Computer Vision Toolbox™
Reference

<

MATLAB&SIMULINK?

R2019a >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision Toolbox™ Reference
© COPYRIGHT 2000-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 4.0 (Release 2011a)

Revised for Version 4.1 (Release 2011b)

Revised for Version 5.0 (Release 2012a)

Revised for Version 5.1 (Release R2012b)
Revised for Version 5.2 (Release R2013a)
Revised for Version 5.3 (Release R2013b)
Revised for Version 6.0 (Release R2014a)
Revised for Version 6.1 (Release R2014b)
Revised for Version 6.2 (Release R2015a)
Revised for Version 7.0 (Release R2015b)
Revised for Version 7.1 (Release R2016a)
Revised for Version 7.2 (Release R2016b)
Revised for Version 7.3 (Release R2017a)
Revised for Version 8.0 (Release R2017Db)
Revised for Version 8.1 (Release R2018a)
Revised for Version 8.2 (Release R2018b)
Revised for Version 9.0 (Release R2019a)

Blocks — Alphabetical List

1]

Alphabetical List

2|

Functions Alphabetical

3|

Blocks — Alphabetical List

1 Blocks — Alphabetical List

2-D Autocorrelation

Compute 2-D autocorrelation of input matrix

Library

Statistics

visionstatistics

Description

The 2-D Autocorrelation block computes the two-dimensional autocorrelation of the input
matrix. Assume that input matrix A has dimensions (Ma, Na). The equation for the two-
dimensional discrete autocorrelation is

(Ma-1)(Na-1)
Ci,)= > > A(mn)-conjlA(m+i,n+ j)
m=0 n=0

where 0 =i<2Ma—-1and 0 < j<2Na-1.

The output of this block has dimensions (2Ma — 1,2Na — 1).

1-2

2-D Autocorrelation

Complex
Port Input/Output Supported Data Types Values
Supported
Input Vector or matrix of intensity * Double-precision floating point Yes
values or a scalar, vector, or |, Single-precision floating point -
matrix that represents one . .
plane of the RGB video stream Fixed point
* 8-, 16-, 32-bit signed integer
e 8-, 16-, 32-bit unsigned integer
Output Autocorrelation of the input Same as Input port Yes
matrix
If the data type of the input is floating point, the output of the block has the same data
type.
Fixed-Point Data Types
The following diagram shows the data types used in the 2-D Autocorrelation block for
fixed-point signals.
The result of eoch nddition remuoins
inthe secumulotor duto type.
A duto type
—| (OMPLEX .
» L UL'ET E—
¥ MULTIPUIER T v AODH Output doty
A duta type Accumulutor o Aecumulator Accumulator p
Product output dutn type duto type fype
doto type

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-4.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

1-3

1 Blocks — Alphabetical List

1-4

Parameters

Rounding mode

Select the “Rounding Modes” for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”.

Product output

Specify the product output data type. See “Fixed-Point Data Types” on page 1-3 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block:

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-3 and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex.

When you select Same as product output, these characteristics match those
of the product output.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

2-D Autocorrelation

Output
Choose how to specify the output word length and fraction length.
* When you select Same as input, these characteristics match those of the input
to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink® documentation.

See Also

2-D Correlation Computer Vision Toolbox
2-D Histogram Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
2-D Median Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
2-D Maximum Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

1-5

1 Biocks — Alphabetical List

Introduced before R2006a

1-6

2-D Convolution

2-D Convolution

Compute 2-D discrete convolution of two input matrices

Library
Filtering

visionfilter

Description

The 2-D Convolution block computes the two-dimensional convolution of two input
matrices. Assume that matrix A has dimensions (Ma, Na) and matrix B has dimensions
(Mb, Nb). When the block calculates the full output size, the equation for the 2-D discrete
convolution is

(Ma—-1)(Na-1)
Chj)= > > Ammn*Bi-m,j-n)
m=0 n=0

where 0 <i<Ma+Mb-1and0 < j<Na+Nb-1.

1-7

1 Biocks — Alphabetical List

Complex
Port Input/Output Supported Data Types Values
Supported
I Matrix of intensity values or | Double-precision floating point Yes
a matrix that represents one |, Single-precision floating point
plane of the RGB video . .
S SR * Fixed point
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
12 Matrix of intensity values or |Same as I1 port Yes
a matrix that represents one
plane of the RGB video
stream
Output Convolution of the input Same as I1 port Yes
matrices

If the data type of the input is floating point, the output of the block has the same data
type.

The dimensions of the output are dictated by the Qutput size parameter. Assume that the
input at port I1 has dimensions (Ma, Na) and the input at port 12 has dimensions (Mb,
Nb). If, for the Output size parameter, you choose Full, the output is the full two-
dimensional convolution with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output size
parameter, you choose Same as input port I1,the output isthe central part of the
convolution with the same dimensions as the input at port I1. If, for the Output size
parameter, you choose Valid, the output is only those parts of the convolution that are
computed without the zero-padded edges of any input. This output has dimensions (Ma-
Mb+1, Na-Nb+1). However, if all(size(I1l)<size(I2)), the block errors out.

If you select the Normalized output check box, the block's output is divided by
sqrt(sum(dot(Ilp,Ilp))*sum(dot(I2,I2))), where I1lp isthe portion of the I1
matrix that aligns with the 12 matrix. See “Example 2” on page 1-11 for more
information.

Note When you select the Normalized output check box, the block input cannot be
fixed point.

1-8

2-D Convolution

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Convolution block for fixed-
point signals.

The result of euth oddition remoins
inthe secumulotor duto type.

A tloto fype
_,' CONPLEX P ST o ADDER L L% LI e
MULTIPUER - Output doty
B duta type Accumulator o Accumulutor Accumulutor p
Product output tutn type tlufo type fype

doto type

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-14.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

Examples

Example 1

Suppose 11, the first input matrix, has dimensions (4,3) and 12, the second input matrix,
has dimensions (2,2). If, for the Output size parameter, you choose Full, the block uses
the following equations to determine the number of rows and columns of the output
matrix:

Cim__ =11 +12 . —-1=35

TOWS ToWw S

1-9

1 Biocks — Alphabetical List

=11 + 12 1 =4

columns columns ~

Cﬁl]l:ulm:

The resulting matrix is

€oo €01 Co2 Coa
€10 €11 €12 €13
Cran = [€gp €91 €p Cog
€3p €31 €32 33

€40 €41 €42 C43

If, for the Output size parameter, you choose Same as input port I1, the outputis
the central part of Cfull with the same dimensions as the input at port I1, (4,3). However,
since a 4-by-3 matrix cannot be extracted from the exact center of Cfull, the block leaves
more rows and columns on the top and left side of the Cfull matrix and outputs:

€11 €13 €13
C Cg1 Cg9g Cog
€31 €39 €33

€41 €49 €y

If, for the Output size parameter, you choose Valid, the block uses the following
equations to determine the number of rows and columns of the output matrix:

1-10

2-D Convolution

=11 -12 +1 =12

valid . gumns columns columns

In this case, it is always possible to extract the exact center of Cfull. Therefore, the block
outputs

€11 €19
Cran = |97 €g9
€31 €39

Example 2

In convolution, the value of an output element is computed as a weighted sum of
neighboring elements.

For example, suppose the first input matrix represents an image and is defined as
I1 = [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

The second input matrix also represents an image and is defined as

5 7

I2=08 1 6
3
4 9 2]

The following figure shows how to compute the (1,1) output element (zero-based
indexing) using these steps:

1 Rotate the second input matrix, 12, 180 degrees about its center element.

1-11

1 Blocks — Alphabetical List

2 Slide the center element of I2 so that it lies on top of the (0,0) element of I1.
3 Multiply each element of the rotated 12 matrix by the element of I1 underneath.
4 Sum the individual products from step 3.

Hence the (1,1) output element is
0-2+0:-9+0:4+0-7+17-54+24-3+0:6+23-1+5-8=220.

1-12

2-D Convolution

Values of rotated 12 matrix

IR

N
2 9 4 N
N
N
h N
7 5 3 N
N N Alignment of cenfer
N element of 12
N
6 1 8 \/{
N N
AN N
AN N
N N
N 'S
N <
N @ yl!] 8 15
AN
N N
N N
N N 23 \5\ 7 14 16 <—{ Image pixel values
NI N
/ 4 6 13 20 22 -

Alignment of 12 matrix

Computing the (1,1) Output of Convolution
The normalized convolution of the (1,1) output element is 220/

sqrt(sum(dot(Ilp,Ilp))*sum(dot(I2,I2))) = 0.3459, where Ilp = [0 0 O; ©
17 24; 0 23 5].

1-13

1 Biocks — Alphabetical List

1-14

Parameters

Output size

This parameter controls the size of the output scalar, vector, or matrix produced as a
result of the convolution between the two inputs. If you choose Full, the output has
dimensions (Ma+Mb-1, Na+Nb-1). If you choose Same as input port I1l, the
output has the same dimensions as the input at port I1. If you choose Valid, output
has dimensions (Ma-Mb+1, Na-Nb+1).

Normalized output

If you select this check box, the block's output is normalized.

Rounding mode

Select the rounding mode for fixed-point operations.
Overflow mode

Select the Overflow mode for fixed-point operations.
Product output

Use this parameter to specify how to designate the product output word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-9 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block:

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Product Output inherits its sign according to the inputs. If either or both input I1
and I2 are signed, the Product Output will be signed. Otherwise, the Product Output
is unsigned. The following table shows all cases.

Sign of Input 11 Sign of Input 12 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed

2-D Convolution

Sign of Input 11 Sign of Input 12 Sign of Product Output
signed unsigned signed
signed signed signed

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-9 and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

* When you select Same as product output, these characteristics match those
of the product output.

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:
* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1-15

1 Biocks — Alphabetical List

See Also

|2-D FIR Filter |Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-16

2-D Correlation

2-D Correlation

Compute 2-D cross-correlation of two input matrices

11
2-DXCORR P

Niz

Library

Statistics

visionstatistics

Description

The 2-D Correlation block computes the two-dimensional cross-correlation of two input
matrices. Assume that matrix A has dimensions (Ma, Na) and matrix B has dimensions
(Mb, Nb). When the block calculates the full output size, the equation for the two-
dimensional discrete cross-correlation is

(Ma-1)(Na-1)
Ci,)= > > A(mn)-conjB(m+in+j)
m=0 n=0

where 0 si<Ma+Mb—-1and0 =< j<Na+Nb-1.

Complex
Port Input/Output Supported Data Types Values

Supported
Il Vector or matrix of intensity |* Double-precision floating point Yes

values + Single-precision floating point
* Fixed point

* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned integer

1-17

1 Blocks — Alphabetical List

Complex
Port Input/Output Supported Data Types Values
Supported
12 Scalar, vector, or matrix of Same as I1 port Yes
intensity values or a scalar,
vector, or matrix that
represents one plane of the
RGB video stream
Output Convolution of the input Same as I1 port Yes
matrices

1-18

If the data type of the input is floating point, the output of the block is the same data type.

The dimensions of the output are dictated by the Output size parameter and the sizes of
the inputs at ports I1 and I2. For example, assume that the input at port I1 has
dimensions (Ma, Na) and the input at port I2 has dimensions (Mb, Nb). If, for the Output
size parameter, you choose Full, the output is the full two-dimensional cross-correlation
with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output size parameter, you choose
Same as input port I1,the output is the central part of the cross-correlation with
the same dimensions as the input at port I1. If, for the Qutput size parameter, you
choose Va'lid, the output is only those parts of the cross-correlation that are computed
without the zero-padded edges of any input. This output has dimensions (Ma-Mb+1, Na-
Nb+1). However, if all(size(I1l)<size(I2)), the block errors out.

