truth Labeling”
“Keyboard Shortcuts and Mouse Actions for Video Labeler”
“Use Sublabels and Attributes to Label Ground Truth Data”
“Label Pixels for Semantic Segmentation”
“Create Automation Algorithm for Labeling”
“Share and Store Labeled Ground Truth Data”
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data”

Introduced in R2018b

 Video Labeler

3-869

Training Image Labeler
Label images for training a classifier

Description
The Image Labeler app replaces the Training Image Labeler app. Use the Image
Labeler instead.

Open the Training Image Labeler App
• MATLAB command prompt: Enter trainingImageLabeler.

Note The trainingImageLabeler function opens the Image Labeler app.

Examples

Open Training Image Labeler App

Type trainingImageLabeler on the MATLAB command line or select it from the
MATLAB desktop Apps tab.

Note The trainingImageLabeler function opens the Image Labeler app.

Programmatic Use
trainingImageLabeler invokes an app for labeling ground truth data in images. This
app allows you to interactively specify rectangular Regions of Interest (ROIs). The ROIs
define locations of objects, which are used to train a classifier. It outputs training data in
a format supported by the trainCascadeObjectDetector function. The function trains
a model to use with the vision.CascadeObjectDetector detector.

3 Functions Alphabetical

3-870

Note The trainingImageLabeler function opens the Image Labeler app.

See Also
Image Labeler | imageDatastore | imrect | insertObjectAnnotation |
trainCascadeObjectDetector | vision.CascadeObjectDetector

Topics
“Get Started with the Image Labeler”
“Train a Cascade Object Detector”

Introduced in R2014a

 Training Image Labeler

3-871

triangulate
3-D locations of undistorted matching points in stereo images

Syntax
worldPoints = triangulate(matchedPoints1,matchedPoints2,
stereoParams)
worldPoints = triangulate(matchedPoints1,matchedPoints2,
cameraMatrix1,cameraMatrix2)
[worldPoints,reprojectionErrors] = triangulate(___)

Description
worldPoints = triangulate(matchedPoints1,matchedPoints2,
stereoParams) returns 3-D locations of matching pairs of undistorted image points from
two stereo images.

worldPoints = triangulate(matchedPoints1,matchedPoints2,
cameraMatrix1,cameraMatrix2) returns the 3-D locations of the matching pairs in a
world coordinate system. These locations are defined by camera projection matrices.

[worldPoints,reprojectionErrors] = triangulate(___) additionally returns
reprojection errors for the world points using any of the input arguments from previous
syntaxes.

Examples

Measure Distance from Stereo Camera to a Face

Load stereo parameters.

load('webcamsSceneReconstruction.mat');

Read in the stereo pair of images.

3 Functions Alphabetical

3-872

I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');

Undistort the images.

I1 = undistortImage(I1,stereoParams.CameraParameters1);
I2 = undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.

faceDetector = vision.CascadeObjectDetector;
face1 = faceDetector(I1);
face2 = faceDetector(I2);

Find the center of the face.

center1 = face1(1:2) + face1(3:4)/2;
center2 = face2(1:2) + face2(3:4)/2;

Compute the distance from camera 1 to the face.

point3d = triangulate(center1, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distanceInMeters);
I1 = insertObjectAnnotation(I1,'rectangle',face1,distanceAsString,'FontSize',18);
I2 = insertObjectAnnotation(I2,'rectangle',face2, distanceAsString,'FontSize',18);
I1 = insertShape(I1,'FilledRectangle',face1);
I2 = insertShape(I2,'FilledRectangle',face2);

imshowpair(I1, I2, 'montage');

 triangulate

3-873

Input Arguments
matchedPoints1 — Coordinates of points in image 1
M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object |
BRISKPoints object

Coordinates of points in image 1, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or
BRISKPoints object. The matchedPoints1 and matchedPoints2 inputs must contain
points that are matched using a function such as matchFeatures.

matchedPoints2 — Coordinates of points
M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object |
BRISKPoints object

Coordinates of points in image 2, specified as an M-by-2 matrix of M number of [x y]
coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or
BRISKPoints object. The matchedPoints1 and matchedPoints2 inputs must contain
points that are matched using a function such as matchFeatures.

stereoParams — Camera parameters for stereo system
stereoParameters object

Camera parameters for stereo system, specified as a stereoParameters object. The
object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo
camera system. You can use the estimateCameraParameters function to estimate
camera parameters and return a stereoParameters object.

3 Functions Alphabetical

3-874

When you pass a stereoParameters object to the function, the origin of the world
coordinate system is located at the optical center of camera 1. The x-axis points to the
right, the y-axis points down, and the z-axis points away from the camera.

X

Y

Z

camera 1 camera 2

cameraMatrix1 — Projection matrix
4-by-3 matrix

Projection matrix for camera 1, specified as a 4-by-3 matrix. The matrix maps a 3-D point
in homogeneous coordinates onto the corresponding point in the camera's image. This
input describes the location and orientation of camera 1 in the world coordinate system.
cameraMatrix1 must be a real and nonsparse numeric matrix. You can obtain the
camera matrix using the cameraMatrix function.

Z

X

Y

Camera matrices passed to the function, define the world coordinate system.

cameraMatrix2 — Projection matrix
4-by-3 projection matrix

Projection matrix for camera 1, specified as a 4-by-3 matrix. The matrix maps a 3-D point
in homogeneous coordinates onto the corresponding point in the camera's image. This
input describes the location and orientation of camera 1 in the world coordinate system.

 triangulate

3-875

cameraMatrix1 must be a real and nonsparse numeric matrix. You can obtain the
camera matrix using the cameraMatrix function.

Z

X

Y

Camera matrices passed to the function, define the world coordinate system.

Output Arguments
worldPoints — 3-D locations of matching pairs of undistorted image points
M-by-3 matrix

3-D locations of matching pairs of undistorted image points, specified as an M-by-3
matrix. The matrix contains M number of [x,y, z] locations of matching pairs of
undistorted image points from two stereo images.

When you specify the camera geometry using stereoParams, the world point
coordinates are relative to the optical center of camera 1.

When you specify the camera geometry using cameraMatrix1 and cameraMatrix2, the
world point coordinates are defined by the camera matrices.

The function returns worldPoints as double, if matchedPoints1 and
matchedPoints2 are double. Otherwise the function returns worldPoints as single.
Data Types: single | double

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. The function projects each world point
back into both images. Then in each image, the function calculates the reprojection error
as the distance between the detected and the reprojected point. The

3 Functions Alphabetical

3-876

reprojectionErrors vector contains the average reprojection error for each world
point.

reprojection error

3-D point reprojected

into the image

point detected

in the image

ed
3-D 3-3-3-D

tointo

Tips
The triangulate function does not account for lens distortion. You can undistort the
images using the undistortImage function before detecting the points. Alternatively,
you can undistort the points themselves using the undistortPoints function.

References
[1] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision."

Cambridge University Press, p. 312, 2003.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.

 triangulate

3-877

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraMatrix |
cameraParameters | estimateCameraParameters | reconstructScene |
relativeCameraPose | stereoParameters | undistortImage | undistortPoints

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Coordinate Systems”

Introduced in R2014b

3 Functions Alphabetical

3-878

triangulateMultiview
3-D locations of undistorted points matched across multiple images

Syntax
xyzPoints = triangulateMultiview(pointTracks,cameraPoses,
cameraParams)
[xyzPoints,reprojectionErrors] = triangulateMultiview(pointTracks,
cameraPoses,cameraParams)

Description
xyzPoints = triangulateMultiview(pointTracks,cameraPoses,
cameraParams) returns locations of 3-D world points that correspond to points matched
across multiple images taken with a calibrated camera.

[xyzPoints,reprojectionErrors] = triangulateMultiview(pointTracks,
cameraPoses,cameraParams) also returns reprojection errors for the world points.

Code Generation Support:
Supports Code Generation: No
Supports MATLAB Function block: No
“Code Generation Support, Usage Notes, and Limitations”

Examples

Find 3-D World Points Across Multiple Images Using Triangulation

Load images.

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
 'structureFromMotion');
images = imageSet(imageDir);

 triangulateMultiview

3-879

Load precomputed camera parameters.

load(fullfile(imageDir,'cameraParams.mat'));

Compute features for the first image.

I = rgb2gray(read(images,1));
I = undistortImage(I,cameraParams);
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);

Load camera locations and orientations.

load(fullfile(imageDir,'cameraPoses.mat'));

Create a viewSet object.

vSet = viewSet;
vSet = addView(vSet, 1,'Points',pointsPrev,'Orientation',...
 orientations(:,:,1),'Location',locations(1,:));

Compute features and matches for the rest of the images.

for i = 2:images.Count
 I = rgb2gray(read(images, i));
 I = undistortImage(I, cameraParams);
 points = detectSURFFeatures(I);
 [features, points] = extractFeatures(I, points);
 vSet = addView(vSet,i,'Points',points,'Orientation',...
 orientations(:,:,i),'Location',locations(i,:));
 pairsIdx = matchFeatures(featuresPrev,features,'MatchThreshold',5);
 vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
 featuresPrev = features;
end

Find point tracks.

tracks = findTracks(vSet);

Get camera poses.

cameraPoses = poses(vSet);

Find 3-D world points.

[xyzPoints,errors] = triangulateMultiview(tracks,cameraPoses,cameraParams);
z = xyzPoints(:,3);

3 Functions Alphabetical

3-880

idx = errors < 5 & z > 0 & z < 20;
pcshow(xyzPoints(idx, :),'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',30);
hold on
plotCamera(cameraPoses, 'Size', 0.1);
hold off

Input Arguments
pointTracks — Matching points across multiple images
N-element array of pointTrack objects

 triangulateMultiview

3-881

Matching points across multiple images, specified as an N-element array of pointTrack
objects. Each element contains two or more points that match across multiple images.

cameraPoses — Camera pose information
three-column table

Camera pose information, specified as a three-column table. The table contains columns
for ViewId, Orientation, and Location. The view IDs correspond to the IDs in the
pointTracks object. Specify the orientations as 3-by-3 rotation matrices and the
locations as three-element vectors. You can obtain cameraPoses from a viewSet object
by using its poses method.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

Output Arguments
xyzPoints — 3-D world points
N-by-3 array

3-D world points, specified as an N-by-3 array of [x,y,z] coordinates.
Data Types: single | double

reprojectionErrors — Reprojection errors
N-by-1 vector

Reprojection errors, returned as an N-by-1 vector. The function projects each world point
back into both images. Then in each image, the function calculates the reprojection error
as the distance between the detected and the reprojected point. The
reprojectionErrors vector contains the average reprojection error for each world
point.

3 Functions Alphabetical

3-882

reprojection error

3-D point reprojected

into the image

point detected

in the image

ed
3-D 3-3-3-D

tointo

Tips
Because triangulateMultiview does not account for lens distortion, you can undistort
the images before detecting the points by using undistortImage. Alternatively, you can
undistort the points directly using undistortPoints.

References
[1] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision."

Cambridge University Press, p. 312, 2003.

See Also
Camera Calibrator | bundleAdjustment | cameraParameters |
estimateCameraParameters | pointTrack | relativeCameraPose |
undistortImage | undistortPoints | viewSet

Topics
“Structure From Motion From Two Views”
“Code Generation for Depth Estimation From Stereo Video”
“Structure from Motion”
“Coordinate Systems”

Introduced in R2016a

 triangulateMultiview

3-883

undistortImage
Correct image for lens distortion

Syntax
[J,newOrigin] = undistortImage(I,cameraParams)
[J,newOrigin] = undistortImage(I,cameraParams,interp)
[J,newOrigin] = undistortImage(___ ,Name,Value)

Description
[J,newOrigin] = undistortImage(I,cameraParams) returns an image, J,
containing the input image, I, with lens distortion removed. The function also returns the
[x,y] location of the output image origin. The location is set in terms of the input intrinsic
coordinates specified in cameraParams.

[J,newOrigin] = undistortImage(I,cameraParams,interp) specifies the
interpolation method for the function to use on the input image.

[J,newOrigin] = undistortImage(___ ,Name,Value) specifies one or more
Name,Value pair arguments, using any of the preceding syntaxes. Unspecified properties
have their default values.

Examples

Correct Image for Lens Distortion

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','mono'));

Detect calibration pattern.

3 Functions Alphabetical

3-884

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates of the corners of the squares. The square size is in
millimeters.

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Remove lens distortion and display results.

I = images.readimage(1);
J1 = undistortImage(I,cameraParams);

figure; imshowpair(I,J1,'montage');
title('Original Image (left) vs. Corrected Image (right)');

J2 = undistortImage(I,cameraParams,'OutputView','full');
figure;
imshow(J2);
title('Full Output View');

 undistortImage

3-885

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale. The input
image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

3 Functions Alphabetical

3-886

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'

Interpolation method to use on the input image, specified as the character vector
'linear', 'nearest' , or 'cubic'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FillValues',0 sets the sets the output pixel fill values to 0.

FillValues — Output pixel fill values
0 (default) | scalar | 3-element vector

Output pixel fill values, specified as the comma-separated pair consisting of
'FillValues' and an array containing one or more fill values. When the corresponding
inverse transformed location in the input image lies completely outside the input image
boundaries, you use the fill values for output pixels. When you use a 2-D grayscale input
image, you must set the FillValues to scalar. When you use a truecolor, FillValues
can be a scalar or a 3-element vector of RGB values.

OutputView — Size of output image
'same' (default) | 'full' | 'valid'

Size of output image, specified as the comma-separated pair consisting of 'OutputView'
and the character vector 'same', 'full', or 'valid'. When you set the property to
'same', the function sets the output image to match the size of the input image. When
you set the property to 'full', the output includes all pixels from the input image. When
you set the property to 'valid', the function crops the output image to contain only
valid pixels.

For the input image:

 undistortImage

3-887

OutputView Output Image
'same' Match the size of the input image.

3 Functions Alphabetical

3-888

OutputView Output Image
'full' All pixels from the input image.

'valid' Only valid pixels from the input image.

 undistortImage

3-889

Output Arguments
J — Undistorted image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted image, returned in either M-by-N-by-3 truecolor or M-by-N 2-D grayscale.
Data Types: single | double | int16 | uint8 | uint16 | logical

newOrigin — Output image origin
2-element vector

Output image origin, returned as a 2-element [x,y] vector. The function sets the output
origin location in terms of the input intrinsic coordinates. When you set OutputView to
'same', which means the output image is the same size as the input image, the function
sets the newOrigin to [0,0].

The newOrigin output represents the translation from the intrinsic coordinates of the
output image J into the intrinsic coordinates of the input image I.
Let PI represent a point in the intrinsic coordinates of input image I.
Let PJ represent the same point in the intrinsic coordinates of the output image J.

PI = PJ + newOrigin

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use in a MATLAB Function block is not supported.
• 'interp' and 'OutputView' must be compile-time constants.

3 Functions Alphabetical

3-890

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraIntrinsics |
cameraParameters | estimateCameraParameters | extrinsics |
stereoParameters | triangulate | undistortPoints

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2014a

 undistortImage

3-891

undistortPoints
Correct point coordinates for lens distortion

Syntax
undistortedPoints = undistortPoints(points,cameraParams)
[undistortedPoints,reprojectionErrors] = undistortPoints(points,
cameraParams)

Description
undistortedPoints = undistortPoints(points,cameraParams) returns point
coordinates corrected for lens distortion. This function uses numeric nonlinear least-
squares optimization.

[undistortedPoints,reprojectionErrors] = undistortPoints(points,
cameraParams) additionally returns the errors used to evaluate the accuracy of
undistorted points.

Examples

Undistort Checkerboard Points

Create an imageDatastore object containing calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','mono'));
imageFileNames = images.Files;

Detect the calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares. The square size is in
millimeters.

3 Functions Alphabetical

3-892

squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,10);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);

Load an image and detect the checkerboard points.

points = detectCheckerboardPoints(I);

Undistort the points

undistortedPoints = undistortPoints(points,params);

Undistort the image.

[J, newOrigin] = undistortImage(I,params,'OutputView','full');

Translate undistorted points

undistortedPoints = [undistortedPoints(:,1) - newOrigin(1), ...
 undistortedPoints(:,2) - newOrigin(2)];

Display the results

figure;
imshow(I);
hold on;
plot(points(:,1),points(:,2),'r*-');
title('Detected Points');
hold off;

 undistortPoints

3-893

figure;
imshow(J);
hold on;
plot(undistortedPoints(:,1),undistortedPoints(:,2),'g*-');
title('Undistorted Points');
hold off;

3 Functions Alphabetical

3-894

Input Arguments
points — Input points
M-by-2 matrix

Input points, specified an M-by-2 matrix of M number of [x y] coordinates.

cameraParams — Object for storing camera parameters
cameraParameters object | cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters

 undistortPoints

3-895

function. The cameraParameters object contains the intrinsic, extrinsic, and lens
distortion parameters of a camera.

Output Arguments
undistortedPoints — Undistorted points
M-by-2 matrix

Undistorted points, returned as an M-by-2 matrix. The undistortedPoints output
contains M [x,y] point coordinates corrected for lens distortion. When you input points as
double, the function outputs undistortedPoints as double. Otherwise, it outputs
undistortedPoints as single.
Data Types: single | double

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. You can use the errors to evaluate the
accuracy of undistorted points. The function computes the errors by applying distortion to
the undistorted points, and then taking the distances between the result and the
corresponding input points. The reprojectionErrors output is in pixels.

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraIntrinsics |
cameraParameters | estimateCameraParameters | extrinsics |
stereoParameters | triangulate

Introduced in R2014b

3 Functions Alphabetical

3-896

visionlib
Open top-level Computer Vision Toolbox Simulink library

Syntax
visionlib

Description
visionlib opens the top-level Computer Vision Toolbox block library model.

Examples
View and gain access to the Computer Vision Toolbox blocks:

visionlib

Alternatives
To view and gain access to the Computer Vision Toolbox blocks using the Simulink library
browser:

• Type simulink at the MATLAB command line, and then expand the Computer Vision
Toolbox node in the library browser.

•
Click the Simulink icon from the MATLAB desktop or from a model.