If you select the Normalized output check box, the block's output is divided by
sqrt(sum(dot(Ilp,Ilp))*sum(dot(I2,I2))), where I1lp isthe portion of the I1
matrix that aligns with the 12 matrix. See “Example 2” on page 1-21 for more
information.

Note When you select the Normalized output check box, the block input cannot be
fixed point.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Correlation block for fixed-
point signals.

2-D Correlation

The result of euth oddition remuing
inthe nccumulutor duta type.

11 duta type

————»{ CONPLEX .
> » owT —
— g aast 5| ADDER

12 dototype Accumulutor o Accumulotor Arcumulotor Output duty
Product output i type tluta type fyne
tota type

You can set the product output, accumulator, and output data types in the block mask as
discussed in “Parameters” on page 1-23.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

Examples

Example 1

Suppose 11, the first input matrix, has dimensions (4,3). 12, the second input matrix, has
dimensions (2,2). If, for the Output size parameter, you choose Full, the block uses the
following equations to determine the number of rows and columns of the output matrix:

Cﬂﬂl = I]. +I'2

_— TOWS TOWS

1=4+2-1=5

Cfujlcuhu'nm = Ilmlums+12colums_1 =3+2-1=4

The resulting matrix is

1-19

1 Biocks — Alphabetical List

€oo €p1 €o2 €o3
€10 €11 €12 €13
Cran = [egq €91 €99 €93
€30 €31 €32 €33

€40 €41 €42 €43

If, for the Output size parameter, you choose Same as input port I1, the outputis
the central part of Cfull with the same dimensions as the input at port I1, (4,3). However,

since a 4-by-3 matrix cannot be extracted from the exact center of Cru | the block leaves

more rows and columns on the top and left side of the Crur matrix and outputs:

€11 €19 €13
C _ |C21 €99 Ca3

same

€31 €39 €33

€41 €49 €43

If, for the Output size parameter, you choose Valid, the block uses the following
equations to determine the number of rows and columns of the output matrix:

12 +1 =3

TOWS TOWS

Cr*.'a].w'u:im,m =11

=11 -12 +1 =12

valid. gumms columns columns

In this case, it is always possible to extract the exact center of Chu Therefore, the block
outputs

1-20

2-D Correlation

€11 €19
Cran = [€97 o9
€31 €39

Example 2

In cross-correlation, the value of an output element is computed as a weighted sum of
neighboring elements.

For example, suppose the first input matrix represents an image and is defined as

I1=1[17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3

11 18 25 2 9]

The second input matrix also represents an image and is defined as

5 7

I2=08 1 6
3
4 9 2]

The following figure shows how to compute the (2,4) output element (zero-based
indexing) using these steps:

1 Slide the center element of 12 so that lies on top of the (1,3) element of 1.
2 Multiply each weight in 12 by the element of I1 underneath.

3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is
1-8+8:-1+15:-6+7-3+14-5+16-7+13-4+20-9+22-2 =585.

1-21

1 Blocks — Alphabetical List

Values of 12 matrix

vob

/
/
y; 8 1 6
/
/
/
/ 3 5 7
/
/
Alignment of 12 matrix /
/ 4 9 2
/
/
/ /
/
7 /
/
> s 4 %
17 % 1 8 14 ,
/
/
/
Image pixel values —| 23 5 7 16 7
/
N /
/ \ / d
> 4 6 13 20 7 ,
/ \
Z
Alignment of center
10 12 19 2 3 element of 12

Computing the (2,4) Output of Cross-Correlation
The normalized cross-correlation of the (2,4) output element is 585/

sqrt(sum(dot(Ilp,Ilp))*sum(dot(I2,I2))) =0.8070, where Ilp = [1 8 15;
7 14 16; 13 20 22].

1-22

2-D Correlation

Parameters

Output size

This parameter controls the size of the output scalar, vector, or matrix produced as a
result of the cross-correlation between the two inputs. If you choose Full, the output
has dimensions (Ma+Mb-1, Na+Nb-1). If you choose Same as input port I1,the
output has the same dimensions as the input at port I1. If you choose Valid, output
has dimensions (Ma-Mb+1, Na-Nb+1).

Normalized output

If you select this check box, the block's output is normalized.

Rounding mode

Select the “Rounding Modes” for fixed-point operations.
Overflow mode

Select the Overflow mode for fixed-point operations.
Product output

Specify the product output data type. See “Fixed-Point Data Types” on page 1-18 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block:

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Product Output inherits its sign according to the inputs. If either or both input I1
and I2 are signed, the Product Output will be signed. Otherwise, the Product Output
is unsigned. The table below show all cases.

Sign of Input 11 Sign of Input 12 Sign of Product Output
unsigned unsigned unsigned
unsigned signed signed

1-23

1 Blocks — Alphabetical List

Sign of Input 11 Sign of Input 12 Sign of Product Output
signed unsigned signed
signed signed signed

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-18 and“Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

* When you select Same as product output, these characteristics match those
of the product output.

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:
* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1-24

2-D Correlation

See Also

2-D Autocorrelation
2-D Histogram

2-D Mean

2-D Median

2-D Standard Deviation
2-D Variance

2-D Maximum

2-D Minimum

Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-25

1 Biocks — Alphabetical List

1-26

2-D DCT

Compute 2-D discrete cosine transform (DCT)

2D DCT

2D DCT

Library

Transforms

visiontransforms

Description

The 2-D DCT block calculates the two-dimensional discrete cosine transform of the input
signal. The equation for the two-dimensional DCT is

M-1N-1

F(m,n)= %C(m)C(n) xga yg;) f(x,y)cos (,‘Zx;;.’)mn cos (2y2+1$)n7c

where C(m), C(n) = 1/y/2 for m,n = 0 and C(m), C(n) = 1 otherwise.

The number of rows and columns of the input signal must be powers of two. The output of
this block has dimensions the same dimensions as the input.

2-D DCT

Complex
Port Input/Output Supported Data Types Values
Supported
Input Vector or matrix of intensity |¢ Double-precision floating point No
values + Single-precision floating point
+ Fixed point
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Output 2-D DCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the block is the same
data type.

Use the Sine and cosine computation parameter to specify how the block computes the
sine and cosine terms in the DCT algorithm. If you select Trigonometric fcn, the block
computes the sine and cosine values during the simulation. If you select Table lookup,
the block computes and stores the trigonometric values before the simulation starts. In
this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D DCT block for fixed-point
signals. Inputs are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type.

1-27

1 Biocks — Alphabetical List

g N a+b
& - i
b . i-h
o » !
| butterfly stag |
3 . uib bl w1 a+b) W1 ond W2 are twiddle table constants
OR
b pob My
F——hutterfly stage————twiddle multiplicationd
a [~ ac+he
@
.
(R i
h i . af +bd
= >
———buttertly stage——
Butterfly Stage Data Types
0 0 a+h a+h
» » » —oth
h ST b » ADDER 1 » CAST - »
Inputs ta Aecurmulatar fecumulatar Output data
buttertly - data type data type type
out put
data type

Twiddle Ml fiplicatien Data Types

» W "
. MULTIPLIER L
Input to twiddle 4’|— Recurnulator or Output

mulfiplication - Sine toble o
ot output daa type
autput data type data type dguuwpeu p typ

4

The output of the multiplier is in the product output data type when at least one of the
inputs to the multiplier is real. When both inputs to the multiplier are complex, the result
of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”. You can set the sine table,

1-28

2-D DCT

product output, accumulator, and output data types in the block mask as discussed in the
next section.

Parameters

Sine and cosine computation

Specify how the block computes the sine and cosine terms in the DCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine values
during the simulation. If you select Table lookup, the block computes and stores
the trigonometric values before the simulation starts. In this case, the block requires
extra memory.

Rounding mode

Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; they always round to Nearest.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

* A rule that inherits a data type, for example, Inherit: Same word length as
input
* An expression that evaluates to a valid data type, for example, fixdt(1,16)
The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.
Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-27 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

1-29

1 Blocks — Alphabetical List

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-27 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule
* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-27 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

WLidealoutput = WLinput + floor(logz(DCTlength — 1)) + 1
FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

1-30

2-D DCT

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button = to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool. For more
information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, WH, C.H. Smith, and S.C. Fralick, “A fast computational algorithm for the
discrete cosine transform,” IEEE Trans. Commun., vol. COM-25, pp. 1004-10009.
1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for the discrete Fourier
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
803-816, Aug. 1984.

See Also

2-D IDCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

1-31

1 Biocks — Alphabetical List

1-32

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2-D FFT

2-D FFT

Compute two-dimensional fast Fourier transform of input

2-DFFT

2.0 FFT

Library

Transforms

visiontransforms

Description

The 2-D FFT block computes the fast Fourier transform (FFT). The block does the
computation of a two-dimensional M-by-N input matrix in two steps. First it computes the
one-dimensional FFT along one dimension (row or column). Then it computes the FFT of
the output of the first step along the other dimension (column or row).

The output of the 2-D FFT block is equivalent to the MATLAB® fft2 function:
y = Tft2(A) % Equivalent MATLAB code

Computing the FFT of each dimension of the input matrix is equivalent to calculating the
two-dimensional discrete Fourier transform (DFT), which is defined by the following
equation:

M-1N-1 .2Immx .2mny
Fmmn)= > > flxye /M e)N
x=0y=0

where0=sm=M-land0<n=<N-1.

The output of this block has the same dimensions as the input. If the input signal has a
floating-point data type, the data type of the output signal uses the same floating-point
data type. Otherwise, the output can be any fixed-point data type. The block computes
scaled and unscaled versions of the FFT.

1-33

1 Blocks — Alphabetical List

1-34

The input to this block can be floating-point or fixed-point, real or complex, and conjugate
symmetric. The block uses one of two possible FFT implementations. You can select an
implementation based on the FFTW library [1], [2], or an implementation based on a
collection of Radix-2 algorithms. You can select Auto to allow the block to choose the
implementation.

Port Description

Complex
Port Description Supported Data Types Values

Supported
Input Vector or matrix of * Double-precision floating Yes

intensity values point

» Single-precision floating point
* Fixed point

* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned
integer

Output 2-D FFT of the input Same as Input port Yes

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for
power-of-two and non-power-of-two transform lengths in both simulation and code
generation. Generated code using the FFTW implementation will be restricted to those
computers which are capable of running MATLAB. The input data type must be floating-
point.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data,
and allows the block to provide portable C-code generation using the “Simulink Coder”.
The dimensions of the input matrix, M and N, must be powers of two. To work with other
input sizes, use the Image Pad block to pad or truncate these dimensions to powers of
two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

2-D FFT

* Butterfly operation

* Double-signal algorithm

* Halflength algorithm

* Radix-2 decimation-in-time (DIT) algorithm

* Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation

[~ Input iz in bit-reversed arder Butterﬂy Operation and radix-2 DIT

™ Input iz conjugate syrmetric

¥ Input iz in bit-reversed arder Radix-2 DIF

™ Input iz conjugate symmetric

I Input is in bitreversed order Butterfly operation and radix-2 DIT in conjunction with the
V¥ Input is conjugate symmetric ha].f'length and double-sigl’lal algOI‘itth

™ Input iz in bit-reversed order

Radix-2 DIF in conjunction with the half-length and double-
M Input iz conjugate syrmetric Sig nal alg orithms

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings Algorithms Used for IFFT Computation

™ Input is in bit-reversed order Butterfly operation and radix-2 DIT
™ Input iz conjugate symmetric

™ Input iz in bit-reversed order Radix-2 DIF
™ Input iz conjugate syrmetric

Note The Input is conjugate symmetric parameter cannot be used for fixed-point
signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix-2 algorithm computes all the possible
trigonometric values of the twiddle factor

1-35

1 Biocks — Alphabetical List

.21k
el K
where K is the greater value of either M or N and k = 0, ---, K — 1. The block stores these
values in a table and retrieves them during simulation. The number of table entries for
fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the FFT block for fixed-point signals.
You can set the sine table, accumulator, product output, and output data types displayed
in the diagrams in the FFT dialog box as discussed in “Parameters” on page 1-38.