Introduced in R2011a

 visionlib

3-897

visionSupportPackages
Start installer to download, install, or uninstall Computer Vision Toolbox data

Syntax
visionSupportPackages

Description
visionSupportPackages launches the Support Package Installer, which you can use to
download, install, or uninstall support packages for Computer Vision Toolbox.

Computer Vision Toolbox Support Packages
“Install OCR Language Data Files”
“Install and Use Computer Vision Toolbox OpenCV Interface”

Examples

Start Computer Vision Toolbox installer
visionSupportPackages

See Also

Topics
“Install Computer Vision Toolbox Add-on Support Files”

Introduced in R2014b

3 Functions Alphabetical

3-898

ocvStructToKeyPoints
Convert MATLAB feature points struct to OpenCV KeyPoint vector

C++ Syntax
#include "opencvmex.hpp"
void ocvStructToKeyPoints(const mxArray *
in,cv::vector<cv::KeyPoint> &keypoints);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents a point feature. Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

Description
The ocvStructToKeyPoints function converts a point feature data structure from a
MATLAB struct to an OpenCV's KeyPoint vector.

 ocvStructToKeyPoints

3-899

See Also
mxArray, ocvKeyPointsToStruct, “C Matrix API” (MATLAB), “C MEX File
Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-900

ocvMxGpuArrayToGpuMat_{DataType}
Create cv::gpu::GpuMat from mxArray containing GPU data

C++ Syntax
#include "opencvgpumex.hpp"
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_double(const mxArray
* in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_single(const mxArray
* in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint8(const mxArray *
in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint16(const mxArray
* in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_uint32(const mxArray
* in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int8(const mxArray *
in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int16(const mxArray *
in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_int32(const mxArray *
in);
cv::Ptr<cv::gpu::GpuMat> ocvMxGpuArrayToGpuMat_bool(const mxArray *
in);

Arguments
in

Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double) real32_T (single) uint8_T (uint8)
uint16_T (uint16) uint32_T (uint32) int8_T (int8)
int16_T (int16) int32_T (int32) boolean_T (bool)

 ocvMxGpuArrayToGpuMat_{DataType}

3-901

Returns
OpenCV smart pointer (cv::Ptr) to a cv::gpu::GpuMat object.

Description
The ocvMxGpuArrayToGpuMat_{DataType} function creates a cv::gpu::GpuMat
object from an mxArray containing GPU data. This function requires the Parallel
Computing Toolbox software.

See Also
mxArray, ocvMxGpuArrayFromGpuMat_{DataType}, “C Matrix API” (MATLAB), “C
MEX File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-902

ocvMxGpuArrayFromGpuMat_{DataType}
Create an mxArray from cv::gpu::GpuMat object

C++ Syntax
#include "opencvgpumex.hpp"
mxArray * ocvMxGpuArrayFromGpuMat_double(const cv::gpu::GpuMat &
in);
mxArray * ocvMxGpuArrayFromGpuMat_single(const cv::gpu::GpuMat &
in);
mxArray * ocvMxGpuArrayFromGpuMat_uint8(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_uint16(const cv::gpu::GpuMat &
in);
mxArray * ocvMxGpuArrayFromGpuMat_uint32(const cv::gpu::GpuMat &
in);
mxArray * ocvMxGpuArrayFromGpuMat_int8(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_int16(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_int32(const cv::gpu::GpuMat & in);
mxArray * ocvMxGpuArrayFromGpuMat_bool(const cv::gpu::GpuMat & in)

Arguments
in

Reference to OpenCV cv::gpu::GpuMat object.

Returns
Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double) real32_T (single) uint8_T (uint8)
uint16_T (uint16) uint32_T (uint32) int8_T (int8)
int16_T (int16) int32_T (int32) boolean_T (bool)

 ocvMxGpuArrayFromGpuMat_{DataType}

3-903

Description
The ocvMxGpuArrayFromGpuMat function creates an mxArray from a
cv::gpu::GpuMat object. GpuMat supports 2-D arrays only. This function requires the
Parallel Computing Toolbox software.

See Also
mxArray, ocvMxGpuArrayToGpuMat_{DataType}, “C Matrix API” (MATLAB), “C MEX
File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-904

ocvMxArrayToSize_{DataType}
Convert 2-element mxArray to cv::Size.

C++ Syntax
#include "opencvmex.hpp"
cv::Size ocvMxArrayToSize_single(const mxArray * in, bool rcInput =
true);
cv::Size ocvMxArrayToSize_int32(const mxArray * in, bool rcInput =
true);

Arguments
in

Pointer to a MATLAB mxArray having 2 elements. Supported data types:

single
int32

rcInput
Boolean flag that indicates if input mxArray is of the format [r c] or [x y].

rcInput in
true (default) [r c] (height, width)
false [x y] (width, height)

Returns
OpenCV cv::Size

 ocvMxArrayToSize_{DataType}

3-905

Description
The ocvMxArrayToSize_{DataType} function converts a 2-element mxArray to
cv::Size. Empty input ([]) returns cv::Size(0,0);

See Also
mxArray, “C Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-906

ocvMxArrayToMat_{DataType}
Convert column major mxArray to row major cv::Mat for generic matrix

C++ Syntax
#include "opencvmex.hpp"
void ocvMxArrayToMat_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocvMxArrayToMat_double(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_single(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int16(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int32(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool
copyData = true);

 ocvMxArrayToMat_{DataType}

3-907

Arguments
in

Pointer to a MATLAB struct, mxArray, having column major data. The data can be n-
channel matrices. Supported data types:

real_T (double) uint8_T (uint8) uint32_T
(uint32)

int16_T (int16)

real32_T
(single)

uint16_T
(uint16)

int8_T (int8) int32_T (int32)

copyData
Boolean flag to copy data from mxArray to the Mat object.

• true (default) — The function transposes and interleaves (for RGB images)
column major mxArray data into a row major cv::Mat object.

• false — No data copies from the mxArray to the Mat object. The function creates
a new Mat wrapper and uses it to point to the mxArray data. Because OpenCV is
row-based and MATLAB is column-based, the columns of the mxArray become the
rows of the Mat object. If the image is 2-D, then copyData is false.

out
Reference to OpenCV cv::Mat with row major data.

Returns
The functions that set copyData return an OpenCV smart pointer (cv::Ptr) to a
cv::Mat object.

Description
The ocvMxArrayToMat_{DataType} function applies to two C++ implementations. One
set returns void and the other set returns an OpenCV smart pointer. The functions that
return void reallocate memory for the cv::Mat if needed.

3 Functions Alphabetical

3-908

The ocvMxArrayToMat_{DataType} transposes and interleaves column major mxArray
data into row major cv::Mat. This matrix conversion is a generic routine for any number
of channels.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromMat_{DataType}, “C
Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

 ocvMxArrayToMat_{DataType}

3-909

ocvMxArrayToImage_{DataType}
Convert column major mxArray to row major cv::Mat for image

C++ Syntax
#include "opencvmex.hpp"
void ocvMxArrayToImage_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocvMxArrayToImage_double(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_single(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint8(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int8(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_bool(const mxArray *in, const
bool copyData = true);

3 Functions Alphabetical

3-910

Arguments
in

Pointer to a MATLAB struct, mxArray, having column major data that represents a 2-
D or 3-D image. Supported data types:

real_T (double) uint8_T (uint8) uint32_T
(uint32)

int16_T (int16)

real32_T
(single)

uint16_T
(uint16)

int8_T (int8) int32_T (int32)

copyData
Boolean flag to copy data from mxArray to the Mat object.

• true (default) — The function transposes and interleaves (for RGB images)
column major mxArray data into a row major cv::Mat object.

• false — No data copies from the mxArray to the Mat object. The function creates
a new Mat wrapper and uses it to point to the mxArray data. Because OpenCV is
row-based and MATLAB is column-based, the columns of the mxArray become the
rows of the Mat object. If the image is 2-D, then copyData is false.

out
Reference to OpenCV cv::Mat with row major data.

Returns
The functions that set copyData return an OpenCV smart pointer (cv::Ptr) to a
cv::Mat object.

Description
The ocvMxArrayToImage_{DataType} function applies to two C++ implementations.
One set returns void and the other set returns an OpenCV smart pointer. The functions
that return void reallocate memory for the cv::Mat if needed.

 ocvMxArrayToImage_{DataType}

3-911

The ocvMxArrayToImage_{DataType} transposes and interleaves column major
mxArray data into row major cv::Mat. The ocvMxArrayToImage_{DataType}
function supports 2-D and 3-D images.

These functions are not a generic matrix conversion routine. For 3-D images, they take
into account that the OpenCV format uses BGR ordering and manipulate the data to
comply with that formatting.

See Also
mxArray, ocvMxArrayToMat_{DataType}, ocvMxArrayFromImage_{DataType}, “C
Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-912

ocvMxArrayToCvRect
Convert a MATLAB struct representing a rectangle to an OpenCV CvRect

C++ Syntax
#include "opencvmex.hpp"
CvRect ocvMxArrayToCvRect(const mxArray *in);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure
must have four scalar-valued fields: x, y, width, and height. The (x, y) fields
represent the upper-left corner of the rectangle.

Returns
OpenCV CvRect.

Description
The ocvMxArrayToCvRect function converts a rectangle data structure from a MATLAB
struct to an OpenCV KeyPoint vector.

See Also
mxArray, ocvCvRectToMxArray, “C Matrix API” (MATLAB), “C MEX File Applications”
(MATLAB)

Introduced in R2015a

 ocvMxArrayToCvRect

3-913

ocvMxArrayFromVector
Convert numeric vectorT to mxArray

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromVector(const std::vector<real_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<real32_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<uint8_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<uint16_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<uint32_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<int8_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<int16_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<int32_T> &v);
mxArray *ocvMxArrayFromVector(const std::vector<boolean_T> &v);

Arguments
v

Reference to vector<DataType>. Supported data types:

real_T real32_T uint8_T
uint16_T uint32_T int8_T
int16_T int32_T boolean_T

Returns
Pointer to a MATLAB struct mxArray.

3 Functions Alphabetical

3-914

Description
The ocvMxArrayFromVector function converts numeric std::vector<DataType> to
an mxArray.

See Also
mxArray, “C Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

 ocvMxArrayFromVector

3-915

ocvMxArrayFromPoints2f
Converts vector<cv::Point2f> to mxArray

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromPoints2f(const std::vector<cv::Point2f>
&points);

Arguments
points

Reference to OpenCV vector<cv::Point2f>.

Returns
Pointer to a MATLAB mxArray.

Description
The ocvMxArrayFromPoints2f function converts std::vector<cv::Point2f> to an
mxArray.

See Also
“C Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-916

ocvMxArrayFromMat_{DataType}
Convert row major cv::Mat to column major mxArray for generic matrix

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromMat_double(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_single(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_bool(const cv::Mat &in);

Arguments
in

Reference to OpenCV cv::Mat with row major data.

Returns
Pointer to a MATLAB struct, mxArray, having column major data. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

 ocvMxArrayFromMat_{DataType}

3-917

Description
The ocvMxArrayFromMat_{DataType} function creates an mxArray from a cv::Mat
object. The mxArray contains column major data and cv::Mat contains row major data.
This matrix conversion is a generic routine for any number of channels.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromImage_{DataType},
ocvMxArrayToMat_{DataType}, “C Matrix API” (MATLAB), “C MEX File Applications”
(MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-918

ocvMxArrayFromImage_{DataType}
Convert row major cv::Mat to column major mxArray for image

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromImage_double(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_single(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_bool(const cv::Mat &in);

Arguments
in

Reference to OpenCV cv::Mat with row major data.

Returns
Pointer to a MATLAB struct, mxArray, with column major data. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)
real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

 ocvMxArrayFromImage_{DataType}

3-919

Description
The ocvMxArrayFromImage_{DataType} function creates an mxArray from a
cv::Mat object. The mxArray contains column major data and the cv::Mat contains
row major data.

This function is not a generic matrix conversion routine. For 3-D images, it takes into
account that the OpenCV format uses BGR ordering and manipulates the data to comply
with that formatting.

See Also
mxArray, ocvMxArrayToImage_{DataType}, ocvMxArrayFromMat_{DataType}, “C
Matrix API” (MATLAB), “C MEX File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-920

ocvKeyPointsToStruct
Convert OpenCV KeyPoint vector to MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvKeyPointsToStruct(cv::vector<cv::KeyPoint> &in);

Arguments
in

Reference to an OpenCV's KeyPoint vector.

Returns
Pointer to a MATLAB structure mxArray that represents a point feature.

Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

 ocvKeyPointsToStruct

3-921

Description
The ocvKeyPointsToStruct function converts a point feature data structure from an
OpenCV KeyPoint vector to a MATLAB struct.

See Also
mxArray, ocvStructToKeyPoints, “C Matrix API” (MATLAB), “C MEX File
Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-922

ocvCvRectToMxArray
Convert OpenCV CvRect to a MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvCvRectToMxArray(const CvRect *in);

Arguments
in

Pointer to OpenCV CvRect.

Returns
Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must
have four scalar-valued fields, x, y, width, and height. The (x, y) fields represent the
upper-left corner of the rectangle.

Description
The ocvCvRectToMxArray function converts a rectangle data structure from an OpenCV
KeyPoint vector to a MATLAB struct.

See Also
mxArray, ocvMxArrayToCvRect, “C Matrix API” (MATLAB), “C MEX File Applications”
(MATLAB)

Introduced in R2015a

 ocvCvRectToMxArray

3-923

ocvCvRectToBoundingBox_{DataType}
Convert vector<cv::Rect> to M-by-4 mxArray of bounding boxes

C++ Syntax
#include "opencvmex.hpp"
mxArray * ocvCvRectToBoundingBox_double(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_single(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_uint8(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_uint16(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_uint32(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_int8(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_int16(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_int32(const std::vector<cv::Rect> &
rects);

Arguments
rects

Reference to OpenCV vector<cv::Rect>.

Returns
Pointer to a MATLAB mxArray having M-by-4 elements. Supported data types:

real_T (double) uint8_T (uint8) uint32_T (uint32) int16_T (int16)

3 Functions Alphabetical

3-924

real32_T (single) uint16_T (uint16) int8_T (int8) int32_T (int32)

Description
The ocvCvRectToBoundingBox_{DataType} function converts vector<cv::Rect> to
an M-by-4 mxArray of bounding boxes.

See Also
mxArray, ocvCvBox2DToMxArray, “C Matrix API” (MATLAB), “C MEX File Applications”
(MATLAB)

Introduced in R2015a

 ocvCvRectToBoundingBox_{DataType}

3-925

ocvCvBox2DToMxArray
Convert OpenCV CvBox2D to a MATLAB struct

C++ Syntax
#include "opencvmex.hpp"
mxArray *ocvCvBox2DToMxArray(const CvBox2D *in);

Arguments
in

Pointer to OpenCV CvBox2D.

Returns
Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must
have five scalar-valued fields: x_center, y_center, width, height, and angle. The
(x_center, y_center) fields represent the center of the rectangle.

Description
The ocvCvBox2DToMxArray function converts a rectangle data structure from an
OpenCV CvBox2D to a MATLAB struct.

See Also
mxArray, ocvCvRectToBoundingBox_{DataType}, “C Matrix API” (MATLAB), “C MEX
File Applications” (MATLAB)

Introduced in R2015a

3 Functions Alphabetical

3-926

ocvCheckFeaturePointsStruct
Check that MATLAB struct represents feature points

C++ Syntax
#include "opencvmex.hpp"
void ocvCheckFeaturePointsStruct(const mxArray *in);

Arguments
in

Pointer to a MATLAB structure, mxArray, that represents point feature. Format:

Field Name Field Requirement Field Data Type
Location Required Single
Scale Required Single
Metric Required Single
Orientation Optional Single
Octave Optional int32
Misc Optional int32

Description
The ocvCheckFeaturePointsStruct function performs the key point struct checker.

See Also
mxArrayocvStructToKeyPoints, ocvKeyPointsToStruct, “C Matrix API”
(MATLAB), “C MEX File Applications” (MATLAB)

 ocvCheckFeaturePointsStruct

3-927

Introduced in R2015a

3 Functions Alphabetical

3-928

trainFasterRCNNObjectDetector
Train a Faster R-CNN deep learning object detector

Syntax
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
network,options)
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
checkpoint,options)
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
detector,options)
trainedDetector = trainFasterRCNNObjectDetector(___ ,Name,Value)
[trainedDetector,info] = trainFasterRCNNObjectDetector(___)

Description
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
network,options) trains a Faster R-CNN (regions with convolution neural networks)
object detector using the four-step alternating training method in deep learning [1]. You
can train a Faster R-CNN detector to detect multiple object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you
also have Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU with
compute capability 3.0 or higher.

trainedDetector = trainFasterRCNNObjectDetector(trainingData,
checkpoint,options) resumes training from a detector checkpoint.

trainedDetector = trainFasterRCNNObjectDetector(trainingData,
detector,options) continues training a Faster R-CNN object detector. Use this syntax
for fine-tuning a detector.

trainedDetector = trainFasterRCNNObjectDetector(___ ,Name,Value) uses
additional options specified by one or more Name,Value pair arguments and any of the
previous inputs.

 trainFasterRCNNObjectDetector

3-929

[trainedDetector,info] = trainFasterRCNNObjectDetector(___) also
returns information on the training progress, such as training loss and accuracy, for each
iteration.

Examples

Train Faster R-CNN Vehicle Detector

Load training data.

data = load('fasterRCNNVehicleTrainingData.mat');

trainingData = data.vehicleTrainingData;

trainingData.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 trainingData.imageFilename);

Setup network layers.

layers = data.layers

layers =

 11x1 Layer array with layers:

 1 '' Image Input 32x32x3 images with 'zerocenter' normalization
 2 '' Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 '' ReLU ReLU
 4 '' Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 5 '' ReLU ReLU
 6 '' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 7 '' Fully Connected 64 fully connected layer
 8 '' ReLU ReLU
 9 '' Fully Connected 2 fully connected layer
 10 '' Softmax softmax
 11 '' Classification Output crossentropyex

Configure training options.

• Lower the InitialLearnRate to reduce the rate at which network parameters are
changed.

3 Functions Alphabetical

3-930

• Set the CheckpointPath to save detector checkpoints to a temporary directory. Change
this to another location if required.

• Set MaxEpochs to 1 to reduce example training time. Increase this to 10 for proper
training.

 options = trainingOptions('sgdm', ...
 'MiniBatchSize', 1, ...
 'InitialLearnRate', 1e-3, ...
 'MaxEpochs', 5, ...
 'VerboseFrequency', 200, ...
 'CheckpointPath', tempdir);

Train detector. Training will take a few minutes.

detector = trainFasterRCNNObjectDetector(trainingData, layers, options)

Starting parallel pool (parpool) using the 'local' profile ...
connected to 12 workers.

Training a Faster R-CNN Object Detector for the following object classes:

* vehicle

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:06 | 1.5273 | 53.91% | 0.92 | 0.0010 |
| 1 | 200 | 00:00:27 | 1.6777 | 50.00% | 0.83 | 0.0010 |
| 2 | 400 | 00:00:48 | 1.1392 | 100.00% | 1.05 | 0.0010 |
| 3 | 600 | 00:01:08 | 1.8571 | 100.00% | 1.50 | 0.0010 |
| 3 | 800 | 00:01:27 | 2.4457 | 100.00% | 1.82 | 0.0010 |
| 4 | 1000 | 00:01:48 | 0.5591 | 100.00% | 0.66 | 0.0010 |
| 5 | 1200 | 00:02:11 | 2.4903 | 100.00% | 1.93 | 0.0010 |
| 5 | 1400 | 00:02:30 | 0.7697 | 100.00% | 0.84 | 0.0010 |
| 5 | 1475 | 00:02:37 | 0.5513 | 100.00% | 0.68 | 0.0010 |
|===|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

Training a Fast R-CNN Object Detector for the following object classes:

 trainFasterRCNNObjectDetector

3-931

* vehicle

--> Extracting region proposals from 295 training images...done.

Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:02 | 0.9051 | 75.78% | 0.93 | 0.0010 |
| 1 | 200 | 00:00:19 | 0.2377 | 92.31% | 0.71 | 0.0010 |
| 2 | 400 | 00:00:37 | 0.2268 | 92.45% | 0.53 | 0.0010 |
| 3 | 600 | 00:00:54 | 0.3148 | 89.92% | 0.70 | 0.0010 |
| 3 | 800 | 00:01:11 | 0.2093 | 91.41% | 0.56 | 0.0010 |
| 4 | 1000 | 00:01:27 | 0.1125 | 97.66% | 1.02 | 0.0010 |
| 5 | 1200 | 00:01:46 | 0.4125 | 91.41% | 0.82 | 0.0010 |
| 5 | 1400 | 00:02:03 | 0.2403 | 91.41% | 0.64 | 0.0010 |
| 5 | 1445 | 00:02:07 | 0.9817 | 76.56% | 0.82 | 0.0010 |
|===|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:00 | 1.0772 | 100.00% | 1.01 | 0.0010 |
| 1 | 200 | 00:00:18 | 2.4481 | 100.00% | 1.86 | 0.0010 |
| 2 | 400 | 00:00:36 | 1.3111 | 50.78% | 0.72 | 0.0010 |
| 3 | 600 | 00:00:54 | 0.5687 | 100.00% | 0.71 | 0.0010 |
| 3 | 800 | 00:01:12 | 0.7452 | 97.66% | 0.81 | 0.0010 |
| 4 | 1000 | 00:01:30 | 0.8767 | 97.66% | 0.82 | 0.0010 |
| 5 | 1200 | 00:01:49 | 1.2515 | 94.53% | 1.15 | 0.0010 |
| 5 | 1400 | 00:02:07 | 0.6098 | 98.44% | 0.73 | 0.0010 |
| 5 | 1475 | 00:02:14 | 0.5851 | 100.00% | 0.73 | 0.0010 |
|===|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

Training a Fast R-CNN Object Detector for the following object classes:

* vehicle

--> Extracting region proposals from 295 training images...done.

3 Functions Alphabetical

3-932

Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:00 | 0.1679 | 96.88% | 0.51 | 0.0010 |
| 1 | 200 | 00:00:15 | 0.1168 | 96.40% | 0.64 | 0.0010 |
| 2 | 400 | 00:00:31 | 0.1058 | 97.66% | 0.57 | 0.0010 |
| 3 | 600 | 00:00:47 | 0.1568 | 95.31% | 0.45 | 0.0010 |
| 3 | 800 | 00:01:03 | 0.0710 | 99.22% | 0.65 | 0.0010 |
| 4 | 1000 | 00:01:18 | 0.1159 | 93.75% | 0.55 | 0.0010 |
| 5 | 1200 | 00:01:36 | 0.0874 | 98.44% | 0.59 | 0.0010 |
| 5 | 1400 | 00:01:51 | 0.0827 | 99.22% | 0.69 | 0.0010 |
| 5 | 1470 | 00:01:57 | 0.0778 | 99.22% | 0.43 | 0.0010 |
|===|

Detector training complete.

detector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'vehicle'
 Network: [1×1 DAGNetwork]
 AnchorBoxes: [5×2 double]
 ClassNames: {'vehicle' 'Background'}
 MinObjectSize: [1 1]

Test the Fast R-CNN detector on a test image.

img = imread('highway.png');

Run detector.

[bbox, score, label] = detect(detector, img);

Display detection results.

detectedImg = insertShape(img, 'Rectangle', bbox);
figure
imshow(detectedImg)

 trainFasterRCNNObjectDetector

3-933

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two or more columns. The first
column must contain paths and file names to grayscale or truecolor (RGB) images. The
remaining columns must contain bounding boxes related to the corresponding image.
Each column represents a single object class, such as a car, dog, flower, or stop sign.

3 Functions Alphabetical

3-934

Each bounding box must be in the format [x y width height]. The format specifies the
upper-left corner location and size of the object in the corresponding image. The table
variable name defines the object class name. To create the ground truth table, use the
Image Labeler or Video Labeler app.

network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph
object, or by the network name. The network is trained to classify the object classes
defined in the trainingData table. The SeriesNetwork, Layer, and layerGraph
objects are available in the Deep Learning Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by
the network name, the network is automatically transformed into a Faster R-CNN
network by adding a region proposal network (RPN), an ROI max pooling layer, and
new classification and regression layers to support object detection. Additionally, the
GridSize property of the ROI max pooling layer is set to the output size of the last
max pooling layer in the network.

• The array of Layer objects must contain a classification layer that supports the
number of object classes, plus a background class. Use this input type to customize
the learning rates of each layer. An example of an array of Layer objects:

 trainFasterRCNNObjectDetector

3-935

layers = [imageInputLayer([28 28 3])
 convolution2dLayer([5 5],10)
 reluLayer()
 fullyConnectedLayer(10)
 softmaxLayer()
 classificationLayer()];

• When you specify the network as SeriesNetwork, Layer array, or network by name,
the weights for additional convolution and fully-connected layers are initialized to
'narrow-normal'. The function adds these weights to create the network.

• The network name must be one of the following valid networks names. You must also
install the corresponding Add-on.

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSi
ze

Description

alexnet 'relu5' [6 6] Last max pooling layer is
replaced by ROI max pooling
layer

vgg16 'relu5_3' [7 7]
vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted

after the feature extraction layer.resnet50 'activation_40_re
lu'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv
2

'block_13_expand_
relu'

inceptionv
3

'mixed7' [17 17]

inceptionr
esnetv2

'block17_20_ac'

• The LayerGraph object must be a valid Faster R-CNN object detection network. You
can also use a LayerGraph object to train a custom Faster R-CNN network.

3 Functions Alphabetical

3-936

Tip If your network is a DAGNetwork, use the layerGraph function to convert the
network to a LayerGraph object. Then, create a custom Faster R-CNN network as
described by the “Create Faster R-CNN Object Detection Network” example.

See “R-CNN, Fast R-CNN, and Faster R-CNN Basics” to learn more about how to create a
Faster R-CNN network.

options — Training options
trainingOptions output

Training options, returned by the trainingOptions function from the Deep Learning
Toolbox. To specify solver and other options for network training, use trainingOptions.

Note trainFasterRCNNObjectDetector does not support these training options:

• The Plots value: 'training-progress'
• The ValidationData, ValidationFrequency, or ValidationPatience options
• The OutputFcn option.

checkpoint — Saved detector checkpoint
fasterRCNNObjectDetector object

Saved detector checkpoint, specified as a fasterRCNNObjectDetector object. To save
the detector after every epoch, set the 'CheckpointPath' property when using the
trainingOptions function. Saving a checkpoint after every epoch is recommended
because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the
checkpoint path. For example, if the 'CheckpointPath' property of options is '/
tmp', load a checkpoint MAT-file using:

data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18__14_25_08.mat');

The name of the MAT-file includes the iteration number and timestamp of when the
detector checkpoint was saved. The detector is saved in the detector variable of the file.
Pass this file back into the trainFasterRCNNObjectDetector function:

frcnn = trainFasterRCNNObjectDetector(stopSigns,...
 data.detector,options);

 trainFasterRCNNObjectDetector

3-937

detector — Previously trained Faster R-CNN object detector
fasterRCNNObjectDetector object

Previously trained Faster R-CNN object detector, specified as a
fasterRCNNObjectDetector object. Use this syntax to continue training a detector
with additional training data or to perform more training iterations to improve detector
accuracy.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PositiveOverlapRange',[0.75 1]

PositiveOverlapRange — Bounding box overlap ratios for positive training
samples
[0.5 1] (default) | two-element vector | 4-by-2 matrix

Bounding box overlap ratios for positive training samples, specified as the comma-
separated pair consisting of 'PositiveOverlapRange' and one of the following:

• A two-element vector that specifies an identical overlap ratio for all four training
stages.

• A 4-by-2 matrix, where each row specifies the overlap ratio for each of the four
training stages.

Values are in the range [0,1]. Region proposals that overlap with ground truth bounding
boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and
NegativeOverlapRange is defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

3 Functions Alphabetical

3-938

NegativeOverlapRange — Bounding box overlap ratios for negative training
samples
[0.1 0.5] (default) | two-element vector | 4-by-2 matrix

Bounding box overlap ratios for negative training samples, specified as the comma-
separated pair consisting of NegativeOverlapRange and one of the following.

• A two-element vector that specifies an identical overlap ratio for all four training
stages.

• A 4-by-2 matrix, where each row specifies the overlap ratio for each of the four
training stages.

Values are the range [0,1]. Region proposals that overlap with the ground truth bounding
boxes within the specified range are used as negative training samples.

The overlap ratio used for both the PositiveOverlapRange and
NegativeOverlapRange is defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer

Maximum number of strongest region proposals to use for generating training samples,
specified as the comma-separated pair consisting of 'NumStrongestRegions' and a
positive integer. Reduce this value to speed up processing time at the cost of training
accuracy. To use all region proposals, set this value to Inf.

NumRegionsToSample — Number of region proposals
128 (default) | integer

Number of region proposals to randomly sample from each training image, specified as an
integer. Reduce the number of regions to sample to reduce memory usage and speed-up
training. Reducing the value can also decrease training accuracy.

SmallestImageDimension — Length of smallest image dimension
[] (default) | positive integer

Length of smallest image dimension, either width or height, specified as the comma-
separated pair consisting of 'SmallestImageDimension' and a positive integer.

 trainFasterRCNNObjectDetector

3-939

Training images are resized such that the length of the shortest dimension is equal to the
specified integer. By default, training images are not resized. Resizing training images
helps reduce computational costs and memory used when training images are large.
Typical values range from 400–600 pixels.

MinBoxSizes — Minimum anchor box sizes
'auto' (default) | m-by-2 matrix

Minimum anchor box sizes used to build the anchor box pyramid of the region proposal
network (RPN), specified as the comma-separated pair consisting of'MinBoxSizes' and
an m-by-2 matrix. Each row defines the [height width] of an anchor box.

The default 'auto' setting uses the minimum size and the median aspect ratio from the
bounding boxes for each class in the ground truth data. To remove redundant box sizes,
the function keeps boxes that have an intersection-over-union that is less than or equal to
0.5. This behavior ensures that the minimum number of anchor boxes are used to cover
all the object sizes and aspect ratios.

When anchor boxes are computed based on MinBoxSizes, the ith anchor box size is:

round(MinBoxSizes(i,:) .* BoxPyramidScale ,^ (0:NumBoxPyramidLevels-1)')

You cannot use this property if you set the network to a LayerGraph object or if you
resume training from a detector checkpoint.

BoxPyramidScale — Anchor box pyramid scale
2 (default) | scalar

Anchor box pyramid scale factor used to successively upscale anchor box sizes, specified
as the comma-separated pair consisting of 'BoxPyramidScale' and a scalar.
Recommended values are from 1 through 2. Increase this value for faster results.
Decrease the number for greater accuracy.

NumBoxPyramidLevels — Number of anchor box pyramid levels
'auto' (default) | scalar

Number of levels in an anchor box pyramid, specified as the comma-separated pair
consisting of 'NumBoxPyramidLevels' and a scalar. Select a value that ensures that the
multiscale anchor boxes are comparable in size to the size of objects in the ground truth
data.

3 Functions Alphabetical

3-940

The default setting, 'auto', selects the number of levels based on the size of objects
within the ground truth data. The number of levels is selected such that it covers the
range of object sizes.

FreezeBatchNormalization — Frozen batch normalization
true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair
consisting of 'FreezeBatchNormalization' and true or false. The value indicates
whether the input layers to the network are frozen during training. Set this value to true
if you are training with a small mini-batch size. Small batch sizes result in poor estimates
of the batch mean and variance that is required for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the
property to

• true if the 'MiniBatchSize' name-value argument for the trainingOptions
function is less than 8.

• false if the 'MiniBatchSize' name-value argument for the trainingOptions
function is greater than or equal to 8.

You must specify a value for 'FreezeBatchNormalization' to overide this default
behavior.

Output Arguments
trainedDetector — Trained Faster R-CNN object detector
fasterRCNNObjectDetector object

Trained Faster R-CNN object detector, returned as a fasterRCNNObjectDetector
object.

info — Training information
structure array

Training information, returned as a structure array with four elements. Each element
corresponds to a stage of training Faster R-CNN, and has following fields. Each field is a
numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are represented by NaN.

 trainFasterRCNNObjectDetector

3-941

• TrainingLoss — Training loss at each iteration. This is the combination of the
classification and regression loss used to train the Faster R-CNN network.

• TrainingAccuracy — Training set accuracy at each iteration
• TrainingRMSE — Training root mean square error (RMSE) for the box regression

layer
• BaseLearnRate — Learning rate at each iteration

Tips
• To accelerate data preprocessing for training, trainFastRCNNObjectDetector

automatically creates and uses a parallel pool based on your parallel preference
settings. For more details about setting these preferences, see parallel preference
settings. Using parallel computing preferences requires Parallel Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training
with large images can produce "Out of Memory" errors. To mitigate these errors, try
one or more of these options:

• Reduce the size of your images by using the 'SmallestImageDimension'
argument.

• Decrease the value of the 'NumRegionsToSample' name-value argument.
• This function supports transfer learning. When you input a network by name, such as

'resnet50', then the function automatically transforms the network into a valid
Faster R-CNN network model based on the pretrained resnet50 model. Alternatively,
manually specify a custom Faster R-CNN network by using the LayerGraph extracted
from a pretrained DAG network. For more details, see “Create Faster R-CNN Object
Detection Network”.

• This table describes how to transform each named network into a Fast R-CNN
network. The feature extraction layer name specifies which layer is processed by the
ROI pooling layer. The ROI output size specifies the size of the feature maps output by
the ROI pooling layer.

3 Functions Alphabetical

3-942

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSi
ze

Description

alexnet 'relu5' [6 6] Last max pooling layer is
replaced by ROI max pooling
layer

vgg16 'relu5_3' [7 7]
vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted

after the feature extraction layer.resnet50 'activation_40_re
lu'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv
2

'block_13_expand_
relu'

inceptionv
3

'mixed7' [17 17]

inceptionr
esnetv2

'block17_20_ac'

If you want to modify how a network is transformed into a Faster R-CNN network, see
“Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model”.

• During training, multiple image regions are processed from the training images The
number of image regions per image is controlled by the NumRegionsToSample
property. The PositiveOverlapRange and NegativeOverlapRange properties
control which image regions are used for training. Positive training samples are those
that overlap with the ground truth boxes by 0.6 to 1.0, as measured by the bounding
box intersection over union metric (IoU). Negative training samples are those that
overlap by 0 to 0.3. Choose values for these properties by testing the trained detector
on a validation set. For example,

 trainFasterRCNNObjectDetector

3-943

Overlap Values Description
PositiveOverlapRange set to [0.6
1]

Positive training samples are set equal
to the samples that overlap with the
ground truth boxes by 0.6 to 1.0,
measured by the bounding box IoU
metric.

NegativeOverlapRange set to [0
0.3]

Negative training samples are set equal
to the samples that overlap with the
ground truth boxes by 0 to 0.3.

if you set PositiveOverlapRange to [0.6 1], then the function sets the positive
training samples equal to the samples that overlap with the ground truth boxes by 0.6
to 1.0, measured by the bounding box intersection over union metric. If you set
NegativeOverlapRange to [0 0.3], then the function sets negative training
samples are those that overlap by 0 to 0.3 if NegativeOverlapRange is [0 0.3].

• Use the trainingOptions function to enable or disable verbose printing.

Algorithms
The trainFasterRCNNObjectDetector function trains the Faster R-CNN object
detector in four stages with alternating optimization [1].

References
[1] Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks." Advances in Neural
Information Processing Systems . Vol. 28, 2015.