Inputs to the FFT block are first cast to the output data type and stored in the output
buffer. Each butterfly stage then processes signals in the accumulator data type, with the
final output of the butterfly being cast back into the output data type. The block multiplies
in a twiddle factor before each butterfly stage in a decimation-in-time FFT and after each
butterfly stage in a decimation-in-frequency FFT.

1-36

2-D FFT

Deci mationrin-time IFFT

u+Wh

B
L

F-twiddlle muttiplicotion————hutterfly stogpg———

i

Decimation-in-fretpency IFFT

> ugh » U+h
> s W wied)

F———hutterfly stuge—————widdle muktiplicetion

Butterfly stage data types
n, [n+h > 1+h ,
CAST ADDER ih » oSt
Inputs to Accumulator Accumulutor Output oty
butterfly - doto type tutn fype type
output
tuto fype
Twiddle multiplication data types
Input to twiddle —»|MUITIPLIER sccumult > ST W
mutriplication - Sine fuble teumiator f
output duto type tlto type tota type tota type

The multiplier output appears in the accumulator data type because both of the inputs to
the multiplier are complex. For details on the complex multiplication performed, refer to
“Multiplication Data Types”.

1-37

1 Blocks — Alphabetical List

1-38

Parameters

FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The
block restricts generated code with FFTW implementation to host computers capable
of running MATLAB.

Set this parameter to Radix- 2 for bit-reversed processing, fixed or floating-point
data, or for portable C-code generation using the “Simulink Coder”. The dimensions
of the input matrix, M and N, must be powers of two. To work with other input sizes,
use the Image Pad block to pad or truncate these dimensions to powers of two, or if
possible choose the FFTW implementation. See “Radix-2 Implementation” on page 1-
34.

Set this parameter to Auto to let the block choose the FFT implementation. For non-
power-of-two transform lengths, the block restricts generated code to MATLAB host
computers.

Output in bit-reversed order

Designate the order of the output channel elements relative to the ordering of the
input elements. When you select this check box, the output channel elements appear
in bit-reversed order relative to the input ordering. If you clear this check box, the
output channel elements appear in linear order relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation. For more
information, see “Bit-Reversed Order” on page 1-41.

Scale result by FFT length

When you select this parameter, the block divides the output of the FFT by the FFT
length. This option is useful when you want the output of the FFT to stay in the same
amplitude range as its input. This is particularly useful when working with fixed-point
data types.

Rounding mode

Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; instead, they always round to Nearest.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

2-D FFT

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same word length as
input
* An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-36 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button ”7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-36 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)
Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

1-39

1 Blocks — Alphabetical List

Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-36 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

* When you select the Divide butterfly outputs by two check box, the ideal
output word and fraction lengths are the same as the input word and fraction
lengths.

* When you clear the Divide butterfly outputs by two check box, the block
computes the ideal output word and fraction lengths according to the following
equations:

Wligealoutput = Wlinput + floor(loga(FFTlength — 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button 7 o display the Data Type

Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1-40

2-D FFT

Example

Bit-Reversed Order

Two numbers are bit-reversed values of each other when the binary representation of one
is the mirror image of the binary representation of the other. For example, in a three-bit
system, one and four are bit-reversed values of each other because the three-bit binary
representation of one, 001, is the mirror image of the three-bit binary representation of
four, 100. The following diagram shows the row indices in linear order. To put them in bit-
reversed order

1 Translate the indices into their binary representation with the minimum number of
bits. In this example, the minimum number of bits is three because the binary
representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original binary
representation.

3 Translate the indices back to their decimal representation.

The row indices now appear in bit-reversed order.

Step 2: Find mirror imoge of

ench entry.
Linear Order Bit-Reversed Order
{In o three-hit system)
0 000 =——= 000 0
1 001 100 4
2 Stepl:Tronslute. 010 010 Step3:Tronslote. 2
3 1o binary oy 110 bock to decimal &
4 . 100 001 : 1
. representofion.
c representotion o1 101 p c
B 110 011 3
7 11— 111 7

If, on the 2-D FFT block parameters dialog box, you select the Output in bit-reversed
order check box, the block bit-reverses the order of both the columns and the rows. The
next diagram illustrates the linear and bit-reversed outputs of the 2-D FFT block. The
output values are the same, but they appear in different order.

1-41

1 Biocks — Alphabetical List

245 -13 10-5¢
-9 1 14-31:
18-5i 6-3: 19-24;
18+ 5z 6+ 3t 5-4;
-4.3-10.3: 1.1-i -5.6+13.1;
84+241 11+9 -18.4-25.1;
84-241 11-99 -4.5+1.1;
|-4.4+103: 1.1+: -115+1L
References

10+5; 13.9-04; -159-21.6:
14+ 31z 163+5.9; 17.7-23.9
5+41 —43-10.4:1 -5.7+16.4
19+24; 55-1.4 125+11.3:
-11.5-11; -27.6-6.6 —2.61
-45-1.1; 3.4-5.41 17.6-9.4i
-18.4+251: -0.6+2.7; -2.2-13i
-5.6-13.1 6.2-13; -3.4-8.7i

[1] FFTW (http://www. fftw.org)

-159+21.61
17.7+23.9:
12.4-11.4
-5.7-16.41
-34+8.7i
-2.2+13i
17.6+94i
2.61

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the

FFT,”Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing, Vol. 3, 1998, pp. 1381-1384.

13.9
16.3-5.9
55+1.4i
34 +0.5¢

6.2+13:

-1-2.T

34 +0.5;
-217.6+6.6i |

See Also

2-D DCT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software
bitrevorder Signal Processing Toolbox software
fft MATLAB

ifft MATLAB

“Simulink Coder” Simulink Coder™

1-42

http://www.fftw.org

2-D FFT

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

When the following conditions apply, the executable generated from this block relies
on prebuilt dynamic library files (.d11 files) included with MATLAB:

* FFT implementation is set to FFTW.

* Inherit FFT length from input dimensions is cleared, and FFT length is set to
a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not
installed. For more details, see .

When the FFT length is a power of two, you can generate standalone C and C++ code
from this block.

Introduced before R2006a

1-43

1 Biocks — Alphabetical List

2-D FIR Filter

Perform 2-D FIR filtering on input matrix

2-D'FIR
Filter

2-D FIR Filter

Library
Filtering

visionfilter

Description

The 2-D Finite Impulse Response (FIR) filter block filters the input matrix I using the
coefficient matrix H or the coefficient vectors HH and HV.

Port Input/Output Supported Data Types gz:l:;:(e:llalues
I Vector or matrix of intensity |¢ Double-precision floating point Yes
values * Single-precision floating point
* Fixed point
o 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
H Matrix of filter coefficients Same as I port. Yes
HH Vector of filter coefficients Same as I port. The input to ports HH |Yes
and HV must be the same data type.
HV Vector of filter coefficients Same as I port. The input to ports HH |Yes
and HV must be the same data type.

1-44

2-D FIR Filter

Port

Input/Output Supported Data Types Complex Values

Supported
PVal Scalar value that represents |Input must have the same data type |Yes
the constant pad value as the input to I port.
Output Scalar, vector, or matrix of Same as I port. Yes

filtered values

If the input has a floating-point data type, then the output uses the same data type.
Otherwise, the output can be any fixed-point data type.

Select the Separable filter coefficients check box if your filter coefficients are
separable. Using separable filter coefficients reduces the amount of calculations the block
must perform to compute the output. For example, suppose your input image is M-by-N
and your filter coefficient matrix is x-by-y. For a nonseparable filter with the Output size
parameter set to Same as input port I, it would take

X-y-M-N

multiply-accumulate (MAC) operations for the block to calculate the output. For a
separable filter, it would only take

x+y)-M-N

MAC operations. If you do not know whether or not your filter coefficients are separable,
use the isfilterseparable function.

Here is an example of the function syntax, [S, HCOL, HROW] =
isfilterseparable(H). The isfilterseparable function takes the filter kernel, H,
and returns S, HCOL and HROW. Here, S is a Boolean variable that is 1 if the filter is
separable and 0 if it is not. HCOL is a vector of vertical filter coefficients, and HROW is a
vector of horizontal filter coefficients.

Use the Coefficient source parameter to specify how to define your filter coefficients. If
you select the Separable filter coefficients check box and then select a Coefficient
source of Specify via dialog, the Vertical coefficients (across height) and
Horizontal coefficients (across width) parameters appear in the dialog box. You can
use these parameters to enter vectors of vertical and horizontal filter coefficients,
respectively.

You can also use the variables HCOL and HROW, the output of the isfilterseparable
function, for these parameters. If you select the Separable filter coefficients check box

1-45

1 Blocks — Alphabetical List

1-46

and then select a Coefficient source of Input port, ports HV and HH appear on the
block. Use these ports to specify vectors of vertical and horizontal filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source
of Specify via dialog, the Coefficients parameter appears in the dialog box. Use
this parameter to enter your matrix of filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source
of Input port, port H appears on the block. Use this port to specify your filter
coefficient matrix.

The block outputs the result of the filtering operation at the Output port. The Output
size parameter and the sizes of the inputs at ports I and H dictate the dimensions of the
output. For example, assume that the input at port I has dimensions (Mi, Ni) and the input
at port H has dimensions (Mh, Nh). If you select an Output size of Full, the output has
dimensions (Mi+Mh-1, Ni+Nh-1). If you select an Output size of Same as input port
I, the output has the same dimensions as the input at port I. If you select an Qutput size
of Valid, the block filters the input image only where the coefficient matrix fits entirely
within it, so no padding is required. The output has dimensions (Mi-Mh+1, Ni-Nh+1).
However, if all(size(I)<size(H)), the block errors out.

Use the Padding options parameter to specify how to pad the boundary of your input
matrix. To pad your matrix with a constant value, select Constant. To pad your input
matrix by repeating its border values, select Replicate. To pad your input matrix with
its mirror image, select Symmetric. To pad your input matrix using a circular repetition
of its elements, select Circular. For more information on padding, see the Image Pad
block reference page.

If, for the Padding options parameter, you select Constant, the Pad value source
parameter appears in the dialog box. If you select Specify via dialog, the Pad value
parameter appears in the dialog box. Use this parameter to enter the constant value with
which to pad your matrix. If you select Pad value source ofInput port, the PVal port
appears on the block. Use this port to specify the constant value with which to pad your
matrix. The pad value must be real if the input image is real. You will get an error
message if the pad value is complex when the input image is real.

Use the Filtering based on parameter to specify the algorithm by which the block filters
the input matrix. If you select Convolution and set the Qutput size parameter to Full,
the block filters your input using the following algorithm

2-D FIR Filter

(Ma - 1) (Na - 1)
Cij= > > A(m,n)*H(i—m,j—n)

m=0 n=0

where 0 =i <Ma+ Mh-1and 0 < j < Na+ Nh-1.Ifyou select Correlation and set
the Output size parameter to Full, the block filters your input using the following
algorithm

(Ma - 1) (Na - 1)
Cij= > > A(m,n)-conj(H(m+1i,n+ j)

m=0 n=0
where0 <i<Ma+Mh-1and0<j<Na+Nh-1.

TThe imfilter function from the Image Processing Toolbox™ product similarly performs
N-D filtering of multidimensional images.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D FIR Filter block for fixed-
point signals.