[2] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on
Computer Vision. 2015

[3] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation." CVPR '14 Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Pages
580-587. 2014

3 Functions Alphabetical

3-944

[4] Zitnick, C. Lawrence, and P. Dollar. "Edge boxes: Locating object proposals from
edges." Computer Vision-ECCV. Springer International Publishing. Pages
391-4050. 2014.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
Layer | SeriesNetwork | averagePooling2dLayer | fasterRCNNObjectDetector |
layerGraph | maxPooling2dLayer | trainFastRCNNObjectDetector |
trainRCNNObjectDetector | trainingOptions

Topics
“Object Detection Using Faster R-CNN Deep Learning”
“Anchor Boxes for Object Detection”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2017a

 trainFasterRCNNObjectDetector

3-945

trainYOLOv2ObjectDetector
Train YOLO v2 object detector

Syntax
detector = trainYOLOv2ObjectDetector(trainingData,lgraph,options)
detector = trainYOLOv2ObjectDetector(trainingData,checkpoint,
options)
detector = trainYOLOv2ObjectDetector(trainingData,detector,options)
detector = trainYOLOv2ObjectDetector(___ ,'MultiScaleTrainingSizes',
trainingSizes)
[detector,info] = trainYOLOv2ObjectDetector(___)

Description
detector = trainYOLOv2ObjectDetector(trainingData,lgraph,options)
returns an object detector trained using you look only once version 2 (YOLO v2) network
architecture specified by the input lgraph. The options input specifies training
parameters for the detection network.

detector = trainYOLOv2ObjectDetector(trainingData,checkpoint,
options) resumes training from the saved detector checkpoint.

You can use this syntax to:

• Add more training data and continue the training.
• Improve training accuracy by increasing the maximum number of iterations.

detector = trainYOLOv2ObjectDetector(trainingData,detector,options)
continues training a YOLO v2 object detector. Use this syntax for fine-tuning a detector.

detector = trainYOLOv2ObjectDetector(___ ,'MultiScaleTrainingSizes',
trainingSizes) specifies the image sizes for multiscale training by using a name-value
pair in addition to the input arguments in any of the preceding syntaxes.

3 Functions Alphabetical

3-946

[detector,info] = trainYOLOv2ObjectDetector(___) also returns information
on the training progress, such as the training accuracy and learning rate for each
iteration.

Examples

Train YOLO v2 Network for Vehicle Detection

Load the training data for vehicle detection into the workspace.

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

Specify the directory in which training samples are stored. Add full path to the file names
in training data.

dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);

Load data file containing the YOLO v2 network into the workspace. Set up the network as
a LayerGraph object.

net = load('yolov2VehicleDetector.mat');
lgraph = net.lgraph

lgraph =
 LayerGraph with properties:

 Layers: [25×1 nnet.cnn.layer.Layer]
 Connections: [24×2 table]

Inspect the layers in the YOLO v2 network and their properties. You can also create the
YOLO v2 network by following the steps given in “Create YOLO v2 Object Detection
Network”.

lgraph.Layers

ans =
 25x1 Layer array with layers:

 1 'input' Image Input 128x128x3 images

 trainYOLOv2ObjectDetector

3-947

 2 'conv_1' Convolution 16 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'BN1' Batch Normalization Batch normalization
 4 'relu_1' ReLU ReLU
 5 'maxpool1' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 6 'conv_2' Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 7 'BN2' Batch Normalization Batch normalization
 8 'relu_2' ReLU ReLU
 9 'maxpool2' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 10 'conv_3' Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 11 'BN3' Batch Normalization Batch normalization
 12 'relu_3' ReLU ReLU
 13 'maxpool3' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 14 'conv_4' Convolution 128 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 15 'BN4' Batch Normalization Batch normalization
 16 'relu_4' ReLU ReLU
 17 'yolov2Conv1' Convolution 128 3x3 convolutions with stride [1 1] and padding 'same'
 18 'yolov2Batch1' Batch Normalization Batch normalization
 19 'yolov2Relu1' ReLU ReLU
 20 'yolov2Conv2' Convolution 128 3x3 convolutions with stride [1 1] and padding 'same'
 21 'yolov2Batch2' Batch Normalization Batch normalization
 22 'yolov2Relu2' ReLU ReLU
 23 'yolov2ClassConv' Convolution 24 1x1 convolutions with stride [1 1] and padding [0 0 0 0]
 24 'yolov2Transform' YOLO v2 Transform Layer YOLO v2 Transform Layer with 4 anchors
 25 'yolov2OutputLayer' YOLO v2 Output YOLO v2 Output with 4 anchors

Configure the network training options.

• Set the solver to use stochastic gradient descent with momentum (sgdm) optimizer for
training.

• Set the initial learning rate to use for training.
• Set the verbose indicator to display training progress information in the command

window.
• Set the size of mini-batch to use for each training iteration. Reduce the size of mini-

batch to reduce memory usage during training.
• Set the maximum number of epoch for training.
• Specify the network to shuffle the training data before each epoch.
• Specify the frequency of verbose printing.
• Specify the path for saving the checkpoint networks. You can use this option to resume

training from any saved checkpoint networks.

options = trainingOptions('sgdm',...
 'InitialLearnRate',0.001,...

3 Functions Alphabetical

3-948

 'Verbose',true,...
 'MiniBatchSize',16,...
 'MaxEpochs',30,...
 'Shuffle','every-epoch',...
 'VerboseFrequency',30,...
 'CheckpointPath',tempdir);

Train the YOLO v2 network.

[detector,info] = trainYOLOv2ObjectDetector(trainingData,lgraph,options);

Training on single CPU.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | RMSE | Loss | Rate |
|==|
| 1 | 1 | 00:00:00 | 7.64 | 58.3 | 0.0010 |
| 2 | 30 | 00:00:22 | 1.57 | 2.5 | 0.0010 |
| 4 | 60 | 00:00:45 | 1.40 | 1.9 | 0.0010 |
| 5 | 90 | 00:01:08 | 1.24 | 1.5 | 0.0010 |
| 7 | 120 | 00:01:30 | 0.94 | 0.9 | 0.0010 |
| 9 | 150 | 00:01:52 | 1.19 | 1.4 | 0.0010 |
| 10 | 180 | 00:02:14 | 0.93 | 0.9 | 0.0010 |
| 12 | 210 | 00:02:38 | 0.73 | 0.5 | 0.0010 |
| 14 | 240 | 00:03:01 | 0.73 | 0.5 | 0.0010 |
| 15 | 270 | 00:03:23 | 0.77 | 0.6 | 0.0010 |
| 17 | 300 | 00:03:46 | 0.62 | 0.4 | 0.0010 |
| 19 | 330 | 00:04:09 | 0.62 | 0.4 | 0.0010 |
| 20 | 360 | 00:04:32 | 0.61 | 0.4 | 0.0010 |
| 22 | 390 | 00:04:55 | 0.63 | 0.4 | 0.0010 |
| 24 | 420 | 00:05:18 | 0.60 | 0.4 | 0.0010 |
| 25 | 450 | 00:05:42 | 0.79 | 0.6 | 0.0010 |
| 27 | 480 | 00:06:05 | 0.56 | 0.3 | 0.0010 |
| 29 | 510 | 00:06:29 | 0.51 | 0.3 | 0.0010 |
| 30 | 540 | 00:06:51 | 0.50 | 0.2 | 0.0010 |
|==|

Inspect the properties of the detector.

detector

detector =
 yolov2ObjectDetector with properties:

 ModelName: 'vehicle'

 trainYOLOv2ObjectDetector

3-949

 Network: [1×1 DAGNetwork]
 ClassNames: {'vehicle'}
 AnchorBoxes: [4×2 double]
 TrainingImageSize: [128 128]

You can verify the training accuracy by inspecting the training loss for each iteration.

figure
plot(info.TrainingLoss)
grid on
xlabel('Number of Iterations')
ylabel('Training Loss for Each Iteration')

3 Functions Alphabetical

3-950

Read a test image into the workspace.

img = imread('detectcars.png');

Run the trained YOLO v2 object detector on the test image for vehicle detection.

[bboxes,scores] = detect(detector,img);

Display the detection results.

if(~isempty(bboxes))
 img = insertObjectAnnotation(img,'rectangle',bboxes,scores);
end
figure
imshow(img)

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two, or more columns. The first
column must contain paths and file names for grayscale or truecolor (RGB) images. The
remaining columns must contain ground truth data related to different object classes in
the input image. Each column represents a single object class, such as a car, dog, flower,

 trainYOLOv2ObjectDetector

3-951

or stop sign. For example, this figure shows the trainingData value corresponding to a
series of images.

The ground truth must be in the format [x y width height]. The format specifies the upper
left corner location and size of the object in the corresponding image. The table variable
name defines the object class name. To create the ground truth table, use the Image
Labeler or Video Labeler app.

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. The layer graph contains the architecture
of the YOLO v2 network. You can create this network by using the yolov2Layers
function. Alternatively, you can create the network layers by using
yolov2TransformLayer, yolov2ReorgLayer, and yolov2OutputLayer functions.
For more details on creating a custom YOLO v2 network, see “Design a YOLO v2
Detection Network”.

options — Training options
TrainingOptionsSGDM object | TrainingOptionsRMSProp object |
TrainingOptionsADAM object

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function. To specify
the solver name and other options for network training, use the trainingOptions
function.

3 Functions Alphabetical

3-952

Note The trainYOLOv2ObjectDetector function does not support these training
options:

• The 'training-progress' value of the Plots training option
• The ValidationData, ValidationFrequency, or ValidationPatience training

options
• The OutputFcn option.

checkpoint — Saved detector checkpoint
yolov2ObjectDetector object

Saved detector checkpoint, specified as a yolov2ObjectDetector object. To save the
detector after every epoch, set the 'CheckpointPath' name-value argument when
using the trainingOptions function. Saving a checkpoint after every epoch is
recommended because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the
checkpoint path. For example, if the CheckpointPath property of the object specified by
options is '/checkpath', you can load a checkpoint MAT-file by using this code.

data = load('/checkpath/yolov2_checkpoint__216__2018_11_16__13_34_30.mat');
checkpoint = data.detector;

The name of the MAT-file includes the iteration number and timestamp of when the
detector checkpoint was saved. The detector is saved in the detector variable of the file.
Pass this file back into the trainYOLOv2ObjectDetector function:

yoloDetector = trainYOLOv2ObjectDetector(trainingData,checkpoint,options);

detector — Previously trained YOLO v2 object detector
yolov2ObjectDetector object

Previously trained YOLO v2 object detector, specified as a yolov2ObjectDetector
object. Use this syntax to continue training a detector with additional training data or to
perform more training iterations to improve detector accuracy.

trainingSizes — Set of image sizes for multiscale training
[] (default) | M-by-2 matrix

 trainYOLOv2ObjectDetector

3-953

Set of image sizes for multiscale training, specified as an M-by-2 matrix, where each row
is of the form [height width]. For each training epoch, the input training images are
randomly resized to one of the M image sizes specified in this set.

If you do not specify the trainingSizes, the function sets this value to the size in the
image input layer of the YOLO v2 network. The network resizes all training images to this
value.

Note The input trainingSizes values specified for multiscale training must be greater
than or equal to the input size in the image input layer of the lgraph input argument.

Output Arguments
detector — Trained YOLO v2 object detector
yolov2ObjectDetector object

Trained YOLO v2 object detector, returned as yolov2ObjectDetector object. You can
train a YOLO v2 object detector to detect multiple object classes.

info — Training information
structure array

Training information, returned as a structure array with four elements. Each element
corresponds to a stage of training and contains these fields:

• TrainingLoss — Training loss at each iteration is the mean squared error (MSE)
calculated as the sum of localization error, confidence loss, and classification loss. For
more information about the training loss function, see “Training Loss” on page 3-955.

• TrainingRMSE — Training root mean squared error (RMSE) is the RMSE calculated
from the training loss at each iteration.

• BaseLearnRate — Learning rate at each iteration.

Each field is a numeric vector with one element per training iteration. Values that have
not been calculated at a specific iteration are assigned as NaN.

3 Functions Alphabetical

3-954

Definitions

Training Loss
During training, the YOLO v2 object detection network optimizes the MSE loss between
the predicted bounding boxes and the ground truth. The loss function is defined as

K x x y y

K w w

ij
obj

i i i i

j

B

i

S

ij
obj

i

1

2 2

00

1

1

1

2

-() + -()È
ÎÍ

˘
˚̇

+ -

==
ÂÂ ˆ ˆ

ˆ ii i i
j

B

i

S

ij
obj

i i

j

B

i

h h

K C C

() + -()È

Î
Í
Í

˘

˚
˙
˙

+ -()

==

=

ÂÂ

Â

2 2

00

2

2

0

2

1

ˆ

ˆ

==

==

Â

ÂÂ+ -()

+ () - ()(

0

3

2

00

4

2

2

1

1

S

ij
noobj

i i

j

B

i

S

i
obj

i i

K C C

K p c p c

ˆ

ˆ))
Œ=
ÂÂ

2

0

2

c classesi

S

where:

• S is the number of grid cells.
• B is the number of bounding boxes in each grid cell.
•

1ij
obj

 is 1 if the jth bounding box in grid cell i is responsible for detecting the object.
Otherwise it is set to 0. A grid cell i is responsible for detecting the object, if the
overlap between the ground truth and a bounding box in that grid cell is greater than
or equal to 0.6.

•
1ij

noobj

 is 1 if the jth bounding box in grid cell i does not contain any object. Otherwise
it is set to 0.

•
1i

obj

 is 1 if an object is detected in grid cell i. Otherwise it is set to 0.

 trainYOLOv2ObjectDetector

3-955

• K1, K2, K3, and K4 are the weights. To adjust the weights, modify the LossFactors
property of the output layer by using the yolov2OutputLayer function.

The loss function can be split into three parts:

• Localization loss

The first and second terms in the loss function comprise the localization loss. It
measures error between the predicted bounding box and the ground truth. The
parameters for computing the localization loss include the position, size of the
predicted bounding box, and the ground truth. The parameters are defined as follows.

• x yi i,() , is the center of the jth bounding box relative to grid cell i.
• ˆ , ˆx yi i() , is the center of the ground truth relative to grid cell i.
• w hi iand is the width and the height of the jth bounding box in grid cell i,

respectively. The size of the predicted bounding box is specified relative to the
input image size.

•
ˆ ˆw hi iand is the width and the height of the ground truth in grid cell i, respectively.

• K1 is the weight for localization loss. Increase this value to increase the weightage
for bounding box prediction errors.

• Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third
term measures the objectness (confidence score) error when an object is detected in
the jth bounding box of grid cell i. The fourth term measures the objectness error
when no object is detected in the jth bounding box of grid cell i. The parameters for
computing the confidence loss are defined as follows.

• Ci is the confidence score of the jth bounding box in grid cell i.
• Ĉi is the confidence score of the ground truth in grid cell i.
• K2 is the weight for objectness error, when an object is detected in the predicted

bounding box. Increase this value to increase the weightage for bounding box and
grid cell that contain the object.

• K3is the weight for objectness error, when an object is not detected in the predicted
bounding box. Decrease this value to decrease the weightage for bounding box and
grid cell that does not contain any object. Decreasing the weight for objectness

3 Functions Alphabetical

3-956

error, prevents the network from training to detect the background instead of the
objects.

• Classification loss

The fifth term in the loss function comprises the classification loss. For example,
suppose that an object is detected in the predicted bounding box contained in grid cell
i. Then, the classification loss measures the squared error between the class
conditional probabilities for each class in grid cell i. The parameters for computing the
classification loss are defined as follows.

• pi (c) is the estimated conditional class probability for object class c in grid cell i.
• p̂ ci () is the actual conditional class probability for object class c in grid cell i.
• K4 is the weight for classification error when an object is detected in the grid cell.

Increase this value to increase the weightage for classification loss.

References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-

Time Object Detection." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.

[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
Honolulu, HI: CVPR, 2017.

See Also
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainRCNNObjectDetector | trainingOptions | yolov2Layers |
yolov2ObjectDetector

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes Using Clustering”
“Code Generation for Object Detection Using YOLO v2”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

 trainYOLOv2ObjectDetector

3-957

Introduced in R2019a

3 Functions Alphabetical

3-958

detect
Detect objects using ACF object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___]= detect(detector,I,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using the input
aggregate channel features (ACF) object detector. The locations of objects detected are
returned as a set of bounding boxes.

[bboxes,scores] = detect(detector,I) also returns the detection scores for each
bounding box.

[___]= detect(detector,I,roi) detects objects within the rectangular search
region specified by roi, using either of the preceding syntaxes.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example, detect(detector,I,'WindowStride',2)
sets the stride of the sliding window used to detects objects to 2.

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object
detector that can detect stop signs. Test the detector with a separate image.

Load the training data.

 detect

3-959

load('stopSignsAndCars.mat')

Select the ground truth for stop signs. These ground truth is the set of known locations of
stop signs in the images.

stopSigns = stopSignsAndCars(:,1:2);

Add the full path to the image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
 'visiondata',stopSigns.imageFilename);

Train the ACF detector. You can turn off the training progress output by specifying
'Verbose',false as a Name,Value pair.

acfDetector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)

3 Functions Alphabetical

3-960

Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 37.2905 seconds.

Test the ACF detector on a test image.

img = imread('stopSignTest.jpg');

[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

for i = 1:length(scores)
 annotation = sprintf('Confidence = %.1f',scores(i));
 img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end

figure
imshow(img)

 detect

3-961

Input Arguments
detector — ACF object detector
acfObjectDetector object

ACF object detector, specified as an acfObjectDetector object. To create this object,
call the trainACFObjectDetector function with training data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

3 Functions Alphabetical

3-962

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumScaleLevels',4

NumScaleLevels — Number of scale levels per octave
8 (default) | positive integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels' and a positive integer. Each octave is a power-of-two downscaling of
the image. To detect people at finer scale increments, increase this number.
Recommended values are in the range [4, 8].

WindowStride — Stride for sliding window
4 (default) | positive integer

Stride for the sliding window, specified as the comma-separated pair consisting of
'WindowStride' and a positive integer. This value indicates the distance for the
function to move the window in both the x and y directions. The sliding window scans the
images for object detection.

SelectStrongest — Select strongest bounding box for each object
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBbox function, which uses nonmaximal suppression to
eliminate overlapping bounding boxes based on their confidence scores.

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

 detect

3-963

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

Threshold — Classification accuracy threshold
–1 (default) | numeric scalar

Classification accuracy threshold, specified as the comma-separated pair consisting of
'Threshold' and a numeric scalar. Recommended values are in the range [–1, 1].
During multiscale object detection, the threshold value controls the accuracy and speed
for classifying image subregions as either objects or nonobjects. To speed up the
performance at the risk of missing true detections, increase this threshold.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection confidence scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

3 Functions Alphabetical

3-964

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• Supports code generation (requires MATLAB Coder) only in generic MATLAB Host
Computer target platform.