The result of each addition remains
in the accumulator data type

<
<

Input (A) data type .
———— > COMPLEX » CAST » ADDER CAST ———
. —»| MULTIPLIER | Accumulator or Output (C)
Filter coefficient Product output Accumulator Accumulator data type
(H) data type data type data type data type

You can set the coefficient, product output, accumulator, and output data types in the
block mask as discussed in “Parameters” on page 1-48.

The output of the multiplier is in the product output data type if at least one of the inputs
to the multiplier is real. If both of the inputs to the multiplier are complex, the result of
the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”.

1-47

1 Blocks — Alphabetical List

1-48

Parameters

Separable filter coefficients

Select this check box if your filter coefficients are separable. Using separable filter
coefficients reduces the amount of calculations the block must perform to compute
the output.

Coefficient source

Specify how to define your filter coefficients. Select Specify via dialog to enter
your coefficients in the block parameters dialog box. Select Input port to specify
your filter coefficient matrix using port H or ports HH and HV.

Coefficients

Enter your real or complex-valued filter coefficient matrix. This parameter appears if
you clear the Separable filter coefficients check box and then select a Coefficient
source of Specify via dialog. Tunable.

Vertical coefficients (across height)

Enter the vector of vertical filter coefficients for your separable filter. This parameter
appears if you select the Separable filter coefficients check box and then select a
Coefficient source of Specify via dialog.

Horizontal coefficients (across width)

Enter the vector of horizontal filter coefficients for your separable filter. This
parameter appears if you select the Separable filter coefficients check box and
then select a Coefficient source of Specify via dialog.

Output size

This parameter controls the size of the filtered output. If you choose Full, the output
has dimensions (Ma+Mh-1, Na+Nh-1). If you choose Same as input port I, the
output has the same dimensions as the input at port I If you choose Valid, output has
dimensions (Ma-Mh+1, Na-Nh+1).

Padding options

Specify how to pad the boundary of your input matrix. Select Constant to pad your
matrix with a constant value. Select Replicate to pad your input matrix by
repeating its border values. Select Symmet ricto pad your input matrix with its mirror
image. Select Circular to pad your input matrix using a circular repetition of its
elements. This parameter appears if you select an Output size of Full or Same as
input port I.

2-D FIR Filter

Pad value source

Use this parameter to specify how to define your constant boundary value. Select
Specify via dialog to enter your value in the block parameters dialog box. Select
Input port to specify your constant value using the PVal port. This parameter
appears if you select a Padding options of Constant.

Pad value

Enter the constant value with which to pad your matrix. This parameter is visible if,
for the Pad value source parameter, you select Specify via dialog. Tunable.
The pad value must be real if the input image is real. You will get an error message if
the pad value is complex when the input image is real.

Filtering based on

Specify the algorithm by which the block filters the input matrix. You can select
Convolution or Correlation.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.
Coefficients
Choose how to specify the word length and the fraction length of the filter
coefficients.

* When you select Inherit: Same word length as input, the word length of
the filter coefficients match that of the input to the block. In this mode, the block
automatically sets the fraction length of the coefficients to the binary-point only
scaling that provides you with the best precision possible given the value and word
length of the coefficients.

* When you select fixdt(1,16), you can enter the word length of the coefficients,
in bits. In this mode, the block automatically sets the fraction length of the
coefficients to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

* When you select fixdt(1,16,0), you can enter the word length and the fraction
length of the coefficients, in bits.

* When you select <data type expression>, you can enter the data type
expression.

1-49

1 Blocks — Alphabetical List

The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Click the Show data type assistant button o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Product output

Use this parameter to specify how to designate the product output word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-47 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block:

* When you select Inherit: Same as input, these characteristics match those
of the input to the block.

* When you select fixdt([],16,0), you can enter the word length and the
fraction length of the product output, in bits.

* When you select <data type expression>, you can enter the data type
expression.

If you set the Coefficient source (on the Main tab) to Input port the Product
Output will inherit its sign according to the inputs. If either or both input I1 and I2
are signed, the Product Output will be signed. Otherwise, the Product Output is
unsigned. The following table shows all cases.

Sign of Input I1 Sign of Input 12 Sign of Product Output
unsigned unsigned unsigned

unsigned signed signed

signed unsigned signed

signed signed signed

Click the Show data type assistant button o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction
lengths. Refer to “Fixed-Point Data Types” on page 1-47 and “Multiplication Data

2-D FIR Filter

Types” for illustrations depicting the use of the accumulator data type in this block.
The accumulator data type is only used when both inputs to the multiplier are
complex:

* When you select Inherit: Same as input, these characteristics match those
of the input to the block.

* When you select Inherit: Same as product output, these characteristics
match those of the product output.

* When you select fixdt([],16,0), you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output

Choose how to specify the word length and fraction length of the output of the block:

* When you select Inherit: Same as input, these characteristics match those
of the input to the block.

* When you select fixdt([],16,0), you can enter the word length and the
fraction length of the output, in bits.
You can choose to set signedness of the output to Auto, Signed or Unsigned.

* When you select <data type expression>, you can enter the a data type
expression.

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

1-51

1 Biocks — Alphabetical List

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also

| imfilter |Image Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-52

2-D Histogram

2-D Histogram

Generate histogram of input or sequence of inputs

c[[”]]: ,

Library

Statistics

visionstatistics

Description

The 2-D Histogram block computes the frequency distribution of the elements in the
input. You must use the Find the histogram over parameter to specify whether the
block computes the histogram for Each column of the input or of the Entire input.
The Running histogram check box allows you to select between basic operation and
running operation, as described below.

The block distributes the elements of the input into the number of discrete bins specified
by the Number of bins parameter, n.

y = hist(u,n) % Equivalent MATLAB code

The 2-D Histogram block sorts all complex input values into bins according to their
magnitude.

The histogram value for a given bin represents the frequency of occurrence of the input
values bracketed by that bin. You specify the upper boundary of the highest-valued bin in
the Upper limit of histogram parameter, By, and the lower boundary of the lowest-
valued bin in the Lower limit of histogram parameter, B,,. The bins have equal width of

_BM_Bm
=—0

A

and centers located at

1-53

1 Blocks — Alphabetical List

Bm+(k+%)A k=0,1,2,..,n—1

Input values that fall on the border between two bins are placed into the lower valued
bin; that is, each bin includes its upper boundary. For example, a bin of width 4 centered
on the value 5 contains the input value 7, but not the input value 3. Input values greater
than the Upper limit of histogram parameter or less than Lower limit of histogram
parameter are placed into the highest valued or lowest valued bin, respectively.

The values you enter for the Upper limit of histogram and Lower limit of histogram
parameters must be real-valued scalars. NaN and inf are not valid values for the Upper
limit of histogram and Lower limit of histogram parameters.

Basic Operation

When the Running histogram check box is not selected, the 2-D Histogram block
computes the frequency distribution of the current input.

When you set the Find the histogram over parameter to Each column, the 2-D
Histogram block computes a histogram for each column of the M-by-N matrix
independently. The block outputs an n-by-N matrix, where n is the Number of bins you
specify. The jth column of the output matrix contains the histogram for the data in the jth
column of the M-by-N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D
Histogram block computes the frequency distribution for the entire input vector, matrix or
N-D array. The block outputs an n-by-1 vector, where n is the Number of bins you

specify.

Running Operation

When you select the Running histogram check box, the 2-D Histogram block computes
the frequency distribution of both the past and present data for successive inputs. The
block resets the histogram (by emptying all of the bins) when it detects a reset event at
the optional Rst port. See “Resetting the Running Histogram” on page 1-55 for more
information on how to trigger a reset.

When you set the Find the histogram over parameter to Each column, the 2-D
Histogram block computes a running histogram for each column of the M-by-N matrix.
The block outputs an n-by-N matrix, where n is the Number of bins you specify. The jth

2-D Histogram

column of the output matrix contains the running histogram for the jth column of the M-
by-N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D
Histogram block computes a running histogram for the data in the first dimension of the
input. The block outputs an n-by-1 vector, where n is the Number of bins you specify.

Note When the 2-D Histogram block is used in running mode and the input data type is
non-floating point, the output of the histogram is stored as a uint32 data type. The
largest number that can be represented by this data type is 232- 1. If the range of the
uint32 data type is exceeded, the output data will wrap back to 0.

Resetting the Running Histogram

The block resets the running histogram whenever a reset event is detected at the optional
Rst port. The reset signal and the input data signal must be the same rate.

You specify the reset event using the Reset port menu:
* None — Disables the Rst port

* Rising edge — Triggers a reset operation when the Rst input does one of the
following:

* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise
from a negative value to zero (see the following figure)

1-55

1 Blocks — Alphabetical List

Rising edge
— Rising edge
I_f_|

1

Not a rising edge because it continues
Rising edge . a rise from a negative value to zero.
9 ,__,g Rising edge ,—4 g

I T — 1

* Falling edge — Triggers a reset operation when the Rst input does one of the
following:

+ Falls from a positive value to a negative value or zero

» Falls from zero to a negative value, where the fall is not a continuation of a fall
from a positive value to zero (see the following figure)

Falling edge Falling edge
—— ——

[]

) Not a falling edge because it continues
Falling edge a fall from a positive value to zero.

Falling edge ——
g edg ,_f

|
| l l

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

1-56

2-D Histogram

Parameters

Lower limit of histogram

Enter a real-valued scalar for the lower boundary, B,,, of the lowest-valued bin. NaN
and inf are not valid values for B,,. Tunable (Simulink).

Upper limit of histogram

Enter a real-valued scalar for the upper boundary, By, of the highest-valued bin. NaN
and inf are not valid values for B,,. Tunable (Simulink).

Number of bins
The number of bins, n, in the histogram.
Find the histogram over

Specify whether the block finds the histogram over the entire input or along each
column of the input.

Note The option will be removed in a future release.

Normalized
When selected, the output vector, v, is normalized such that sum(v) = 1.

Use of this parameter is not supported for fixed-point signals.
Running histogram

Set to enable the running histogram operation, and clear to enable basic histogram
operation. For more information, see “Basic Operation” on page 1-54 and “Running
Operation” on page 1-54.

Reset port

The type of event that resets the running histogram. For more information, see
“Resetting the Running Histogram” on page 1-55. The reset signal and the input data
signal must be the same rate. This parameter is enabled only when you select the
Running histogram check box. For more information, see “Running Operation” on
page 1-54.

Note The fixed-point parameters listed are only used for fixed-point complex inputs,
which are distributed by squared magnitude.

1-57

1 Blocks — Alphabetical List

1-58

Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

Product output data type

Specify the product output data type. See “Multiplication Data Types” for illustrations
depicting the use of the product output data type. You can set it to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule
* An expression that evaluates to a valid data type, for example, fixdt([]1,16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type
Specify the accumulator data type. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule
* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

2-D Histogram

Supported Data Types

Port Supported Data Types
In * Double-precision floating point

* Single-precision floating point

» Fixed point (signed and unsigned)

* 8-, 16-, and 32-bit signed integers

* 8-, 16-, and 32-bit unsigned integers

Output * Double-precision floating point
* Single-precision floating point
* 32-bit unsigned integers

Rst * Double-precision floating point

* Single-precision floating point

* Boolean

e 8-, 16-, and 32-bit signed integers

e 8-, 16-, and 32-bit unsigned integers

See Also

histogram MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

1-59

1 Biocks — Alphabetical List

2-D IDCT

Compute 2-D inverse discrete cosine transform (IDCT)

2.0 IDET

2-D T

Library

Transforms

visiontransforms

Description

The 2-D IDCT block calculates the two-dimensional inverse discrete cosine transform of
the input signal. The equation for the two-dimensional IDCT is

M-1N-1
2x+1)mno 2y + 1)no
flix,y) = E > C(m F(m, n)cos S COST N

m On=0

C(m),C(n) / 2
where F(m,n) is the DCT of the signal f{x,y) and 2 for m,n=0and
C(m), C(n) = 1 otherwise.