See Also
Apps
Image Labeler | Video Labeler

Functions
detectPeopleACF | selectStrongestBbox | trainACFObjectDetector |
trainCascadeObjectDetector

Objects
acfObjectDetector

Introduced in R2017a

 detect

3-965

detect
Detect objects using R-CNN deep learning detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using an R-CNN
(regions with convolutional neural networks) object detector. The locations of objects
detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection scores for each
bounding box.

[___ ,labels] = detect(detector,I) also returns a categorical array of labels
assigned to the bounding boxes, using either of the preceding syntaxes. The labels used
for object classes are defined during training using the trainRCNNObjectDetector
function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
detect(detector,I,'NumStongestRegions',1000) limits the number of strongest
region proposals to 1000.

3 Functions Alphabetical

3-966

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
 'stopSignImages');
addpath(imDir);

Set network training options to use mini-batch size of 32 to reduce GPU memory usage.
Lower the InitialLearningRate to reduce the rate at which network parameters are
changed. This is beneficial when fine-tuning a pre-trained network and prevents the
network from changing too rapidly.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|===|
| 3 | 50 | 9.27 | 0.2895 | 96.88% | 0.000001 |
| 5 | 100 | 14.77 | 0.2443 | 93.75% | 0.000001 |

 detect

3-967

| 8 | 150 | 20.29 | 0.0013 | 100.00% | 0.000001 |
| 10 | 200 | 25.94 | 0.1524 | 96.88% | 0.000001 |
|===|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

R-CNN training complete.

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

3 Functions Alphabetical

3-968

Remove the image directory from the path.

rmpath(imDir);

Input Arguments
detector — R-CNN object detector
rcnnObjectDetector object

R-CNN object detector, specified as an rcnnObjectDetector object. To create this
object, call the trainRCNNObjectDetector function with training data as input.

I — Input image
grayscale image | truecolor image

Input image, specified as a real, nonsparse, grayscale or truecolor image.

The detector is sensitive to the range of the input image. Therefore, ensure that the input
image range is similar to the range of the images used to train the detector. For example,

 detect

3-969

if the detector was trained on uint8 images, rescale the input image to the range [0,
255] by using im2uint8 or rescale.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
four-element vector of form [x y width height]

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumStongestRegions',1000

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | integer

Maximum number of strongest region proposals, specified as the comma-separated pair
consisting of 'NumStrongestRegions' and an integer. Reduce this value to speed up
processing time at the cost of detection accuracy. To use all region proposals, specify this
value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select strongest bounding box for each detected object, specified as the comma-separated
pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBboxMulticlass function, which uses nonmaximal
suppression to eliminate overlapping bounding boxes based on their scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
 'RatioType','Min', ...
 'OverlapThreshold',0.5);

3 Functions Alphabetical

3-970

• false — Return all detected bounding boxes. You can then use a custom operation to
eliminate overlapping bounding boxes.

MiniBatchSize — Size of smaller batches for R-CNN data processing
128 (default) | integer

Size of smaller batches for R-CNN data processing, specified as the comma-separated
pair consisting of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster
processing but take up more memory.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'. The table
shows the valid hardware resource values.

Resour
ce

Action

'auto' Use a GPU if it is available. Otherwise, use the CPU.
'gpu' Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a
suitable GPU is not available, the function returns an error.

'cpu' Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the image, returned as an M-by-4 matrix defining M
bounding boxes. Each row of bboxes contains a four-element vector of the form [x y
width height]. This vector specifies the upper left corner and size of a bounding box in
pixels.

scores — Detection scores
M-by-1 vector

 detect

3-971

Detection scores, returned as an M-by-1 vector. A higher score indicates higher
confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

See Also
Apps
Image Labeler | Video Labeler

Functions
selectStrongestBboxMulticlass | trainRCNNObjectDetector

Objects
rcnnObjectDetector

Introduced in R2016b

3 Functions Alphabetical

3-972

detect
Detect objects using Fast R-CNN object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Fast R-CNN
(regions with convolutional neural networks) object detector. The locations of objects
detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection scores for each
bounding box.

[___ ,labels] = detect(detector,I) also returns a categorical array of labels
assigned to the bounding boxes, using either of the preceding syntaxes. The labels used
for object classes are defined during training using the
trainFastRCNNObjectDetector function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
detect(detector,I,'NumStongestRegions',1000) limits the number of strongest
region proposals to 1000.

 detect

3-973

Input Arguments
detector — Fast R-CNN object detector
fastRCNNObjectDetector object

Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create
this object, call the trainFastRCNNObjectDetector function with training data as
input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.

The detector is sensitive to the range of the input image. Therefore, ensure that the input
image range is similar to the range of the images used to train the detector. For example,
if the detector was trained on uint8 images, rescale this input image to the range [0,
255] by using the im2uint8 or rescale function. The size of this input image should be
comparable to the sizes of the images used in training. If these sizes are very different,
the detector has difficulty detecting objects because the scale of the objects in the input
image differs from the scale of the objects the detector was trained to identify. Consider
whether you used the SmallestImageDimension property during training to modify the
size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumStongestRegions',1000

3 Functions Alphabetical

3-974

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores
less than this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair
consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to
speed up processing time at the cost of detection accuracy. To use all region proposals,
specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBboxMulticlass function, which uses nonmaximal
suppression to eliminate overlapping bounding boxes based on their confidence
scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
 'RatioType','Min', ...
 'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

 detect

3-975

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

3 Functions Alphabetical

3-976

See Also
Apps
Image Labeler | Video Labeler

Functions
selectStrongestBboxMulticlass | trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetector

Introduced in R2017a

 detect

3-977

detect
Detect objects using Faster R-CNN object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Faster R-CNN
(regions with convolutional neural networks) object detector. The locations of objects
detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection scores for each
bounding box.

[___ ,labels] = detect(detector,I) also returns a categorical array of labels
assigned to the bounding boxes, using either of the preceding syntaxes. The labels used
for object classes are defined during training using the
trainFasterRCNNObjectDetector function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
detect(detector,I,'NumStongestRegions',1000) limits the number of strongest
region proposals to 1000.

3 Functions Alphabetical

3-978

Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.

Load a Faster R-CNN object detector pretrained to detect vehicles.

data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;

Read in a test image.

I = imread('highway.png');
imshow(I)

Run the detector on the image and inspect the results. The labels come from the
ClassNames property of the detector.

 detect

3-979

[bboxes,scores,labels] = detect(detector,I)

bboxes = 2×4

 150 86 80 72
 91 89 67 48

scores = 2x1 single column vector

 1.0000
 0.9001

labels = 2x1 categorical array
 vehicle
 vehicle

The detector has high confidence in the detections. Annotate the image with the bounding
boxes for the detections and the corresponding detection scores.

 detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
 figure
 imshow(detectedI)

3 Functions Alphabetical

3-980

Input Arguments
detector — Faster R-CNN object detector
fasterRCNNObjectDetector object

Faster R-CNN object detector, specified as a fasterRCNNObjectDetector object. To
create this object, call the trainFasterRCNNObjectDetector function with training
data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.

The detector is sensitive to the range of the input image. Therefore, ensure that the input
image range is similar to the range of the images used to train the detector. For example,
if the detector was trained on uint8 images, rescale this input image to the range [0,

 detect

3-981

255] by using the im2uint8 or rescale function. The size of this input image should be
comparable to the sizes of the images used in training. If these sizes are very different,
the detector has difficulty detecting objects because the scale of the objects in the input
image differs from the scale of the objects the detector was trained to identify. Consider
whether you used the SmallestImageDimension property during training to modify the
size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumStongestRegions',1000

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores
less than this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair
consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to
speed up processing time at the cost of detection accuracy. To use all region proposals,
specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

3 Functions Alphabetical

3-982

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBboxMulticlass function, which uses nonmaximal
suppression to eliminate overlapping bounding boxes based on their confidence
scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
 'RatioType','Min', ...
 'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

 detect

3-983

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

See Also
Apps
Image Labeler | Video Labeler

Functions
evaluateDetectionMissRate | evaluateDetectionPrecision |
selectStrongestBboxMulticlass | trainFasterRCNNObjectDetector

Objects
fasterRCNNObjectDetector

Introduced in R2017a

3 Functions Alphabetical

3-984

detect
Detect objects using YOLO v2 object detector

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using you look only
once version 2 (YOLO v2) object detector. The locations of objects detected are returned
as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the class-specific confidence
scores for each bounding box.

[___ ,labels] = detect(detector,I) returns a categorical array of labels assigned
to the bounding boxes in addition to the output arguments from the previous syntax. The
labels used for object classes are defined during training using the
trainYOLOv2ObjectDetector function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi. Use output arguments from any of the previous syntaxes. Specify input
arguments from any of the previous syntaxes.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments in addition to the input arguments in any of the preceding
syntaxes.

 detect

3-985

Examples

Detect Vehicles Using YOLO v2 Object Detection Network

Load a YOLO v2 object detector pretrained to detect vehicles.

vehicleDetector = load('yolov2VehicleDetector.mat','detector');
detector = vehicleDetector.detector;

Read a test image into the workspace.

I = imread('highway.png');

Display the input test image.

imshow(I);

3 Functions Alphabetical

3-986

Run the pretrained YOLO v2 object detector on the test image. Inspect the results for
vehicle detection. The labels are derived from the ClassNames property of the detector.

[bboxes,scores,labels] = detect(detector,I)

bboxes = 1×4

 78 81 64 63

scores = single
 0.6224

labels = categorical
 vehicle

Annotate the image with the bounding boxes for the detections.

if ~isempty(bboxes)
 detectedI = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
end
figure
imshow(detectedI)

 detect

3-987

Input Arguments
detector — YOLO v2 object detector
yolov2ObjectDetector object

YOLO v2 object detector, specified as a yolov2ObjectDetector object. To create this
object, call the trainYOLOv2ObjectDetector function with the training data as input.

I — Test image
2-D grayscale image | 2-D RGB image

Test image, specified as a real, nonsparse, grayscale, or RGB image.

The range of the test image must be same as the range of the images used to train the
YOLO v2 object detector. For example, if the detector was trained on uint8 images, the

3 Functions Alphabetical

3-988

test image must also have pixel values in the range [0, 255]. Otherwise, use the
im2uint8 or rescale function to rescale the pixel values in the test image.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
four- element vector of form [x y width height]

Search region of interest, specified as a four-element vector of form [x y width height].
The vector specifies the upper left corner and size of a region of interest in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: detect(detector,I,'Threshold',0.25)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a comma-separated pair consisting of 'Threshold' and
a scalar in the range [0, 1]. Detections that have scores less than this threshold value are
removed. To reduce false positives, increase this value.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Returns the strongest bounding box per object. The method calls the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression
to eliminate overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

 selectStrongestBboxMulticlass(bbox,scores,...
 'RatioType','Min',...
 'OverlapThreshold',0.5);

 detect

3-989

• false — Return all the detected bounding boxes. You can then write your own custom
method to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[1 1] (default) | vector of the form [height width]

Minimum region size, specified as the comma-separated pair consisting of 'MinSize'
and a vector of the form [height width]. Units are in pixels. The minimum region size
defines the size of the smallest region containing the object.

By default, MinSize is 1-by-1.

MaxSize — Maximum region size
size(I) (default) | vector of the form [height width]

Maximum region size, specified as the comma-separated pair consisting of 'MaxSize'
and a vector of the form [height width]. Units are in pixels. The maximum region size
defines the size of the largest region containing the object.

By default, 'MaxSize' is set to the height and width of the input image, I. To reduce
computation time, set this value to the known maximum region size for the objects that
can be detected in the input test image.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

3 Functions Alphabetical

3-990

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

See Also
Apps
Image Labeler | Video Labeler

Functions
evaluateDetectionMissRate | evaluateDetectionPrecision |
selectStrongestBboxMulticlass | trainYOLOv2ObjectDetector

Objects
yolov2ObjectDetector

Topics
“Create YOLO v2 Object Detection Network”
“Object Detection Using YOLO v2 Deep Learning”
“Estimate Anchor Boxes Using Clustering”
“YOLO v2 Basics”
“Anchor Boxes for Object Detection”

Introduced in R2019a

 detect

3-991

classifyRegions
Classify objects in image regions using R-CNN object detector

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[___] = classifyRegions(___ Name,Value)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within
the regions of interest of image I, using an R-CNN (regions with convolutional neural
networks) object detector. For each region, classifyRegions returns the class label
with the corresponding highest classification score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[labels,scores,allScores] = classifyRegions(detector,I,rois) also
returns all the classification scores of each region. The scores are returned in an M-by-N
matrix of M regions and N class labels.

[___] = classifyRegions(___ Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
classifyRegions(detector,I,rois,'ExecutionEnvironment','cpu') classifies
objects within image regions using only the CPU hardware.

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

3 Functions Alphabetical

3-992

load('rcnnStopSigns.mat', 'stopSigns', 'layers')

Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
 'stopSignImages');
addpath(imDir);

Set network training options to use mini-batch size of 32 to reduce GPU memory usage.
Lower the InitialLearningRate to reduce the rate at which network parameters are
changed. This is beneficial when fine-tuning a pre-trained network and prevents the
network from changing too rapidly.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'InitialLearnRate', 1e-6, ...
 'MaxEpochs', 10);

Train the R-CNN detector. Training can take a few minutes to complete.

rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 0.3]);

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.

Step 2 of 3: Training a neural network to classify objects in training data...

|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|===|
| 3 | 50 | 9.27 | 0.2895 | 96.88% | 0.000001 |
| 5 | 100 | 14.77 | 0.2443 | 93.75% | 0.000001 |
| 8 | 150 | 20.29 | 0.0013 | 100.00% | 0.000001 |
| 10 | 200 | 25.94 | 0.1524 | 96.88% | 0.000001 |
|===|

Network training complete.

Step 3 of 3: Training bounding box regression models for each object class...100.00%...done.

 classifyRegions

3-993

R-CNN training complete.

Test the R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);

Display strongest detection result.

[score, idx] = max(score);

bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);

figure
imshow(detectedImg)

3 Functions Alphabetical

3-994

Remove the image directory from the path.

rmpath(imDir);

Input Arguments
detector — R-CNN object detector
rcnnObjectDetector object

R-CNN object detector, specified as an rcnnObjectDetector object. To create this
object, call the trainRCNNObjectDetector function with training data as input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M
rectangular regions. Each row contains a four-element vector of the form [x y width
height]. This vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MiniBatchSize',64

MiniBatchSize — Size of smaller batches for R-CNN data processing
128 (default) | integer

Size of smaller batches for R-CNN data processing, specified as the comma-separated
pair consisting of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster
processing but take up more memory.

 classifyRegions

3-995

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number
of regions of interest in rois. Each class name in labels corresponds to a classification
score in scores and a region of interest in rois. classifyRegions obtains the class
names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the
range [0, 1]. M is the number of regions of interest in rois. Each classification score in
scores corresponds to a class name in labels and a region of interest in rois. A higher
score indicates higher confidence in the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range
[0, 1]. M is the number of regions in rois. N is the number of class names stored in the
input detector. Each row of classification scores in allscores corresponds to a region
of interest in rois. A higher score indicates higher confidence in the classification.

3 Functions Alphabetical

3-996

See Also
Apps
Image Labeler | Video Labeler

Functions
trainRCNNObjectDetector

Objects
rcnnObjectDetector

Introduced in R2016b

 classifyRegions

3-997

classifyRegions
Classify objects in image regions using Fast R-CNN object detector

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[___] = classifyRegions(___ ,'ExecutionEnvironment',resource)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within
the regions of interest of image I, using a Fast R-CNN (regions with convolutional neural
networks) object detector. For each region, classifyRegions returns the class label
with the corresponding highest classification score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[labels,scores,allScores] = classifyRegions(detector,I,rois) also
returns all the classification scores of each region. The scores are returned in an M-by-N
matrix of M regions and N class labels.

[___] = classifyRegions(___ ,'ExecutionEnvironment',resource) specifies
the hardware resource used to classify object within image regions: 'auto', 'cpu', or
'gpu'. You can use this syntax with either of the preceding syntaxes.

Examples

Classify Image Regions Using Fast R-CNN

Configure a Fast R-CNN object detector and use it to classify objects within multiple
regions of an image.

3 Functions Alphabetical

3-998

Load a fastRCNNObjectDetector object that is pretrained to detect stop signs.

data = load('rcnnStopSigns.mat','fastRCNN');
fastRCNN = data.fastRCNN;

Read in a test image containing a stop sign.

I = imread('stopSignTest.jpg');
figure
imshow(I)

Specify regions of interest to classify within the test image.

rois = [416 143 33 27
 347 168 36 54];

Classify the image regions and inspect the output labels and classification scores. The
labels come from the ClassNames property of the detector.

[labels,scores] = classifyRegions(fastRCNN,I,rois)

 classifyRegions

3-999

labels = 2x1 categorical array
 stopSign
 Background

scores = 2x1 single column vector

 0.9969
 1.0000

The detector has high confidence in the classifications. Display the classified regions on
the test image.

detectedI = insertObjectAnnotation(I,'rectangle',rois,cellstr(labels));

figure
imshow(detectedI)

3 Functions Alphabetical

3-1000

Input Arguments
detector — Fast R-CNN object detector
fastRCNNObjectDetector object

Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create
this object, call the trainFastRCNNObjectDetector function with training data as
input.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M
rectangular regions. Each row contains a four-element vector of the form [x y width
height]. This vector specifies the upper left corner and size of a region in pixels.

resource — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as 'auto', 'gpu', or
'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

 classifyRegions

3-1001

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number
of regions of interest in rois. Each class name in labels corresponds to a classification
score in scores and a region of interest in rois. classifyRegions obtains the class
names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the
range [0, 1]. M is the number of regions of interest in rois. Each classification score in
scores corresponds to a class name in labels and a region of interest in rois. A higher
score indicates higher confidence in the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range
[0, 1]. M is the number of regions in rois. N is the number of class names stored in the
input detector. Each row of classification scores in allscores corresponds to a region
of interest in rois. A higher score indicates higher confidence in the classification.

See Also
Apps
Image Labeler | Video Labeler

Functions
trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetector

Introduced in R2017a

3 Functions Alphabetical

3-1002

trainFastRCNNObjectDetector
Train a Fast R-CNN deep learning object detector

Syntax
trainedDetector = trainFastRCNNObjectDetector(trainingData,network,
options)
trainedDetector = trainFastRCNNObjectDetector(trainingData,
checkpoint,options)
trainedDetector = trainFastRCNNObjectDetector(trainingData,detector,
options)
trainedDetector = trainFastRCNNObjectDetector(___
,'RegionProposalFcn',proposalFcn)
trainedDetector = trainFastRCNNObjectDetector(___ ,Name,Value)
[trainedDetector,info] = trainFastRCNNObjectDetector(___)

Description
trainedDetector = trainFastRCNNObjectDetector(trainingData,network,
options) trains a Fast R-CNN (regions with convolution neural networks) object
detector using deep learning. You can train a Fast R-CNN detector to detect multiple
object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you
also have Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU with
compute capability 3.0 or higher.

trainedDetector = trainFastRCNNObjectDetector(trainingData,
checkpoint,options) resumes training from a detector checkpoint.

trainedDetector = trainFastRCNNObjectDetector(trainingData,detector,
options) continues training a detector with additional training data or performs more
training iterations to improve detector accuracy.

trainedDetector = trainFastRCNNObjectDetector(___
,'RegionProposalFcn',proposalFcn) optionally trains a custom region proposal

 trainFastRCNNObjectDetector

3-1003

function, proposalFcn, using any of the previous inputs. If you do not specify a proposal
function, then the function uses a variation of the Edge Boxes[2] algorithm.

trainedDetector = trainFastRCNNObjectDetector(___ ,Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

[trainedDetector,info] = trainFastRCNNObjectDetector(___) also returns
information on the training progress, such as training loss and accuracy, for each
iteration.

Examples

Train Fast R-CNN Stop Sign Detector

Load training data.

data = load('rcnnStopSigns.mat', 'stopSigns', 'fastRCNNLayers');
stopSigns = data.stopSigns;
fastRCNNLayers = data.fastRCNNLayers;

Add fullpath to image files.

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
 stopSigns.imageFilename);

Set network training options:

• Set the CheckpointPath to save detector checkpoints to a temporary directory. Change
this to another location if required.

options = trainingOptions('sgdm', ...
 'MiniBatchSize', 1, ...
 'InitialLearnRate', 1e-3, ...
 'MaxEpochs', 10, ...
 'CheckpointPath', tempdir);

Train the Fast R-CNN detector. Training can take a few minutes to complete.

frcnn = trainFastRCNNObjectDetector(stopSigns, fastRCNNLayers , options, ...
 'NegativeOverlapRange', [0 0.1], ...
 'PositiveOverlapRange', [0.7 1], ...
 'SmallestImageDimension', 600);

3 Functions Alphabetical

3-1004

Training a Fast R-CNN Object Detector for the following object classes:

* stopSign

--> Extracting region proposals from 27 training images...done.

Training on single GPU.
|===|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |
|===|
| 1 | 1 | 00:00:00 | 0.0366 | 99.22% | 1.14 | 0.0010 |
| 3 | 50 | 00:00:10 | 0.0171 | 100.00% | 1.09 | 0.0010 |
| 5 | 100 | 00:00:21 | 0.0020 | 100.00% | 0.28 | 0.0010 |
| 8 | 150 | 00:00:32 | 0.0205 | 100.00% | 0.78 | 0.0010 |
| 10 | 200 | 00:00:42 | 0.0098 | 100.00% | 0.36 | 0.0010 |
| 10 | 210 | 00:00:44 | 0.0216 | 100.00% | 0.89 | 0.0010 |
|===|

Detector training complete.

Test the Fast R-CNN detector on a test image.

img = imread('stopSignTest.jpg');

Run the detector.

[bbox, score, label] = detect(frcnn, img);

Display detection results.

detectedImg = insertShape(img, 'Rectangle', bbox);
figure
imshow(detectedImg)

 trainFastRCNNObjectDetector

3-1005

Input Arguments
trainingData — Labeled ground truth images
table

Labeled ground truth images, specified as a table with two or more columns. The first
column must contain paths and file names to grayscale or truecolor (RGB) images. The
remaining columns must contain bounding boxes related to the corresponding image.
Each column represents a single object class, such as a car, dog, flower, or stop sign.

3 Functions Alphabetical

3-1006

Each bounding box must be in the format [x y width height]. The format specifies the
upper-left corner location and size of the object in the corresponding image. The table
variable name defines the object class name. To create the ground truth table, use the
Image Labeler or Video Labeler app. Boxes smaller than 32-by-32 are not used for
training.

network — Network
SeriesNetwork object | array of Layer objects | LayerGraph object | network name

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph
object, or by the network name. The network is trained to classify the object classes
defined in the trainingData table. The SeriesNetwork, Layer, and layerGraph
objects are available in the Deep Learning Toolbox.

• When you specify the network as a SeriesNetwork, an array of Layer objects, or by
the network name, the network is automatically transformed into a Fast R-CNN
network by adding an ROI max pooling layer, and new classification and regression
layers to support object detection. Additionally, the GridSize property of the ROI max
pooling layer is set to the output size of the last max pooling layer in the network.

• The array of Layer objects must contain a classification layer that supports the
number of object classes, plus a background class. Use this input type to customize
the learning rates of each layer. An example of an array of Layer objects:

 trainFastRCNNObjectDetector

3-1007

layers = [imageInputLayer([28 28 3])
 convolution2dLayer([5 5],10)
 reluLayer()
 fullyConnectedLayer(10)
 softmaxLayer()
 classificationLayer()];

• When you specify the network as SeriesNetwork, Layer array, or network by name,
the weights for additional convolution and fully-connected layers that you add to
create the network, are initialized to 'narrow-normal'.

• The network name must be one of the following valid network names. You must also
install the corresponding Add-on.

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSi
ze

Description

alexnet 'relu5' [6 6] Last max pooling layer is
replaced by ROI max pooling
layer

vgg16 'relu5_3' [7 7]
vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted

after the feature extraction layer.resnet50 'activation_40_re
lu'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv
2

'block_13_expand_
relu'

inceptionv
3

'mixed7' [17 17]

inceptionr
esnetv2

'block17_20_ac'

• The LayerGraph object must be a valid Fast R-CNN object detection network. You can
also use a LayerGraph object to train a custom Fast R-CNN network.

3 Functions Alphabetical

3-1008

Tip If your network is a DAGNetwork, use the layerGraph function to convert the
network to a LayerGraph object. Then, create a custom Fast R-CNN network as
described by the “Create Fast R-CNN Object Detection Network” example.

See “R-CNN, Fast R-CNN, and Faster R-CNN Basics” to learn more about how to create a
Fast R-CNN network.

options — Training options
trainingOptions output

Training options, returned by the trainingOptions function from the Deep Learning
Toolbox. To specify solver and other options for network training, use trainingOptions.

Note trainFastRCNNObjectDetector does not support these training options:

• The Plots value: 'training-progress'
• The ValidationData, ValidationFrequency, or ValidationPatience options
• The OutputFcn option.

checkpoint — Saved detector checkpoint
fastRCNNObjectDetector object

Saved detector checkpoint, specified as a fastRCNNObjectDetector object. To save the
detector after every epoch, set the 'CheckpointPath' property when using the
trainingOptions function. Saving a checkpoint after every epoch is recommended
because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the
checkpoint path. For example, if the 'CheckpointPath' property of options is '/
tmp', load a checkpoint MAT-file using:

data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18__14_25_08.mat');

The name of the MAT-file includes the iteration number and timestamp of when the
detector checkpoint was saved. The detector is saved in the detector variable of the file.
Pass this file back into the trainFastRCNNObjectDetector function:

frcnn = trainFastRCNNObjectDetector(stopSigns,...
 data.detector,options);

 trainFastRCNNObjectDetector

3-1009

detector — Previously trained Fast R-CNN object detector
fastRCNNObjectDetector object

Previously trained Fast R-CNN object detector, specified as a
fastRCNNObjectDetector object.

proposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle. IF you do not specify a region
proposal function, the function implements a variant of the EdgeBoxes[2] algorithm. The
function must have the form:

[bboxes,scores] = proposalFcn(I)

The input, I, is an image defined in the trainingData table. The function must return
rectangular bound boxes, bboxes, in an m-by-4 array. Each row of bboxes contains a
four-element vector, [x,y,width,height]. This vector specifies the upper-left corner
and size of a bounding box in pixels. The function must also return a score for each
bounding box in an m-by-1 vector. Higher score values indicate that the bounding box is
more likely to contain an object. The scores are used to select the strongest n regions,
where n is defined by the value of NumStrongestRegions.

If you do not specify a custom proposal function, the function uses a variation of the Edge
Boxes algorithm.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PositiveOverlapRange',[0.75 1]

PositiveOverlapRange — Bounding box overlap ratios for positive training
samples
[0.5 1] (default) | two-element vector

Bounding box overlap ratios for positive training samples, specified as the comma-
separated pair consisting of 'PositiveOverlapRange' and a two-element vector. The

3 Functions Alphabetical

3-1010

vector contains values in the range [0,1]. Region proposals that overlap with ground truth
bounding boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and
NegativeOverlapRange is defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NegativeOverlapRange — Bounding box overlap ratios for negative training
samples
[0.1 0.5] (default) | two-element vector

Bounding box overlap ratios for negative training samples, specified as the comma-
separated pair consisting of NegativeOverlapRange and a two-element vector. The
vector contains values in the range [0,1]. Region proposals that overlap with the ground
truth bounding boxes within the specified range are used as negative training samples.

The overlap ratio used for both the PositiveOverlapRange and
NegativeOverlapRange is defined as:

area(A∩ B)
area(A∪ B)

A and B are bounding boxes.

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer

Maximum number of strongest region proposals to use for generating training samples,
specified as the comma-separated pair consisting of 'NumStrongestRegions' and a
positive integer. Reduce this value to speed up processing time at the cost of training
accuracy. To use all region proposals, set this value to Inf.

NumRegionsToSample — Number of region proposals
128 (default) | integer

Number of region proposals to randomly sample from each training image, specified by
an integer. Reduce the number of regions to sample to reduce memory usage and speed-
up training. Reducing the value can also decrease training accuracy.

 trainFastRCNNObjectDetector

3-1011

SmallestImageDimension — Length of smallest image dimension
[] (default) | positive integer

Length of smallest image dimension, either width or height, specified as the comma-
separated pair consisting of 'SmallestImageDimension' and a positive integer.
Training images are resized such that the length of the shortest dimension is equal to the
specified integer. By default, training images are not resized. Resizing training images
helps reduce computational costs and memory used when training images are large.
Typical values range from 400–600 pixels.

FreezeBatchNormalization — Frozen batch normalization
true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair
consisting of 'FreezeBatchNormalization' and true or false. The value indicates
whether the input layers to the network are frozen during training. Set this value to true
if you are training with a small mini-batch size. Small batch sizes result in poor estimates
of the batch mean and variance that is required for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the
property to

• true if the 'MiniBatchSize' name-value argument for the trainingOptions
function is less than 8.

• false if the 'MiniBatchSize' name-value argument for the trainingOptions
function is greater than or equal to 8.

You must specify a value for 'FreezeBatchNormalization' to overide this default
behavior.

Output Arguments
trainedDetector — Trained Fast R-CNN object detector
fastRCNNObjectDetector object

Trained Fast R-CNN object detector, returned as a fastRCNNObjectDetector object.

info — Training information
structure

3 Functions Alphabetical

3-1012

Training information, returned as a structure with the following fields. Each field is a
numeric vector with one element per training iteration. Values that have not been
calculated at a specific iteration are represented by NaN.

• TrainingLoss — Training loss at each iteration. This is the combination of the
classification and regression loss used to train the Fast R-CNN network.

• TrainingAccuracy — Training set accuracy at each iteration
• TrainingRMSE — Training root mean square error (RMSE) for the box regression

layer
• BaseLearnRate — Learning rate at each iteration

Tips
• To accelerate data preprocessing for training, trainFastRCNNObjectDetector

automatically creates and uses a parallel pool based on your parallel preference
settings. For more details about setting these preferences, see parallel preference
settings. Using parallel computing preferences requires Parallel Computing Toolbox.

• VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training
with large images can produce "Out of Memory" errors. To mitigate these errors, try
one or more of these options:

• Reduce the size of your images by using the 'SmallestImageDimension'
argument.

• Decrease the value of the 'NumRegionsToSample' name-value argument value.
• This function supports transfer learning. When you input a network by name, such as

'resnet50', then the function automatically transforms the network into a valid Fast
R-CNN network model based on the pretrained resnet50 model. Alternatively,
manually specify a custom Fast R-CNN network by using the LayerGraph extracted
from a pretrained DAG network. For more details, see “Create Fast R-CNN Object
Detection Network”.

• This table describes how to transform each named network into a Fast R-CNN
network. The feature extraction layer name specifies which layer is processed by the
ROI pooling layer. The ROI output size specifies the size of the feature maps output by
the ROI pooling layer.

 trainFastRCNNObjectDetector

3-1013

Network
Name

Feature Extraction
Layer Name

ROI
Pooling
Layer
OutputSi
ze

Description

alexnet 'relu5' [6 6] Last max pooling layer is
replaced by ROI max pooling
layer

vgg16 'relu5_3' [7 7]
vgg19 'relu5_4'
squeezenet 'fire5-concat' [14 14]
resnet18 'res4b_relu' ROI pooling layer is inserted

after the feature extraction layer.resnet50 'activation_40_re
lu'

resnet101 'res4b22_relu'
googlenet 'inception_4d-

output'
mobilenetv
2

'block_13_expand_
relu'

inceptionv
3

'mixed7' [17 17]

inceptionr
esnetv2

'block17_20_ac'

To modify and transform a network into a Fast R-CNN network, see “Design an R-
CNN, Fast R-CNN, and a Faster R-CNN Model”.

• Use the trainingOptions function to enable or disable verbose printing.

References
[1] Girshick, Ross. "Fast R-CNN." Proceedings of the IEEE International Conference on

Computer Vision. 2015.

[2] Zitnick, C. Lawrence, and Piotr Dollar. "Edge Boxes: Locating Object Proposals From
Edges." Computer Vision-ECCV 2014. Springer International Publishing, 2014,
pp. 391–405.

3 Functions Alphabetical

3-1014

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel
Computing Toolbox™.

To run in parallel, set 'UseParallel' to true or enable this by default using the
Computer Vision Toolbox preferences.

For more information, see “Parallel Computing Toolbox Support”.

See Also
Apps
Image Labeler | Video Labeler

Functions
Layer | SeriesNetwork | fastRCNNObjectDetector |
trainFasterRCNNObjectDetector | trainRCNNObjectDetector |
trainingOptions

Topics
“Anchor Boxes for Object Detection”
“R-CNN, Fast R-CNN, and Faster R-CNN Basics”

Introduced in R2017a

 trainFastRCNNObjectDetector

3-1015

peopleDetectorACF
Detect people using aggregate channel features

Syntax
detector = peopleDetectorACF
detector = peopleDetectorACF(name)

Description
detector = peopleDetectorACF returns a pretrained upright people detector using
aggregate channel features (ACF). The detector is an acfObjectDetector object, and is
trained using the INRIA person data set.

detector = peopleDetectorACF(name) returns a pretrained upright people detector
based on the specified model name.

Examples

Detect People Using Aggregated Channel Features

Load the upright people detector.

detector = peopleDetectorACF;

Read an image. Detect people in the image.

I = imread('visionteam1.jpg');
[bboxes,scores] = detect(detector,I);

Annotate detected people with bounding boxes and their detection scores.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure

3 Functions Alphabetical

3-1016

imshow(I)
title('Detected People and Detection Scores')

Input Arguments
name — ACF classification model
'inria-100x41' (default) | 'caltech-50x21'

ACF classification model, specified as 'inria-100x41' or 'caltech-50x21'. The
'inria-100x41' model was trained using the INRIA Person data set. The
'caltech-50x21' model was trained using the Caltech Pedestrian data set.

 peopleDetectorACF

3-1017

Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object. The
detector is trained to detect upright people in an image.

References
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object

Detection." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol.
36, Issue 8, 2014, pp. 1532–1545.

[2] Dollar P., C. Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: An Evaluation of
the State of the Art." IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 34, Issue 4, 2012, pp. 743–761.

[3] Dollar, P., C., Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: A Benchmark."
IEEE Conference on Computer Vision and Pattern Recognition. 2009.

See Also
acfObjectDetector | detect | selectStrongestBbox | trainACFObjectDetector
| vision.CascadeObjectDetector | vision.PeopleDetector

Topics
“Tracking Pedestrians from a Moving Car”
“Point Feature Types”

Introduced in R2017a

3 Functions Alphabetical

3-1018

objectDetectorTrainingData
Create training data for an object detector

Syntax
trainingData = objectDetectorTrainingData(gTruth)
trainingData = objectDetectorTrainingData(gTruth,Name,Value)

Description
trainingData = objectDetectorTrainingData(gTruth) returns a table of
training data from the specified ground truth. The table can be used to train an object
detector using training functions such as trainACFObjectDetector,
trainRCNNObjectDetector, trainFastRCNNObjectDetector, and
trainFasterRCNNObjectDetector.

This function supports parallel computing using multiple MATLAB workers. Enable
parallel computing using the “Computer Vision Toolbox Preferences” dialog.

trainingData = objectDetectorTrainingData(gTruth,Name,Value) returns a
training data table with additional options specified by one or more name-value pair
arguments. If the groundTruth objects in gTruth were created using a video file or a
custom data source, then you can specify any combination of name-value pair arguments.
If the groundTruth objects were created from an image collection or image sequence
data source, then you can specify only the SamplingFactor name-value pair argument.

Examples

Train an ACF Stop Sign Detector

Use training data to train an ACF-based detector.