The number of rows and columns of the input signal must be powers of two. The output of
this block has dimensions the same dimensions as the input.

1-60

2-D IDCT

Complex Values

Port Input/Output Supported Data Types Supported
Input Vector or matrix of intensity |[* Double-precision floating point |No
values * Single-precision floating point
+ Fixed point
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Output 2-D IDCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the block is the same
data type.

Use the Sine and cosine computation parameter to specify how the block computes the
sine and cosine terms in the IDCT algorithm. If you select Trigonometric fcn, the
block computes the sine and cosine values during the simulation. If you select Table
lookup, the block computes and stores the trigonometric values before the simulation
starts. In this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D IDCT block for fixed-point
signals. Inputs are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type.

1-61

1 Biocks — Alphabetical List

g N a+b
& - i
b . i-h
o » !
| butterfly stag |
3 . uib bl w1 a+b) W1 ond W2 are twiddle table constants
OR
b pob My
F——hutterfly stage————twiddle multiplicationd
a [~ ac+he
@
.
(R i
h i . af +bd
= >
———buttertly stage——
Butterfly Stage Data Types
0 0 a+h a+h
» » » —oth
h ST b » ADDER 1 » CAST - »
Inputs ta Aecurmulatar fecumulatar Output data
buttertly - data type data type type
out put
data type

Twiddle Ml fiplicatien Data Types

» W "
. MULTIPLIER L
Input to twiddle 4’|— Recurnulator or Output

mulfiplication - Sine toble -
autput data fype data type E;j”;:peﬂu’fpm 0 ype

4

The output of the multiplier is in the product output data type when at least one of the
inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the
result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, refer to “Multiplication Data Types”. You can set the sine table,

1-62

2-D IDCT

product output, accumulator, and output data types in the block mask as discussed in the
next section.

Parameters

Sine and cosine computation

Specify how the block computes the sine and cosine terms in the IDCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine values
during the simulation. If you select Table lookup, the block computes and stores
the trigonometric values before the simulation starts. In this case, the block requires
extra memory.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction

length of the sine table values always equals the word length minus one. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same word length as
input
* An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-61 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

1-63

1 Blocks — Alphabetical List

1-64

Click the Show data type assistant button = to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-61 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-61 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

WlLigeatoutput = WLinput + floor(log(DCTlength — 1)) + 1
FLidealoutput = FLinput
Using these ideal results, the internal rule then selects word lengths and fraction

lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

2-D IDCT

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button = to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool. For more

information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, WH, C.H. Smith, and S.C. Fralick, “A fast computational algorithm for the
discrete cosine transform,”IEEE Trans. Commun., vol. COM-25, pp. 1004-1009.
1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for the discrete Fourier
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
803-816, Aug. 1984.

See Also

2-D DCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

1-65

1 Biocks — Alphabetical List

1-66

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2-D IFFT

2-D IFFT

2-D Inverse fast Fourier transform of input

2-DIFFT

2-DIFFT

Library

Transforms

visiontransforms

Description

The 2-D IFFT block computes the inverse fast Fourier transform (IFFT) of an M-by-N
input matrix in two steps. First, it computes the one-dimensional IFFT along one
dimension (row or column). Next, it computes the IFFT of the output of the first step
along the other dimension (column or row).

The output of the IFFT block is equivalent to the MATLAB ifft2 function:
y = ifft2(A) % Equivalent MATLAB code

Computing the IFFT of each dimension of the input matrix is equivalent to calculating the
two-dimensional inverse discrete Fourier transform (IDFT), which is defined by the
following equation:

M-1N-1 .2mmx .2mny
oy =5 2 Ean)eJMeJN

m On=0

where 0 s x=M-land0=sy=N-1.

The output of this block has the same dimensions as the input. If the input signal has a
floating-point data type, the data type of the output signal uses the same floating-point
data type. Otherwise, the output can be any fixed-point data type. The block computes
scaled and unscaled versions of the IFFT.

1-67

1 Blocks — Alphabetical List

1-68

The input to this block can be floating-point or fixed-point, real or complex, and conjugate
symmetric. The block uses one of two possible FFT implementations. You can select an
implementation based on the FFTW library [1], [2], or an implementation based on a
collection of Radix-2 algorithms. You can select Auto to allow the block to choose the
implementation.

Port Description

Complex
Port Description Supported Data Types Values

Supported
Input Vector or matrix of * Double-precision floating Yes

intensity values point

» Single-precision floating point
* Fixed point

* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned
integer

Output 2-D IFFT of the input Same as Input port Yes

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for
power-of-two and non-power-of-two transform lengths in both simulation and code
generation. Generated code using the FFTW implementation will be restricted to MATLAB
host computers. The data type must be floating-point. Refer to “Simulink Coder” for more
details on generating code.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data,
and allows the block to provide portable C-code generation using the “Simulink Coder”.
The dimensions of the input matrix, M and N, must be powers of two. To work with other
input sizes, use the Image Pad block to pad or truncate these dimensions to powers of
two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

2-D IFFT

* Butterfly operation

* Double-signal algorithm

* Halflength algorithm

* Radix-2 decimation-in-time (DIT) algorithm
* Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Parameter Settings

Algorithms Used for IFFT Computation

™ Input iz in bit-reversed order

™ Input iz conjugate syrmetric

Butterfly operation and radix-2 DIT

¥ Input iz in bit-reversed arder

™ Input iz conjugate symmetric

Radix-2 DIF

™ Input iz in bitreversed order

¥ Input is conjugate symmetric

Butterfly operation and radix-2 DIT in conjunction with the
half-length and double-signal algorithms

™ Input iz in bit-reversed order

M Input iz conjugate syrmetric

Radix-2 DIF in conjunction with the half-length and double-
signal algorithms

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings

Algorithms Used for IFFT Computation

™ Input iz in bit-reversed arder

™ Input iz conjugate symmetric

Butterfly operation and radix-2 DIT

™ Input iz in bit-reversed order

™ Input iz conjugate syrmetric

Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used for fixed-point

signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix-2 algorithm computes all the possible
trigonometric values of the twiddle factor

1-69

1 Blocks — Alphabetical List

.21k
el K
where K is the greater value of either M or N and k = 0, ---, K — 1. The block stores these
values in a table and retrieves them during simulation. The number of table entries for
fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3 N/4
fixed-point N

Fixed-Point Data Types

The following diagrams show the data types used in the IFFT block for fixed-point signals.
You can set the sine table, accumulator, product output, and output data types displayed
in the diagrams in the IFFT dialog box as discussed in “Parameters” on page 1-72.

Inputs to the IFFT block are first cast to the output data type and stored in the output
buffer. Each butterfly stage then processes signals in the accumulator data type, with the
final output of the butterfly being cast back into the output data type. The block multiplies
in a twiddle factor before each butterfly stage in a decimation-in-time IFFT and after each
butterfly stage in a decimation-in-frequency IFFT.

2-D IFFT

Deci mationrin-time IFFT

u+Wh

B
L

F-twiddlle muttiplicotion————hutterfly stogpg———

i

Decimation-in-fretpency IFFT

> ugh » U+h
> s W wied)

F———hutterfly stuge—————widdle muktiplicetion

Butterfly stage data types
n, [n+h > 1+h ,
CAST ADDER ih » oSt
Inputs to Accumulator Accumulutor Output oty
butterfly - doto type tutn fype type
output
tuto fype
Twiddle multiplication data types
Input to twiddle —»|MUITIPLIER sccumult > ST W
mutriplication - Sine fuble teumiator f
output duto type tlto type tota type tota type

The multiplier output appears in the accumulator data type because both of the inputs to
the multiplier are complex. For details on the complex multiplication performed, refer to
“Multiplication Data Types”.

1-71

1 Blocks — Alphabetical List

1-72

Parameters

FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The
block restricts generated code with FFTW implementation to MATLAB host
computers.

Set this parameter to Radix- 2 for bit-reversed processing, fixed or floating-point
data, or for portable C-code generation using the “Simulink Coder”. The dimensions
of the input matrix, M and N, must be powers of two. To work with other input sizes,
use the Image Pad block to pad or truncate these dimensions to powers of two, or if
possible choose the FFTW implementation. See “Radix-2 Implementation” on page 1-
68.

Set this parameter to Auto to let the block choose the FFT implementation. For non-
power-of-two transform lengths, the block restricts generated code to MATLAB host
computers.

Input is in bit-reversed order

Select or clear this check box to designate the order of the input channel elements.
Select this check box when the input should appear in reversed order, and clear it
when the input should appear in linear order. The block yields invalid outputs when
you do not set this parameter correctly. This check box only appears when you set the
FFT implementation parameter to Radix-2 or Auto.

For more information ordering of the output, see “Bit-Reversed Order” on page 1-41.
The 2-D FFT block bit-reverses the order of both the columns and the rows.

Input is conjugate symmetric

Select this option when the block inputs both floating point and conjugate symmetric,
and you want real-valued outputs. This parameter cannot be used for fixed-point
signals. Selecting this check box optimizes the block's computation method.

The FFT block yields conjugate symmetric output when you input real-valued data.
Taking the IFFT of a conjugate symmetric input matrix produces real-valued output.
Therefore, if the input to the block is both floating point and conjugate symmetric,
and you select this check box, the block produces real-valued outputs.

If the IFFT block inputs conjugate symmetric data and you do not select this check
box, the IFFT block outputs a complex-valued signal with small imaginary parts. The
block outputs invalid data if you select this option with non conjugate symmetric input
data.

2-D IFFT

Divide output by product of FFT length in each input dimension

Select this check box to compute the scaled IFFT. The block computes scaled and
unscaled versions of the IFFT. If you select this option, the block computes the scaled
version of the IFFT. The unscaled IFFT is defined by the following equation:

M-1N-1 .2mmx .210ny
= > E (m,n)el 3 el N
m=0n=0

where0=sx<=M-land0<sy=sN-1.

The scaled version of the IFFT multiplies the above unscaled version by MLN

Rounding mode
Select the “Rounding Modes” for fixed-point operations. The sine table values do not
obey this parameter; instead, they always round to Nearest.
Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”. The
sine table values do not obey this parameter; instead, they are always saturated.
Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction

length of the sine table values always equals the word length minus one. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same word length as
input

* An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer
overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-70 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

1-73

1 Blocks — Alphabetical List

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See“Fixed-Point Data Types” on page 1-70 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-70 for
illustrations depicting the use of the output data type in this block. You can set this
parameter to:

* Arule that inherits a data type, for example, Inherit: Inherit via internal
rule.

When you select Inherit: Inherit via internal rule, the block calculates
the output word length and fraction length automatically. The internal rule first
calculates an ideal output word length and fraction length using the following
equations:

* When you select the Divide butterfly outputs by two check box, the ideal
output word and fraction lengths are the same as the input word and fraction
lengths.

* When you clear the Divide butterfly outputs by two check box, the block
computes the ideal output word and fraction lengths according to the following
equations:

2-D IFFT

WlLidealoutput = WLinput + floor(logp(FFTlength — 1)) + 1
FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction
lengths that are appropriate for your hardware. For more information, see “Inherit
via Internal Rule”.

* An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] FFTW (http://www. fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the
FFT,”Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, Vol. 3, 1998, pp. 1381-1384.