Add the folder containing images to the MATLAB path.

 objectDetectorTrainingData

3-1019

imageDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'stopSignImages');
addpath(imageDir);

Load groundTruth data. Ground truth contains data for stops signs and cars.

load('stopSignsAndCarsGroundTruth.mat','stopSignsAndCarsGroundTruth')

View label definitions to see label types in the ground truth.

stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table
 Name Type Group
 __________ _________ ______

 'stopSign' Rectangle 'None'
 'carRear' Rectangle 'None'
 'carFront' Rectangle 'None'

Select the stop sign data for training.

stopSignGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,'stopSign');

Create training data for a vehicle object detector.

trainingData = objectDetectorTrainingData(stopSignGroundTruth);
summary(trainingData)

Variables:

 imageFilename: 41x1 cell array of character vectors

 stopSign: 41x1 cell

Train an ACF object detector for vehicles.

acfDetector = trainACFObjectDetector(trainingData,'NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:

3 Functions Alphabetical

3-1020

Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
--
ACF object detector training is completed. Elapsed time is 35.9159 seconds.

Test the ACF detector on a sample image.

I = imread('stopSignTest.jpg');
bboxes = detect(acfDetector,I);

Display the detected object.

annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes,annotation);

figure
imshow(I)

 objectDetectorTrainingData

3-1021

Remove the image folder from the path.

rmpath(imageDir);

Train an ACF-Based Vehicle Detector

Add the image folder to the MATLAB path.

imageDir = fullfile(matlabroot,'toolbox','driving','drivingdata','vehiclesSequence');
addpath(imageDir);

Load the groundTruth data.

load vehicleGroundTruth.mat

Create training data for a vehicle object detector.

trainingData = objectDetectorTrainingData(gTruth,'SamplingFactor',2);

3 Functions Alphabetical

3-1022

Train an ACF object detector for vehicles.

acfDetector = trainACFObjectDetector(trainingData,'ObjectTrainingSize',[20 20]);

ACF Object Detector Training
The training will take 4 stages. The model size is 20x20.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
--
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 68 weak learners.
--
Stage 2:
Sample negative examples(~100% Completed)
Found 76 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 120 weak learners.
--
Stage 3:
Sample negative examples(~100% Completed)
Found 54 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 170 weak learners.
--
Stage 4:
Sample negative examples(~100% Completed)
Found 63 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 215 weak learners.
--
ACF object detector training is completed. Elapsed time is 10.258 seconds.

Test the ACF detector on a test image.

I = imread('highway.png');
[bboxes, scores] = detect(acfDetector,I,'Threshold',1);

Select strongest detection.

 objectDetectorTrainingData

3-1023

[~,idx] = max(scores);

Display the detected object.

annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes(idx,:),annotation);

figure
imshow(I)

Remove the image folder from the path.

rmpath(imageDir);

Input Arguments
gTruth — Ground truth data
array of groundTruth objects

3 Functions Alphabetical

3-1024

Ground truth data, specified as an array of groundTruth objects. You can create ground
truth objects from existing ground truth data by using the groundTruth object.

If you use custom data sources in groundTruth with parallel computing enabled, then
the reader function is expected to work with a pool of MATLAB workers to read images
from the data source in parallel.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'SamplingFactor',5

SamplingFactor — Factor at which to subsample images
'auto' (default) | integer | vector of integers

Factor at which to subsample images in the ground truth data source, specified as
'auto', an integer, or a vector of integers. For a sampling factor of N, the returned
training data includes every Nth image in the ground truth data source, ignoring ground
truth images with empty label data.

SamplingFactor Sampling Factor Applied
'auto' The sampling factor N is 5 for data sources

with timestamps, and 1 for a collection of
images.

Integer All ground truth data sources in gTruth
are sampled with the same sampling factor,
N.

Vector of integers The kth ground truth data source in
gTruth is sampled with a sampling factor
of N(k).

WriteLocation — Folder name
pwd (current working folder) (default) | string scalar | character vector

 objectDetectorTrainingData

3-1025

Folder name to write extracted images to, specified as a string scalar or character vector.
The specified folder must exist and have write permissions. This property applies only for
groundTruth objects created using a video file or a custom data source.

ImageFormat — Image file format
PNG (default) | string scalar | character vector

Image file format, specified as a string scalar or character vector. File formats must be
supported by imwrite. This argument applies only for groundTruth objects created
using a video file or a custom data source.

NamePrefix — Prefix applied to output image file names
string scalar | character vector

Prefix applied to output image file names, specified as a string scalar or character vector.
The image files are named as:

<name_prefix><image_number>.<image_format>

The default value uses the name of the data source that the images were extracted from,
strcat(sourceName,'_'). This property applies only for groundTruth objects
created using a video file or a custom data source.

Verbose — Display training progress
true (default) | false

Display training progress on the MATLAB command line, specified as either true or
false. This property applies only for groundTruth objects created using a video file or a
custom data source.

Output Arguments
trainingData — Training data
table

Training data, returned as a table with two or more columns. The first column of the table
contains image file names. The remaining columns contain object positions for
rectangular ROI labels found in the ground truth object input, gTruth. The rectangular
ROI labels must be [x,y,width,height] bounding boxes that specify object positions within
each image. Only labels corresponding to rectangle ROI labels are returned in

3 Functions Alphabetical

3-1026

trainingData. Other labels are ignored. The output table ignores any sublabel and/or
attribute data present in the input gTruth object.

See Also
Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Functions
trainACFObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | trainRCNNObjectDetector

Objects
acfObjectDetector | groundTruth

Introduced in R2017a

 objectDetectorTrainingData

3-1027

estimateFisheyeParameters
Calibrate fisheye camera

Syntax
[fisheyeParams,imagesUsed,estimationErrors] =
estimateFisheyeParameters(imagePoints,worldPoints,imageSize)
[___] = estimateFisheyeParameters(___ ,Name,Value)

Description
[fisheyeParams,imagesUsed,estimationErrors] =
estimateFisheyeParameters(imagePoints,worldPoints,imageSize) returns a
fisheyeParameters object containing estimates for the intrinsic and extrinsic
parameters of a fisheye camera. The function also returns the images you used to
estimate the fisheye parameters and the standard estimation errors for the single camera
calibration.

[___] = estimateFisheyeParameters(___ ,Name,Value) configures the
fisheyeParams object properties specified by one or more Name,Value pair arguments,
using the previous syntax. Unspecified properties have their default values.

Examples

Fisheye Camera Calibration

Use calibration images to detect a checkerboard calibration pattern. Then calibrate the
camera using corneres extracted from the pattern and visualize the results.

Gather a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));
imageFileNames = images.Files;

3 Functions Alphabetical

3-1028

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points.

I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Visualize the calibration accuracy.

figure
showReprojectionErrors(params);

 estimateFisheyeParameters

3-1029

Visualize the camera extrinsics.

figure
showExtrinsics(params);
drawnow

3 Functions Alphabetical

3-1030

Plot the detected and reprojected points.

figure
imshow(I);
hold on
plot(imagePoints(:,1,1),imagePoints(:,2,1),'go');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+');
legend('Detected Points','Reprojected Points');
hold off

 estimateFisheyeParameters

3-1031

Input Arguments
imagePoints — Key points of calibration pattern
M-by-2-by-numImages array

Key points of calibration pattern, specified as an M-by-2-by-numImages array of [x,y]
intrinsic image coordinates. The number of images, numImages, must be greater than 2.
The number of keypoint coordinates in each pattern, M, must be greater than 3.
Data Types: single | double

3 Functions Alphabetical

3-1032

worldPoints — Key points of calibration pattern in world coordinates
M-by-2 matrix

Key points of calibration pattern in world coordinates, specified as an M-by-2 matrix of M
[x,y] world coordinates. Because the pattern must be planar, the z-coordinates are zero.
Data Types: single | double

imageSize — Image size
[mrows ncols] vector

Image size, specified as an [mrows ncols] vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WorldUnits','mm' sets the world point units to millimeters.

EstimateAlignment — Estimate axes alignment
false (default) | true

Estimate the axes alignment, specified as the comma-separated pair consisting of
'EstimateAlignment' and false or true. Set to true if the optical axis of the fisheye
lens is not perpendicular to the image plane.

WorldUnits — World point units
'mm' (default) | character vector

World point units, specified as the comma-separated pair consisting of 'WorldUnits'
and a character vector representing units. This argument is used simply to store the unit
type and does not affect any calculations. Any character vector is valid.

Output Arguments
fisheyeParams — Fisheye camera parameters
fisheyeParameters object

 estimateFisheyeParameters

3-1033

Fisheye camera parameters, returned as a fisheyeParameters object.

imagesUsed — Images used to estimate camera parameters
P-by-1 logical array

Images used to the estimate camera parameters, returned as a P-by-1 logical array. P
corresponds to the number of images. A logical true value indicates the index of an
image used to estimate the camera parameters.

estimationErrors — Standard errors of estimated parameters
fisheyeCalibrationErrors object

Standard errors of estimated parameters, returned as a fisheyeCalibrationErrors
object.

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating

Omindirectional Cameras." Proceedings to IEEE International Conference on
Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7–15, 2006.

[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional
Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol.
108, 2015, pp.72–79.

See Also
detectCheckerboardPoints | fisheyeCalibrationErrors | fisheyeIntrinsics
| fisheyeParameters | generateCheckerboardPoints | showExtrinsics |
showReprojectionErrors | undistortFisheyeImage

Topics
“Fisheye Calibration Basics”

Introduced in R2017b

3 Functions Alphabetical

3-1034

undistortFisheyeImage
Correct fisheye image for lens distortion

Syntax
J = undistortFisheyeImage(I,intrinsics)
[J,camIntrinsics] = undistortFisheyeImage(I,intrinsics)
[___] = undistortFisheyeImage(___ ,interp)
[___] = undistortFisheyeImage(___ ,Name,Value)

Description
J = undistortFisheyeImage(I,intrinsics) removes lens distortion for image I
and returns the result as image J.

[J,camIntrinsics] = undistortFisheyeImage(I,intrinsics) also returns a
cameraIntrinsics object, which corresponds to a virtual perspective camera that
produces image J.

[___] = undistortFisheyeImage(___ ,interp) specifies the interpolation
method, interp, using the preceding syntaxes.

[___] = undistortFisheyeImage(___ ,Name,Value) specifies one or more
Name,Value pair arguments. Unspecified properties have their default values.

Examples

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration
pattern and calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

 undistortFisheyeImage

3-1035

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','gopro'));

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points.
Use the first image to get the image size.

I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Remove lens distortion from the first image I and display the results.

J1 = undistortFisheyeImage(I,params.Intrinsics);
figure
imshowpair(I,J1,'montage')
title('Original Image (left) vs. Corrected Image (right)')

J2 = undistortFisheyeImage(I,params.Intrinsics,'OutputView','full');
figure
imshow(J2)
title('Full Output View')

3 Functions Alphabetical

3-1036

 undistortFisheyeImage

3-1037

Input Arguments
I — Input image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Input image, specified as an M-by-N-by-3 truecolor or M-by-N 2-D grayscale image. The
input image must be real and nonsparse.
Data Types: single | double | int16 | uint8 | uint16 | logical

3 Functions Alphabetical

3-1038

intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

interp — Interpolation method
'bilinear' (default) | 'nearest' | 'cubic'

Interpolation method to use on the input image, specified as 'bilinear', 'nearest' ,
or 'cubic'.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ScaleFactor',2 sets the scale factor to increase the zoom in the camera
view.

OutputView — Size of the output image
'same' (default) | 'full' | 'valid'

Size of the output image, specified as either 'same', 'full', or 'valid'.

ScaleFactor — Scale factor for focal length
1 (default) | scalar | [sx sy] vector

Scale factor for the focal length of a virtual camera perspective, in pixels, specified as a
scalar or an [sx sy] vector. Specify a vector to scale the x and y axes individually.
Increase the scale to zoom in the perspective of the camera view.

FillValues — Output pixel fill values
0 (default) | scalar | 3-element vector

Output pixel fill values, specified as the comma-separated pair consisting of
'FillValues' and scalar or 3-element vector. When the corresponding inverse-
transformed location in the input image lies completely outside the input image
boundaries, you use the fill values for output pixels. When you use a 2-D grayscale input
image, FillValues must be a scalar. When you use a truecolor image, FillValues can
be a scalar or a 3-element vector of RGB values.

 undistortFisheyeImage

3-1039

Output Arguments
J — Undistorted image
M-by-N-by-3 truecolor image | M-by-N 2-D grayscale image

Undistorted image, returned as an M-by-N-by-3 truecolor or M-by-N 2-D grayscale image.
Data Types: single | double | int16 | uint8 | uint16 | logical

camIntrinsics — Undistorted intrinsics of virtual camera
cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object.
These intrinsics are for a camera that has a perspective that produces the undistorted
image.

See Also
cameraIntrinsics | estimateFisheyeParameters | fisheyeIntrinsics |
undistortFisheyePoints

Topics
“Fisheye Calibration Basics”

Introduced in R2017b

3 Functions Alphabetical

3-1040

undistortFisheyePoints
Correct point coordinates for fisheye lens distortion

Syntax
undistortedPoints = undistortFisheyePoints(points,intrinsics)
undistortedPoints = undistortFisheyePoints(___ ,scaleFactor)
[___ ,camIntrinsics] = undistortFisheyePoints(___)
[___ ,reprojectionErrors] = undistortFisheyePoints(___)

Description
undistortedPoints = undistortFisheyePoints(points,intrinsics) returns
point coordinates corrected for fisheye lens distortion.

undistortedPoints = undistortFisheyePoints(___ ,scaleFactor) returns
corrected point coordinates using the scaleFactor and the previous inputs.

[___ ,camIntrinsics] = undistortFisheyePoints(___) also returns a
cameraIntrinsics object, which corresponds to a virtual perspective camera that
produces undistorted points.

[___ ,reprojectionErrors] = undistortFisheyePoints(___) also returns
reprojectionErrors used to evaluate the accuracy of undistorted points. The function
computes the reprojection errors by applying distortion to the points, and taking the
distances between the result and the corresponding input points.

Examples

Undistort Checkerboard Points from Fisheye Image

Undistort and translate checkerboard points detected in a calibration image, and then
display the results.

 undistortFisheyePoints

3-1041

Create an imageDatastore object containing checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));
imageFileNames = images.Files;

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye parameters from the image and world points. Get the image size
from the first image.

I = readimage(images,10);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

In the first image, detect the checkerboard points.

points = detectCheckerboardPoints(I);

Undistort the points and image.

[undistortedPoints,intrinsics1] = undistortFisheyePoints(points,params.Intrinsics);
[J, intrinsics2] = undistortFisheyeImage(I,params.Intrinsics,'OutputView','full');

Translate the undistorted points.

newOrigin = intrinsics2.PrincipalPoint - intrinsics1.PrincipalPoint;
undistortedPoints = [undistortedPoints(:,1) + newOrigin(1), ...
 undistortedPoints(:,2) + newOrigin(2)];

Display the results.

figure
imshow(I)
hold on
plot(points(:,1),points(:,2),'r*-')
title('Detected Points')
hold off

3 Functions Alphabetical

3-1042

figure
imshow(J)
hold on
plot(undistortedPoints(:, 1),undistortedPoints(:, 2),'g*-')
title('Undistorted Points')
hold off

 undistortFisheyePoints

3-1043

Input Arguments
points — Input points
M-by-2 matrix

Input points, specified as an M-by-2 matrix of M [x y] coordinates.

intrinsics — Fisheye intrinsic camera parameters
fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

3 Functions Alphabetical

3-1044

scaleFactor — Scale factor for points
1 (default) | scalar | [sx sy] vector

Scale factor for points, specified as a scalar or an [sx sy] vector. Specify a vector to
scale the x and y axes individually. Increase the scale to zoom in the perspective of the
camera view.

Output Arguments
undistortedPoints — Undistorted points
M-by-2 matrix

Undistorted points, returned as an M-by-2 matrix of M number of [x y] coordinates. If
points is double, then undistortedPoints is double. Otherwise,
undistortedPoints is single.
Data Types: single | double

camIntrinsics — Undistorted intrinsics of virtual camera
cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object.
These intrinsics are for a camera that has a perspective that produces the undistorted
image.

reprojectionErrors — Reprojection errors
M-by-1 vector

Reprojection errors, returned as an M-by-1 vector. The function computes the
reprojection errors by applying distortion to the undistorted points and taking the
distances between the results and the corresponding input points. Errors are expressed in
pixels.

See Also
fisheyeIntrinsics | undistortFisheyeImage

Topics
“Fisheye Calibration Basics”

 undistortFisheyePoints

3-1045

Introduced in R2017b

3 Functions Alphabetical

3-1046

pointsToWorld
Determine world coordinates of image points

Syntax
worldPoints = pointsToWorld(cameraParams,rotationMatrix,
translationVector,imagePoints)

Description
worldPoints = pointsToWorld(cameraParams,rotationMatrix,
translationVector,imagePoints) returns world points on the X-Y plane, which
correspond to the input image points. Points are converted using the input rotation
matrix, translation vector, and camera parameters.

Examples

Map Image Points of Fisheye Image to World Coordinates

Map the points of a fisheye image to world coordinates and compare these points to the
ground truth points. A series of checkerboard pattern images are used to estimate the
fisheye parameters and calibrate the camera.

Create a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata' ,...
 'calibration','gopro'));

Detect the checkerboard corners in the images. Leave the last image for testing.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files(1:end-1));

Generate the world coordinates of the checkerboard corners in the pattern-centric
coordinate system, with the upper-left corner at (0,0).

 pointsToWorld

3-1047

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera parameters from the image and world points. Use the first
image to get image size.

I = imread(images.Files{end});
imageSize = [size(I,1) size(I,2)];
fisheyeParams = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
intrinsics = fisheyeParams.Intrinsics;

Find the reference object in the new image.

imagePoints = detectCheckerboardPoints(I);

Compute new extrinsics.

[R,t] = extrinsics(imagePoints,worldPoints,intrinsics);

Map image points to world coordinates in the X-Y plane.

newWorldPoints = pointsToWorld(intrinsics,R,t,imagePoints);

Compare estimated world points to the ground truth points.

plot(worldPoints(:,1),worldPoints(:,2),'gx');
hold on
plot(newWorldPoints(:,1),newWorldPoints(:,2),'ro');
legend('Ground Truth','Estimates');
hold off

3 Functions Alphabetical

3-1048

Input Arguments
cameraParams — Camera parameters
cameraParameters object | fisheyeParameters object

Camera parameters, specified as a cameraParameters or fisheyeParameters object.
These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

• To create a cameraParameters, use the estimateCameraParameters function or
the Camera Calibrator app.

 pointsToWorld

3-1049

• To create a fisheyeParameters, use the estimateFisheyeParameters function.

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-
by-3 matrix. The rotation matrix, together with the translation vector, enable you to
transform points from the world coordinate system to the camera coordinate system. The
rotationMatrix and translationVector inputs must be the same data type.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation of the world coordinates relative to the image coordinates, specified as a
1-by-3 vector. The translation vector, together with the rotation matrix, enable you to
transform points from the world coordinate system to the camera coordinate system. The
rotationMatrix and translationVector inputs must be the same data type.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

Data Types: double | single

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M [x, y] coordinates of image
points.

When using the cameraParameters object as the cameraParams input,
pointsToWorld does not account for lens distortion. Therefore, the imagePoints input
must contain image points detected in the undistorted image, or they must be undistorted

3 Functions Alphabetical

3-1050

using the undistortPoints function. For a fisheyeIntrinsics object, the image
points are distorted.

Output Arguments
worldPoints — World coordinates
M-by-2 matrix

World coordinates, returned as an M-by-2 matrix. M represents the number of undistorted
points in [x, y] world coordinates.

See Also
Functions
cameraPoseToExtrinsics | estimateCameraParameters |
estimateFisheyeParameters | estimateWorldCameraPose | extrinsics |
extrinsicsToCameraPose | undistortImage | undistortPoints | worldToImage

Objects
cameraParameters | fisheyeIntrinsics | fisheyeParameters

Apps
Camera Calibrator | Stereo Camera Calibrator

Introduced in R2016a

 pointsToWorld

3-1051

worldToImage
Project world points into image

Syntax
imagePoints = worldToImage(cameraParams,rotationMatrix,
translationVector,worldPoints)
imagePoints = worldToImage(___ 'ApplyDistortion',distort)

Description
imagePoints = worldToImage(cameraParams,rotationMatrix,
translationVector,worldPoints) returns the projection of 3-D world points into an
image given camera parameters, the rotation matrix, and the translation vector.

imagePoints = worldToImage(___ 'ApplyDistortion',distort) returns the
projection with the option of applying distortion. This syntax is supported for nonfisheye
camera parameters.

Examples

Project World Points into Image

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','slr'));

Detect the checkerboard corners in the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate the world coordinates of the checkerboard corners in the pattern-centric
coordinate system, with the upper-left corner at (0,0).

3 Functions Alphabetical

3-1052

squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

cameraParams = estimateCameraParameters(imagePoints,worldPoints);

Load the image at a new location.

imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
 'calibration','slr','image9.jpg'));

imshow(imOrig,'InitialMagnification',30);

Undistort the image.

imUndistorted = undistortImage(imOrig,cameraParams);

 worldToImage

3-1053

Find a reference object in the new image.

[imagePoints,boardSize] = detectCheckerboardPoints(imUndistorted);

Compute new extrinsics.

[R,t] = extrinsics(imagePoints,worldPoints,cameraParams);

Add a z-coordinate to the world points.

zCoord = zeros(size(worldPoints,1),1);
worldPoints = [worldPoints zCoord];

Project the world points back into the original image.

projectedPoints = worldToImage(cameraParams,R,t,worldPoints);
hold on
plot(projectedPoints(:,1),projectedPoints(:,2),'g*-');
legend('Projected points');
hold off

3 Functions Alphabetical

3-1054

Input Arguments
cameraParams — Camera parameters
cameraParameters object | fisheyeParameters object

Camera parameters, specified as a cameraParameters or fisheyeParameters object.
These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

• To create a cameraParameters, use the estimateCameraParameters function or
the Camera Calibrator app.

• To create a fisheyeParameters, use the estimateFisheyeParameters function.

 worldToImage

3-1055

rotationMatrix — 3-D rotation
3-by-3 matrix

3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-
by-3 matrix. The rotation matrix, together with the translation vector, enable you to
transform points from the world coordinate system to the camera coordinate system. The
rotationMatrix and translationVector inputs must be the same data type.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

Data Types: double | single

translationVector — 3-D translation
1-by-3 vector

3-D translation of the world coordinates relative to the image coordinates, specified as a
1-by-3 vector. The translation vector, together with the rotation matrix, enable you to
transform points from the world coordinate system to the camera coordinate system. The
rotationMatrix and translationVector inputs must be the same data type.

[x y z] = [X Y Z]R + t

camera coordinates world coordinates
rotation matrix

translation vector

Data Types: double | single

worldPoints — 3-D world points
M-by-3 matrix

3-D world points, specified as an M-by-3 matrix containing M [x,y,z] coordinates of 3-D
world points.

distort — Apply lens distortion
false (default) | true

Option to apply lens distortion, specified as false or true. When you set this argument
to true, the function applies lens distortion to the output imagePoints.

3 Functions Alphabetical

3-1056

This argument is valid only when using a cameraParameters object as the
cameraParams input.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix of M [x,y] point coordinates.

See Also
Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
cameraParameters | cameraPoseToExtrinsics | estimateCameraParameters |
estimateWorldCameraPose | extrinsics | extrinsicsToCameraPose |
fisheyeIntrinsics | pointsToWorld | relativeCameraPose | undistortImage |
undistortPoints

Introduced in R2016b

 worldToImage

3-1057

toStruct
Convert a camera parameters object into a struct

Syntax
paramStruct = toStruct(cameraParams)

Description
paramStruct = toStruct(cameraParams) returns a struct containing the camera
parameters in the cameraParams input object. You can use the struct to create an
identical cameraParameters object. Use the struct for C code generation. You can call
toStruct, and then pass the resulting structure into the generated code, which re-
creates the cameraParameters object.

Input Arguments
cameraParams — Camera parameters
cameraParameters object

Camera parameters, specified as a cameraParameters object. The object contains the
parameters for the camera.

Output Arguments
paramStruct — Camera parameters
struct

Camera parameters, returned as a struct.

See Also
cameraParameters

3 Functions Alphabetical

3-1058

Topics
“Code Generation for Depth Estimation From Stereo Video”

Introduced in R2015a

 toStruct

3-1059

displayErrors
Display standard errors of camera parameter estimates

Syntax
displayErrors(estimationErrors,cameraParams)

Description
displayErrors(estimationErrors,cameraParams) displays the camera
parameters and corresponding standard errors.

Examples

Display Fisheye Camera Calibration Errors

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
 'calibration','gopro'));

Detect the calibration pattern from the images.

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye parameters using image and world points. Use the first image to get
the image size. Also, store the errors from the calibration.

I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];

3 Functions Alphabetical

3-1060

[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
 worldPoints,imageSize);

Display the standard errors of the estimated camera parameters.

displayErrors(errors,params);

 Standard Errors of Estimated Camera Parameters
 --

Intrinsics

Mapping coefficients: [875.0781 +/- 0.9451 -0.0003 +/- -0.0000 -0.0000 +/- 0.0000 0.0000 +/- -0.0000]
Distortion center (pixels):[1005.8165 +/- 0.6871 743.0346 +/- 0.5578]
Stretch matrix parameters:[1.0000 +/- 0.0000 0.0000 +/- 0.0000 0.0000 +/- 0.0000]

Extrinsics

Rotation vectors:
 [-0.0699 +/- 0.0010 -0.0267 +/- 0.0009 0.0258 +/- 0.0002]
 [0.3628 +/- 0.0010 0.2950 +/- 0.0009 -0.1967 +/- 0.0003]
 [-0.2159 +/- 0.0009 0.3442 +/- 0.0009 -0.1941 +/- 0.0003]
 [0.0282 +/- 0.0009 -0.3784 +/- 0.0009 0.0829 +/- 0.0003]
 [0.0146 +/- 0.0008 0.4575 +/- 0.0009 -0.1215 +/- 0.0003]
 [0.6775 +/- 0.0008 0.1089 +/- 0.0008 -0.0386 +/- 0.0004]
 [-0.4936 +/- 0.0008 0.0063 +/- 0.0008 0.0486 +/- 0.0003]
 [0.3823 +/- 0.0008 0.2797 +/- 0.0008 0.1509 +/- 0.0003]
 [0.5171 +/- 0.0008 -0.3295 +/- 0.0008 0.0541 +/- 0.0003]
 [-0.1896 +/- 0.0008 -0.3543 +/- 0.0009 0.2637 +/- 0.0003]
 [-0.2911 +/- 0.0008 0.3680 +/- 0.0008 -0.1329 +/- 0.0003]

Translation vectors (mm):
 [-132.9182 +/- 0.1609 -82.6066 +/- 0.1356 195.1106 +/- 0.2311]
 [-178.9931 +/- 0.1905 -15.7750 +/- 0.1712 241.7126 +/- 0.2795]
 [-183.7957 +/- 0.2168 -56.7378 +/- 0.1884 269.9739 +/- 0.2790]
 [-17.6295 +/- 0.1315 -70.2875 +/- 0.1041 157.0826 +/- 0.1933]
 [-161.9824 +/- 0.1808 -46.9681 +/- 0.1569 228.4060 +/- 0.2302]
 [-122.4240 +/- 0.1309 -16.0260 +/- 0.1153 162.6247 +/- 0.2072]
 [-112.4268 +/- 0.1745 -125.5877 +/- 0.1428 212.8055 +/- 0.2156]
 [-148.7137 +/- 0.1387 -72.5409 +/- 0.1260 173.7615 +/- 0.2086]
 [-49.5392 +/- 0.0919 -24.8329 +/- 0.0745 104.3541 +/- 0.1506]
 [-3.4045 +/- 0.1274 -93.4074 +/- 0.1010 155.8247 +/- 0.1693]
 [-160.7344 +/- 0.1855 -51.9152 +/- 0.1600 234.4075 +/- 0.2318]

 displayErrors

3-1061

Input Arguments
estimationErrors — Standard errors of estimated parameters
cameraCalibrationErrors object | fisheyeCalibrationErrors object

Standard errors of estimated parameters, specified as a cameraCalibrationErrors or
fisheyeCalibrationErrors object.

cameraParams — Camera parameters
cameraParameters object | fisheyeParameters object

Camera parameters, specified as a cameraParameters or fisheyeParameters object.
These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

• To create a cameraParameters, use the estimateCameraParameters function or
the Camera Calibrator app.

• To create a fisheyeParameters, use the estimateFisheyeParameters function.

See Also
Functions
estimateCameraParameters | estimateFisheyeParameters

Objects
cameraParameters | fisheyeParameters

Apps
Camera Calibrator

Introduced in R2017b

3 Functions Alphabetical

3-1062

info
Information about specified video file

Syntax
S = info(videoFReader)

Description
S = info(videoFReader) returns a MATLAB structure, S, with information about the
video file specified in the Filename property.

Input Arguments
videoFReader — Video file reader object
object (default)

Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments
S — Information about input file
structure

Information about input file, returned as a structure. The fields and possible values for
the structure S are described below:

Audio Logical value indicating if the file has audio content.
Video Logical value indicating if the file has video content.

 info

3-1063

VideoFrameRate Frame rate of the video stream in frames per second. The value may
vary from the actual frame rate of the recorded video, and takes
into consideration any synchronization issues between audio and
video streams when the file contains both audio and video content.
This implies that video frames may be dropped if the audio stream
leads the video stream by more than 1/(actual video frames per
second).

VideoSize Video size as a two-element numeric vector of the form:

[VideoWidthInPixels, VideoHeightInPixels]
VideoFormat Video signal format.

Introduced in R2012a

3 Functions Alphabetical

3-1064

isDone
End-of-file status (logical)

Syntax
status = isDone(videoFReader)

Description
status = isDone(videoFReader) returns a logical value indicating that the
VideoFileReader System object videoFReader , has reached the end of the
multimedia file after playing it PlayCount number of times. After the object plays the file
the number of times set by the PlayCount property, it sets the status to true.

Examples

Read and Play a Video File

Load the video using a video reader object.

videoFReader = vision.VideoFileReader('ecolicells.avi');

Create a video player object to play the video file.

videoPlayer = vision.VideoPlayer;

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying
each frame.

while ~isDone(videoFReader)
 videoFrame = videoFReader();
 videoPlayer(videoFrame);
 pause(0.1)
end

 isDone

3-1065

Release the objects.

release(videoPlayer);
release(videoFReader);

3 Functions Alphabetical

3-1066

Input Arguments
videoFReader — Video file reader object
object (default)

Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments
status — Status of reader file
true | false

 isDone

3-1067

Status of reader file, returned as true or false.

Introduced in R2012a

3 Functions Alphabetical

3-1068

isOpen
Visible or hidden status for player

Syntax
isOpen(player)

Description
isOpen(player) returns true or false to indicate whether the player is visible.

Examples

Terminate a Point Cloud Processing Loop

Close the display of continuous point cloud player

Add data to the point cloud player.

player = pcplayer([0 1],[0 1],[0 1]);

 isOpen

3-1069

Display continuous player figure. Use the isOpen method to check if player figure
window is open.

 while isOpen(player)
 ptCloud = pointCloud(rand(1000,3,'single'));
 view(player, ptCloud);
 end

3 Functions Alphabetical

3-1070

Terminate the while-loop by closing pcplayer figure window.

Input Arguments
player — Player
object

Video player, specified as a pcplayer, or vision.DeployableVideoPlayer object.

Introduced in R2012a

 isOpen

3-1071

segmentGroundFromLidarData
Segment ground points from organized lidar data

Syntax
groundPtsIdx = segmentGroundFromLidarData(ptCloud)
groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value)

Description
groundPtsIdx = segmentGroundFromLidarData(ptCloud) segments organized 3-
D lidar data, ptCloud, into ground and nonground parts. The lidar sensor must be
mounted horizontally such that all ground points are observed in the lidar scan closest to
the sensor.

groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value) sets
properties using one or more name-value pairs. Enclose each property name in quotes.
For example,
segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',5)

Examples

Segment and Plot Organized Lidar Data

Segment ground points and nonground points from an organized lidar point cloud. Create
organized point clouds from these segmentations, and display them.

Load an organized lidar, point cloud.

ld = load('drivingLidarPoints.mat');

Segment ground points from the organized lidar point cloud.

groundPtsIdx = segmentGroundFromLidarData(ld.ptCloud);

3 Functions Alphabetical

3-1072

Create an organized point cloud containing only these ground points by using the select
function. Display this point cloud.

groundPtCloud = select(ld.ptCloud,groundPtsIdx);
figure
pcshow(groundPtCloud)

Create an organized point cloud containing only the nonground points. Specify a
threshold of 0.5 meters.

nonGroundPtCloud = select(ld.ptCloud,~groundPtsIdx,'OutputSize','full');
distThreshold = 0.5;
[labels,numClusters] = segmentLidarData(nonGroundPtCloud,distThreshold);

 segmentGroundFromLidarData

3-1073

Display the nonground points cloud clusters.

figure
colormap(hsv(numClusters))
pcshow(nonGroundPtCloud.Location,labels)
title('Point Cloud Clusters')

Segment and Plot Ground Plane using PCAP File

Load Velodyne PCAP® to the workspace.

velodyneFileReaderObj = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

3 Functions Alphabetical

3-1074

Create a point cloud player using pcplayer. Define its x-, y-, and z-axes limits, in meters,
and label its axes.

xlimits = [-40 40];
ylimits = [-15 15];
zlimits = [-3 3];
player = pcplayer(xlimits,ylimits,zlimits);

Label the pcplayer axes.

xlabel(player.Axes,'X (m)')
ylabel(player.Axes,'Y (m)')
zlabel(player.Axes,'Z (m)')

Set the colormap for labeling points. Use RGB triplets to specify green for ground-plane
points, and red for obstacle points.

colors = [0 1 0; 1 0 0];
greenIdx = 1;
redIdx = 2;

Iterate through the first 200 point clouds in the Velodyne PCAP file, using readFrame to
read in the data. Segment the ground points from each point cloud. Color all ground
points green and nonground points red. Plot the resulting lidar point cloud.

colormap(player.Axes,colors)
title(player.Axes,'Segmented Ground Plane of Lidar Point Cloud');
 for i = 1 : 200
 % Read current frame.
 ptCloud = velodyneFileReaderObj.readFrame(i);

 % Create label array.
 colorLabels = zeros(size(ptCloud.Location,1),size(ptCloud.Location,2));

 % Find the ground points.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud);

 % Map color ground points to green.
 colorLabels(groundPtsIdx (:)) = greenIdx;

 % Map color nonground points to red.
 colorLabels(~groundPtsIdx (:)) = redIdx;

 % Plot the results.

 segmentGroundFromLidarData

3-1075

 view(player,ptCloud.Location,colorLabels)
 end

3 Functions Alphabetical

3-1076

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that
stores [x,y,z] point coordinates in an M-by-N-by-3 matrix.

Name-Value Pair Arguments
Example: 'ElevationAngleDelta',5

ElevationAngleDelta — Elevation angle difference threshold
5 (default) | nonnegative scalar

Elevation angle difference threshold to identify ground points, specified as a nonnegative
scalar. The function computes the elevation angle difference between one labeled ground
point and its 4-connected neighbors. The neighborhood point is labeled as ground if the
difference is below the threshold. Typical values for ElevationAngleDelta are in the
range of [5,15] degrees. Increase this value to encompass more points from uneven
ground surfaces.

InitialElevationAngle — Initial elevation angle threshold
30 (default) | non-negative scalar

Initial elevation angle threshold to identify the ground point in the scanning line closest to
the lidar sensor, specified as a non-negative scalar. The function marks a point as ground
when the elevantion angle falls below this value. Typical values for
InitialElevationAngle are in the range of 15 and 30 degrees.

Output Arguments
groundPtsIdx — Ground points index
logical matrix

Ground points index, returned as an M-by-N logical matrix. Elements with a true value,
1, indicate ground points. Elements with a false value, 0, indicate nonground points.

 segmentGroundFromLidarData

3-1077

References
[1] Bogoslavskyi, I. “Efficient Online Segmentation for Sparse 3D Laser Scans.” Journal of

Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Number
1, 2017, pp. 41–52.

See Also
pcfitplane | pcsegdist | pointCloud | segmentLidarData |
velodyneFileReader

Introduced in R2018b

3 Functions Alphabetical

3-1078