See Also

2-D DCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IDCT Computer Vision Toolbox software
2-D FFT Computer Vision Toolbox software
2-D IFFT Computer Vision Toolbox software

1-75

http://www.fftw.org

1 Biocks — Alphabetical List

1-76

bitrevorder Signal Processing Toolbox software
fft MATLAB
ifft MATLAB
“Simulink Coder” Simulink

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

When the following conditions apply, the executable generated from this block relies
on prebuilt dynamic library files (.d11 files) included with MATLAB:

* FFT implementation is set to FFTW.

* Inherit FFT length from input dimensions is cleared, and FFT length is set to
a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not
installed. For more details, see .

When the FFT length is a power of two, you can generate standalone C and C++ code
from this block.

Introduced before R2006a

2-D Maximum

2-D Maximum

Find maximum values in input or sequence of inputs

I Wal [
Idx [

Library

Statistics

visionstatistics

Description

The 2-D Maximum block identifies the value and/or position of the smallest element in
each row or column of the input, or along a specified dimension of the input. The 2-D
Maximum block can also track the maximum values in a sequence of inputs over a period
of time.

The 2-D Maximum block supports real and complex floating-point, fixed-point, and
Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex
fixed-point inputs must be signed. The output data type of the maximum values match the
data type of the input. The block outputs double index values, when the input is double,
and uint32 otherwise.

1-77

1 Biocks — Alphabetical List

1-78

Port Descriptions

Port

Input/Output

Supported Data Types

Input

Scalar, vector or matrix of
intensity values

Double-precision floating point
Single-precision floating point
Fixed point (signed and
unsigned)

Boolean

8-, 16-, and 32-bit signed
integers

8-, 16-, and 32-bit unsigned
integers

Rst

Scalar value

Double-precision floating point
Single-precision floating point
Boolean

8-, 16-, and 32-bit signed
integers

8-, 16-, and 32-bit unsigned
integers

Val

Maximum value output based on

the “Value Mode” on page 1-79

Double-precision floating point
Single-precision floating point
Fixed point (signed and
unsigned)

Boolean

8-, 16-, and 32-bit signed
integers

8-, 16-, and 32-bit unsigned
integers

Idx

One-based output location of the

maximum value based on the
“Index Mode” on page 1-80

Double-precision floating point
32-bit unsigned integers

2-D Maximum

Value Mode

When you set the Mode parameter to Value, the block computes the maximum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input at each sample time, and outputs the array y. Each element in y is the
maximum value in the corresponding column, row, vector, or entire input. The output y
depends on the setting of the Find the maximum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the maximum value of each vector over the second dimension
of the input. For an M-by-N input matrix, the block outputs an M-by-1 column vector at
each sample time.

* Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the maximum value of each vector over the first
dimension of the input. For an M-by-N input matrix, the block outputs a 1-by-N row
vector at each sample time.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Entire input — The output at each sample time is a scalar that contains the
maximum value in the M-by-N-by-P input matrix.

* Specified dimension — The output at each sample time depends on Dimension.
When you set Dimension to 1, the block output is the same as when you select Each
column. When you set Dimension to 2, the block output is the same as when you
select Each row. When you set Dimension to 3, the block outputs an M-by-N matrix
containing the maximum value of each vector over the third dimension of the input, at
each sample time.

For complex inputs, the block selects the value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input that has the maximum
magnitude squared as shown below. For complex value u = a + bi, the magnitude squared

is a® + b2.

1-79

1 Blocks — Alphabetical List

1-80

Complex Input [u) abs ju) Output [val)

4+2i 20
_3:1 j.l:l
4+4i |:> 32 |:> [4+4ﬂ
—l+dTi 1!]!'
N 17
Index Mode

When you set the Mode parameter to Index, the block computes the maximum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input, and outputs the index array I. Each element in I is an integer indexing
the maximum value in the corresponding column, row, vector, or entire input. The output I
depends on the setting of the Find the maximum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the index of the maximum value of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is an M-by-1 column vector.

* Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the index of the maximum value of each vector over the
first dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Entire input — The output at each sample time is a 1-by-3 vector that contains the
location of the maximum value in the M-by-N-by-P input matrix. For an input that is an
M-by-N matrix, the output will be a 1-by-2 vector of one-based [x y] location
coordinates for the maximum value.

* Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the indices of the maximum values of each vector over the third dimension of the
input.

2-D Maximum

When a maximum value occurs more than once, the computed index corresponds to the

first occurrence. For example, when the input is the column vector [3 2 1 2 3]', the

computed one-based index of the maximum value is 1 rather than 5 when Each column
is selected.

When inputs to the block are double-precision values, the index values are double-
precision values. Otherwise, the index values are 32-bit unsigned integer values.

Value and Index Mode

When you set the Mode parameter to Value and Index, the block outputs both the
maxima and the indices.

Running Mode

When you set the Mode parameter to Running, the block tracks the maximum value of
each channel in a time sequence of M-by-N inputs. In this mode, the block treats each
element as a channel.

Resetting the Running Maximum

The block resets the running maximum whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample
time.

You specify the reset event in the Reset port menu:

* None — Disables the Rst port.

* Rising edge — Triggers a reset operation when the Rst input does one of the
following:
* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise
from a negative value to zero (see the following figure)

1-81

1 Blocks — Alphabetical List

Rising edge
— Rising edge
l_;|

l |

Not a rising edge because it is
Rising edge L a continuation of a rise from
I —— Rising edge — a negative value to zero.

* Falling edge — Triggers a reset operation when the Rst input does one of the
following:

+ Falls from a positive value to a negative value or zero

+ Falls from zero to a negative value, where the fall is not a continuation of a fall
from a positive value to zero (see the following figure)

Falling edge Falling edge
l_;l l_;|

I I

) Not a falling edge because it is
' Falling edge a continuation of a fall from
Falling edge —— _/| a positive value to zero.
l%

| l l

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described above)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

1-82

2-D Maximum

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This applies to any mode other than
running mode and when you set the Find the maximum value over parameter to
Entire input and you select the Enable ROI processing check box. ROI processing
applies only for 2-D inputs.

You can specify Rectangles, Lines, Label matrix, or Binary mask ROI type.
Use the Binary mask to specify which pixels to highlight or select.

Use the Label matrix to label regions. Pixels set to 0 represent the background. Pixels
set to 1 represent the first object, pixels set to 2, represent the second object, and so on.
Use the Label Numbers port to specify the objects in the label matrix for which the
block calculates statistics. The input to this port must be a vector of scalar values that
correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter. For more
information about the format of the input to the ROI port when you set the ROI to a
rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics

Output = Individual statistics for each ROI

Flag Port Description

Output

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Description

Output
0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

1-83

1 Blocks — Alphabetical List

Output = Individual statistics for each ROI

Flag Port Description

Output
0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Description

Output
0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The parameters on the Data Types pane of the block dialog are only used for complex
fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input
are formed before a comparison is made, as described in “Value Mode” on page 1-79. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Parameters

Mode
Specify the block's mode of operation:

* Value and Index — Output both the value and the index location.
* Value — Output the maximum value of each input matrix. For more information,
see “Value Mode” on page 1-79.

* Index— Output the one-based index location of the maximum value. For more
information, see “Index Mode” on page 1-80.

* Running — Track the maximum value of the input sequence over time. For more
information, see “Running Mode” on page 1-81.

For the Value, Index, and Value and Index modes, the 2-D Maximum block
produces identical results as the MATLAB max function when it is called as [y I] =

1-84

2-D Maximum

max(u, [],D), where u and y are the input and output, respectively, D is the
dimension, and I is the index.

Find the maximum value over

Specify whether the block should find the maximum of the entire input each row, each
column, or dimensions specified by the Dimension parameter.

Reset port

Specify the reset event that causes the block to reset the running maximum. The rate
of the reset signal must be a positive integer multiple of the rate of the data signal
input. This parameter appears only when you set the Mode parameter to Running.
For information about the possible values of this parameter, see “Resetting the
Running Maximum” on page 1-81.

Dimension

Specify the dimension (one-based value) of the input signal, over which the maximum
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter applies only when you set the Find the maximum
value over parameter to Specified dimension.

Enable ROI processing

Select this check box to calculate the statistical value within a particular region of
each image. This parameter applies only when you set the Find the maximum value
over parameter to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating
if ROI is within image bounds check box appears in the dialog box. If you select
this check box, the Flag port appears on the block.

When you set this parameter to Label matrix, the Label and Label Numbers
ports appear on the block and the Output flag indicating if input label numbers
are valid check box appears in the dialog box. If you select this check box, the Flag
port appears on the block.

See “ROI Output Statistics” on page 1-83 for details.

1-85

1 Blocks — Alphabetical List

1-86

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter applies only when you set the ROI type parameter
to Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter does not apply when you set the ROI type parameter, to
Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Rectangles or Lines. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-83.

Output flag indicating if label numbers are valid

When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Label matrix. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-83.

Note The parameters on the Data Types pane are only used for complex fixed-point
inputs. The sum of the squares of the real and imaginary parts of such an input are
formed before a comparison is made, as described in “Value Mode” on page 1-79. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Rounding mode

Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”.
Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-84 and
“Multiplication Data Types” for illustrations depicting the use of the product output
data type in this block. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as input

2-D Maximum

* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-84 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same as product
output
* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Lock data type settings against changes by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask.

[20ee20]]
magic{20) B In Wal | vision_examples_vout
Constantd To W orks pace 1
o | (2] — -
[224) | RO Idg b— | vision_examples_iout
Comstant To'W orks pace2

2-0 Maximum

The ex vision 2dmaximum example finds the maximum value within two ROIs. The model
outputs the maximum values and their one-based [x y] coordinate locations.

1-87

matlab:ex_vision_2dmaximum

1 Blocks — Alphabetical List

1-88

See Also

2-D Mean
2-D Minimum

MinMax
max

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Computer Vision
System Toolbox

Computer Vision
System Toolbox

Simulink
MATLAB

2-D Mean

2-D Mean

Find mean value of each input matrix

1

2-0 Mean

Library

Statistics

visionstatistics

Description

The 2-D Mean block computes the mean of each row or column of the input, along vectors
of a specified dimension of the input, or of the entire input. The 2-D Mean block can also
track the mean value in a sequence of inputs over a period of time. To track the mean

value in a sequence of inputs, select the Running mean check box.

Port Description

Port

Supported Data Types

Input

Double-precision floating point
Single-precision floating point
Fixed point

8-, 16-, and 32-bit signed integers
8-, 16-, and 32-bit unsigned integers

1-89

1 Biocks — Alphabetical List

1-90

Port Supported Data Types

Reset * Double-precision floating point

* Single-precision floating point

* Boolean

e 8-, 16-, and 32-bit signed integers

e 8-, 16-, and 32-bit unsigned integers

ROI Rectangles and lines:

* Double-precision floating point

* Single-precision floating point

* Boolean

e 8-, 16-, and 32-bit signed integers

* 8-, 16-, and 32-bit unsigned integers

Binary Mask:

* Boolean
Label * 8-, 16-, and 32-bit unsigned integers
Label * 8-, 16-, and 32-bit unsigned integers
Numbers
Output * Double-precision floating point

* Single-precision floating point

e Fixed point

e 8-, 16-, and 32-bit signed integers

e 8-, 16-, and 32-bit unsigned integers
Flag * Boolean

Basic Operation

When you do not select the Running mean check box, the block computes the mean
value in each row or column of the input, along vectors of a specified dimension of the
input, or of the entire input at each individual sample time. Each element in the output
array Y is the mean value of the corresponding column, row, vector, or entire input. The

2-D Mean

output array, y, depends on the setting of the Find the mean value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

Entire input — The output at each sample time is a scalar that contains the mean
value of the M-by-N-by-P input matrix.

y = mean(u(:)) % Equivalent MATLAB code

Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the mean value of each vector over the second dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is an M-
by-1 column vector.

y = mean(u,?2) % Equivalent MATLAB code

Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the mean value of each vector over the first dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is a 1-
by-N row vector.

y = mean(u) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

Specified dimension — The output at each sample time depends on the value of
the Dimension parameter. If you set the Dimension to 1, the output is the same as
when you select Each column. If you set the Dimension to 2, the output is the same
as when you select Each row. If you set the Dimension to 3, the output at each
sample time is an M-by-N matrix containing the mean value of each vector over the
third dimension of the input.

y = mean(u,Dimension) % Equivalent MATLAB code

The mean of a complex input is computed independently for the real and imaginary
components, as shown in the following figure.

1-91

1 Blocks — Alphabetical List

Complex

input {u)

e Dutput [v)
-3-i

4+4i |::> } i |:> o+ Lei]
—L+4i

—4—-i zzn

Running Operation

When you select the Running mean check box, the block tracks the mean value of each
channel in a time sequence of inputs. In this mode, the block treats each element as a
channel.

Resetting the Running Mean

The block resets the running mean whenever a reset event is detected at the optional Rst
port. The reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs, the running mean for each channel is initialized to the value
in the corresponding channel of the current input.

You specify the reset event by the Reset port parameter:

* None disables the Rst port.

* Rising edge — Triggers a reset operation when the Rst input does one of the
following:
* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise
from a negative value to zero (see the following figure)

1-92

2-D Mean

Rising edge
— Rising edge
l_;|

l |

Not a rising edge because it is

Rising edge L a continuation of a rise from
I —— Rising edge — a negative value to zero.

* Falling edge — Triggers a reset operation when the Rst input does one of the
following:

+ Falls from a positive value to a negative value or zero

+ Falls from zero to a negative value, where the fall is not a continuation of a fall
from a positive value to zero (see the following figure)

Falling edge Falling edge
l_;l l_;|

I I

) Not a falling edge because it is
' Falling edge a continuation of a fall from
Falling edge —— _/| a positive value to zero.
l%

| | l

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a
one-sample latency. Therefore, when the block detects a reset event, there is a one-
sample delay at the reset port rate before the block applies the reset.

1-93

1 Blocks — Alphabetical List

1-94

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the mean value over parameter is set to Entire input and the Running mean
check box is not selected. ROI processing is only supported for 2-D inputs.

* A binary mask is a binary image that enables you to specify which pixels to highlight,
or select.

* In alabel matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on.
When the ROI type parameter is set to Label matrix, the Label and Label Numbers
ports appear on the block. Use the Label Numbers port to specify the objects in the
label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix.

* For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes reference page.

For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes block reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify
whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

2-D Mean

Output = Individual statistics for each ROI

Flag Port Description

Output

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Description

Output

0 All ROIs are completely outside the input image.

1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Description

Output

0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Description

Output

0 None of the label numbers are in the label matrix.

1 At least one of the label numbers is in the label matrix.

1-95

1 Biocks — Alphabetical List

1-96

Fixed-Point Data Types

The following diagram shows the data types used within the Mean block for fixed-point
signals.

The result of each oddition remains
in the accomulator data type.

g™
L
» -

" ADDER OIVIDER
Input fecurnulatar Qutput data
data fype data ype type

You can set the accumulator and output data types in the block dialog, as discussed in
“Parameters” on page 1-96.

Parameters

Running mean
Enables running operation when selected.
Reset port

Specify the reset event that causes the block to reset the running mean. The sample
time of the input to the Rst port must be a positive integer multiple of the input
sample time. This parameter appears only when you select the Running mean check
box. For more information, see “Resetting the Running Mean” on page 1-92.

Find the mean value over

Specify whether to find the mean value along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see “Basic
Operation” on page 1-90.

Dimension

Specify the dimension (one-based value) of the input signal, over which the mean is
computed. The value of this parameter cannot exceed the number of dimensions in

2-D Mean

the input signal. This parameter is only visible when the Find the mean value over
parameter is set to Specified dimension.

Enable ROI Processing

Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the mean value over
parameter is set to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-94.

Output flag indicating if label numbers are valid
When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-94.
Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-96 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

1-97

1 Blocks — Alphabetical List

* Arule that inherits a data type, for example, Inherit: Same as input
* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type

Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-96 for

illustrations depicting the use of the output data type in this block. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as accumulator

* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type

Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Minimum

Specify the minimum value that the block should output. The default value, [1, is

equivalent to - Inf. Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges” (Simulink))

* Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [1, is
equivalent to Inf. Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges” (Simulink))
* Automatic scaling of fixed-point data types

1-98

2-D Mean

Example

Dhe20]
magic0) Lol

Constant1

[Z3ed]

Constant

rp
% -
w—p RO

2-0 Mean

L

vision_examples_mean

To Workspace1

The ex vision 2dmean calculates the mean value within two ROIs.

See Also

2-D Maximum
2D-Median
2-D Minimum

2-D Standard Deviation

mean

Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
Computer Vision Toolbox
MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

1-99

matlab:ex_vision_2dmean

1 Blocks — Alphabetical List

1-100

2-D Median

Find 2-D Median value of each input matrix

I, 1
o

Library

Statistics

visionstatistics

Description

The 2-D Median block computes the median value of each row or column of the input,
along vectors of a specified dimension of the input, or of the entire input. The median of a
set of input values is calculated as follows:

1 The values are sorted.

2 If the number of values is odd, the median is the middle value.
3 If the number of values is even, the median is the average of the two middle values.

For a given input u, the size of the output array y depends on the setting of the Find the
median value over parameter. For example, consider a 3-dimensional input signal of size
M-by-N-by-P:

* Entire input — The output at each sample time is a scalar that contains the median
value of the M-by-N-by-P input matrix.

y = median(u(:)) % Equivalent MATLAB code

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the median value of each vector over the second dimension of
the input. For an input that is an M-by-N matrix, the output is an M-by-1 column
vector.

2-D Median

y = median(u,2) % Equivalent MATLAB code

Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the median value of each vector over the first dimension
of the input. For an input that is an M-by-N matrix, the output at each sample time is a
1-by-N row vector.

y = median(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors
when the block is in this mode. Sample-based length-M row vector inputs are also
treated as M-by-1 column vectors.

Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the median value of each vector over the third dimension of the input.

y = median(u,Dimension) % Equivalent MATLAB code

The block sorts complex inputs according to their magnitude.

Fixed-Point Data Types

For fixed-point inputs, you can specify accumulator, product output, and output data types
as discussed in “Parameters” on page 1-102. Not all these fixed-point parameters are

applicable for all types of fixed-point inputs. The following table shows when each kind of
data type and scaling is used.

Output data type Accumulator data Product output data
type type
Even M X X
0dd M X
Odd M and complex X X X
Even M and complex X X X

The accumulator and output data types and scalings are used for fixed-point signals when
M is even. The result of the sum performed while calculating the average of the two
central rows of the input matrix is stored in the accumulator data type and scaling. The
total result of the average is then put into the output data type and scaling.

1-101

1 Blocks — Alphabetical List

1-102

The accumulator and product output parameters are used for complex fixed-point inputs.
The sum of the squares of the real and imaginary parts of such an input are formed before
the input elements are sorted, as described in Description on page 1-100. The results of
the squares of the real and imaginary parts are placed into the product output data type
and scaling. The result of the sum of the squares is placed into the accumulator data type
and scaling.

For fixed-point inputs that are both complex and have even M, the data types are used in
all of the ways described. Therefore, in such cases, the accumulator type is used in two
different ways.

Parameters

Sort algorithm

Specify whether to sort the elements of the input using a Quick sort oran
Insertion sort algorithm.

Find the median value over

Specify whether to find the median value along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see
Description on page 1-100.

Dimension

Specify the dimension (one-based value) of the input signal, over which the median is
computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter is only visible when the Find the median value
over parameter is set to Specified dimension.

Note Floating-point inheritance takes precedence over the data type settings defined on
this pane. When inputs are floating point, the block ignores these settings, and all internal
data types are floating point.

Rounding mode
Select the Rounding mode for fixed-point operations.
Saturate on integer overflow

Select the overflow mode for fixed-point operations. See “Precision and Range”.

2-D Median

Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-101
and “Multiplication Data Types” for illustrations depicting the use of the product
output data type in this block. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as input

* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button LI to display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-101 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same as product
output

* An expression that evaluates to a valid data type, for example, fixdt([]1,16,0)

Click the Show data type assistant button LI to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output data type

Specify the output data type. See “Fixed-Point Data Types” on page 1-101 for
illustrations depicting the use of the output data type in this block. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as accumulator
* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button LI to display the Data Type
Assistant, which helps you set the Output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

1-103

1 Biocks — Alphabetical List

Minimum
Specify the minimum value that the block should output. The default value, [1, is
equivalent to - Inf. Simulink software uses this value to perform:
» Simulation range checking (see “Signal Ranges” (Simulink))
* Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [1, is
equivalent to Inf. Simulink software uses this value to perform:

* Simulation range checking (see “Signal Ranges” (Simulink))
* Automatic scaling of fixed-point data types

Supported Data Types

Port Supported Data Types

Input * Double-precision floating point

* Single-precision floating point

» Fixed point (signed and unsigned)

e 8-, 16-, 32-, and 128-bit signed integers

e 8-, 16-, 32-, and 128-bit unsigned integers

Output * Double-precision floating point

* Single-precision floating point

* Fixed point (signed and unsigned)

o 8-, 16-, 32-, and 128-bit signed integers

* 8-, 16-, 32-, and 128-bit unsigned integers

1-104

2-D Median

Examples

Calculate Median Value Over Entire Input

[20e201] |:|I:I I:||:|

. ~e e L . e 2

magic{20) 0 C-um | vision_examples wvout
= To W,

C o Workspace

Lenstant 2-D Median ¢

The ex vision 2dmedian calculates the median value over the entire input.

See Also

2-D Maximum Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
2-D Minimum Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
median MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

1-105

matlab:ex_vision_2dmedian

1 Biocks — Alphabetical List

1-106

2-D Minimum

Find minimum values in input or sequence of inputs
Wal B

I Idx [

2-0 Minimum

Library

Statistics

visionstatistics

Description

The 2-D Minimum block identifies the value and/or position of the smallest element in
each row or column of the input, or along a specified dimension of the input. The 2-D
Minimum block can also track the minimum values in a sequence of inputs over a period
of time.

The 2-D Minimum block supports real and complex floating-point, fixed-point, and
Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex
fixed-point inputs must be signed. The output data type of the minimum values match the
data type of the input. The block outputs double index values, when the input is double,
and uint32 otherwise.

2-D Minimum

Port Description

Complex
Port Input/Output Supported Data Types Values
Supported
Input Scalar, vector or matrix of * Double-precision floating point Yes
intensity values + Single-precision floating point
* Fixed point
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Rst Scalar value Boolean No
Val Minimum value output based on |Same as Input port Yes
the “Value Mode” on page 1-107
Idx One-based output location of Same as Input port No
the minimum value based on the
“Index Mode” on page 1-108

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Value Mode

When you set the Mode parameter to Value, the block computes the minimum value in
each row, column, entire input, or over a specified dimension. The block outputs each
element as the minimum value in the corresponding column, row, vector, or entire input.
The output depends on the setting of the Find the minimum value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the minimum value of each vector over the second dimension of
the input. For an M-by-N input matrix, the block outputs an M-by-1 column vector at

each sample time.

* Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the minimum value of each vector over the first
dimension of the input. For an M-by-N input matrix, the block outputs a 1-by-N row

vector at each sample time.

1-107

1 Blocks — Alphabetical List

1-108

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Entire input — The output at each sample time is a scalar that contains the
minimum value in the M-by-N-by-P input matrix.

* Specified dimension — The output at each sample time depends on Dimension.
When you set Dimension to 1, the block output is the same as when you select Each
column. When you set Dimension to 2, the block output is the same as when you
select Each row. When you set Dimension to 3, the block outputs an M-by-N matrix
containing the minimum value of each vector over the third dimension of the input, at
each sample time.

For complex inputs, the block selects the value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input that has the minimum
magnitude squared as shown below. For complex value u = a + bi, the magnitude squared

is a® + b2.

(omplex
Input [u) absju) Output [val)

a+2i

-3-i

4+4i |:> 32 |:> (225
- 1+ 4 17

—4-i

Index Mode

When you set the Mode parameter to Index, the block computes the minimum value in
each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input, and outputs the index array I. Each element in I is an integer indexing
the minimum value in the corresponding column, row, vector, or entire input. The output I
depends on the setting of the Find the minimum value over parameter. For example,
consider a 3-dimensional input signal of size M-by-N-by-P:

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the index of the minimum value of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is an M-by-1 column vector.

* Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the index of the minimum value of each vector over the
first dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

2-D Minimum

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Entire input — The output at each sample time is a 1-by-3 vector that contains the
location of the minimum value in the M-by-N-by-P input matrix. For an input that is an
M-by-N matrix, the output will be a 1-by-2 vector of one-based [x y] location
coordinates for the minimum value.

* Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the indices of the minimum values of each vector over the third dimension of the input.

When a minimum value occurs more than once, the computed index corresponds to the
first occurrence. For example, when the input is the column vector [-1 2 3 2 -1]', the
computed one-based index of the minimum value is 1 rather than 5 when Each column
is selected.

Value and Index Mode

When you set the Mode parameter to Value and Index, the block outputs both the
minima, and the indices.

Running Mode

When you set the Mode parameter to Running, the block tracks the minimum value of
each channel in a time sequence of M-by-N inputs. In this mode, the block treats each
element as a channel.

Resetting the Running Minimum

The block resets the running minimum whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample
time.

You specify the reset event by the Reset port parameter:

* None — Disables the Rst port

*+ Rising edge — Triggers a reset operation when the Rst input does one of the
following:

1-109

1 Biocks — Alphabetical List

* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise
from a negative value to zero (see the following figure)

Rising edge

— Rising edge
|_;|

l l

Not a rising edge because it is
Rising edge . a continuation of a rise from
,[—— Rising edge — a negative value to zero.

* Falling edge — Triggers a reset operation when the Rst input does one of the
following:

+ Falls from a positive value to a negative value or zero

» Falls from zero to a negative value, where the fall is not a continuation of a fall
from a positive value to zero (see the following figure)

Falling edge Falling edge
l_;l l_;|

I I

) Not a falling edge because it is
Faling od Falling edge a continuation of a fall from
alling edge —— iti
g eqag _/| a positive value to zero.

I
| | l

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described above)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

1-110

2-D Minimum

Note When running simulations in the Simulink MultiTasking mode, reset signals have
a one-sample latency. Therefore, when the block detects a reset event, there is a one-
sample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This applies to any mode other than the
Running mode and when you set the Find the minimum value over parameter to
Entire input and you select the Enable ROI processing check box. ROI processing
applies only for 2-D inputs.

You can specify a rectangle, line, label matrix, or binary mask ROI type.
Use the binary mask to specify which pixels to highlight or select.

Use the label matrix to label regions. Pixels set to 0 represent the background. Pixels set
to 1 represent the first object, pixels set to 2, represent the second object, and so on. Use
the Label Numbers port to specify the objects in the label matrix for which the block
calculates statistics. The input to this port must be a vector of scalar values that
correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter. For more
information about the format of the input to the ROI port when you set the ROI to a
rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics

Output = Individual statistics for each ROI

Flag Port Description

Output

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

1-111

1 Blocks — Alphabetical List

Output = Single statistic for all ROIs

Flag Port Description

Output

0 All ROIs are completely outside the input image.

1 At least one ROI is completely or partially inside the input image.

If the ROl is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

Output = Individual statistics for each ROI

Flag Port Description

Output
0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Description

Output
0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the dialog box are only used for complex
fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input
are formed before a comparison is made, as described in “Value Mode” on page 1-107.
The results of the squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into the accumulator data
type. These parameters are ignored for other types of inputs.

Parameters

Mode
Specify the block's mode of operation:

1-112

2-D Minimum

* Value and Index — Output both the value and the index location.

* Value — Output the minimum value of each input matrix. For more information,
see “Value Mode” on page 1-107

* Index— Output the one-based index location of the minimum value. For more
information, see “Index Mode” on page 1-108

* Running — Track the minimum value of the input sequence over time. For more
information, see “Running Mode” on page 1-109.

For the Value, Index, and Value and Index modes, the 2-D Minimum block
produces identical results as the MATLAB min function when it is called as [y I] =
min(u, [],D), where u and y are the input and output, respectively, D is the
dimension, and I is the index.

Find the minimum value over

Specify whether the block should find the minimum of the entire input each row, each
column, or dimensions specified by the Dimension parameter.

Reset port

Specify the reset event that causes the block to reset the running minimum. The rate
of the reset signal must be a positive integer multiple of the rate of the data signal
input. This parameter appears only when you set the Mode parameter to Running.
For information about the possible values of this parameter, see “Resetting the
Running Minimum” on page 1-109.

Dimension
Specify the dimension (one-based value) of the input signal, over which the minimum
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter applies only when you set the Find the minimum
value over parameter to Specified dimension.

Enable ROI processing

Select this check box to calculate the statistical value within a particular region of
each image. This parameter applies only when you set the Find the minimum value
over parameter to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating
if ROI is within image bounds check box appears in the dialog box. If you select
this check box, the Flag port appears on the block.

1-113

1 Biocks — Alphabetical List

1-114

When you set this parameter to Label matrix, the Label and Label Numbers
ports appear on the block and the Output flag indicating if input label numbers
are valid check box appears in the dialog box. If you select this check box, the Flag
port appears on the block.

See Output = Individual statistics for each ROI for details.
ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter applies only when you set the ROI type parameter
to Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter does not apply when you set the ROI type parameter, to
Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Rectangles or Lines. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-111.

Output flag indicating if label numbers are valid

When you select this check box, the Flag port appears on the block. This check box
applies only when you set the ROI type parameter to Label matrix. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-111.

Note The parameters on the Data Types pane are only used for complex fixed-point
inputs. The sum of the squares of the real and imaginary parts of such an input are
formed before a comparison is made, as described in “Value Mode” on page 1-107. The
results of the squares of the real and imaginary parts are placed into the product output
data type. The result of the sum of the squares is placed into the accumulator data type.
These parameters are ignored for other types of inputs.

Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Saturate on integer overflow
Select the overflow mode for fixed-point operations. See “Precision and Range”.

2-D Minimum

Product output data type

Specify the product output data type. See “Fixed-Point Data Types” on page 1-112
and “Multiplication Data Types” for illustrations depicting the use of the product
output data type in this block. You can set it to:

* Arule that inherits a data type, for example, Inherit: Same as input

* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator data type

Specify the accumulator data type. See “Fixed-Point Data Types” on page 1-112 for
illustrations depicting the use of the accumulator data type in this block. You can set
this parameter to:

* Arule that inherits a data type, for example, Inherit: Same as input

* An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button 7 o display the Data Type
Assistant, which helps you set the Accumulator data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Examples
magic{20} 20201 I In Wal —.._[zx - vision_examples_vout
Constantl To Wordspace
[Zed] [aﬂ—." ROl & Idx [2&—>| vision_examples_iout
To Workspace2

—
Constant 2-0 Minimum

1-115

1 Blocks — Alphabetical List

The ex vision 2dminimum example finds the minimum value within two ROIs. The model
outputs the minimum values and their one-based [x y] coordinate locations.

See Also

2-D Maximum Computer Vision Toolbox
2-D Mean Computer Vision Toolbox
MinMax Simulink

2D-Histogram Computer Vision Toolbox
min MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

1-116

matlab:ex_vision_2dminimum

2-D Standard Deviation

2-D Standard Deviation

Find standard deviation of each input matrix

2-D Standard
Dewviation

Library

Statistics

I ¢

visionstatistics

Description

The Standard Deviation block computes the standard deviation of each row or column of
the input, along vectors of a specified dimension of the input, or of the entire input. The
Standard Deviation block can also track the standard deviation of a sequence of inputs
over a period of time. The Running standard deviation parameter selects between
basic operation and running operation.

Port Description

Port Supported Data Types

Input * Double-precision floating point
» Single-precision floating point

Reset * Double-precision floating point

Single-precision floating point
Boolean

8-, 16-, and 32-bit signed integers
8-, 16-, and 32-bit unsigned integers

1-117

1 Biocks — Alphabetical List

1-118

Port Supported Data Types
ROI Rectangles and lines:
* Double-precision floating point
* Single-precision floating point
* Boolean
* 8-, 16-, and 32-bit signed integers
* 8-, 16-, and 32-bit unsigned integers
Binary Mask:
* Boolean
Label * 8-, 16-, and 32-bit unsigned integers
Label e 8-, 16-, and 32-bit unsigned integers
Numbers
Output * Double-precision floating point
* Single-precision floating point
Flag * Boolean

Basic Operation

When you do not select the Running standard deviation check box, the block computes
the standard deviation of each row or column of the input, along vectors of a specified
dimension of the input, or of the entire input at each individual sample time, and outputs
the array y. Each element in y contains the standard deviation of the corresponding
column, row, vector, or entire input. The output y depends on the setting of the Find the
standard deviation value over parameter. For example, consider a 3-dimensional input

signal of size M-by-N-by-P:

* Entire input — The output at each sample time is a scalar that contains the

standard deviation of the entire input.

y = std(u(:))

sample time is an M-by-1 column vector.

% Equivalent MATLAB code

* Each Row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the standard deviation of each vector over the second
dimension of the input. For an input that is an M-by-N matrix, the output at each

2-D Standard Deviation

y = std(u,0,2) % Equivalent MATLAB code

* Each Column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the standard deviation of each vector over the first
dimension of the input. For an input that is an M-by-N matrix, the output at each
sample time is a 1-by-N row vector.

y = std(u,0,1) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Specified Dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If
Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the standard deviation of each vector over the third dimension of the input.

y = std(u,0,Dimension) % Equivalent MATLAB code

For purely real or purely imaginary inputs, the standard deviation of the jth column of an
M-by-N input matrix is the square root of its variance:

For complex inputs, the output is the total standard deviation, which equals the square
root of the total variance, or the square root of the sum of the variances of the real and
imaginary parts. The standard deviation of each column in an M-by-N input matrix is
given by:

= [52 2
0j=40jRe t 0j,Im

Note The total standard deviation does not equal the sum of the real and imaginary
standard deviations.

1-119

1 Blocks — Alphabetical List

Running Operation

When you select the Running standard deviation check box, the block tracks the
standard deviation of successive inputs to the block. In this mode, the block treats each
element as a channel.

Resetting the Running Standard Deviation

The block resets the running standard deviation whenever a reset event is detected at the
optional Rst port. The reset sample time must be a positive integer multiple of the input
sample time.

You specify the reset event in the Reset port parameter:

* None disables the Rst port.

* Rising edge — Triggers a reset operation when the Rst input does one of the
following:
* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise
from a negative value to zero (see the following figure)

Falling edge Falling edge
l_;| l_;|

I I

. Not a falling edge because it is
_ Falling edge a continuation of a fall from
Falling edge —— _/| a positive value to zero.
l+|

| | l

* Falling edge — Triggers a reset operation when the Rst input does one of the
following:

+ Falls from a positive value to a negative value or zero

+ Falls from zero to a negative value, where the fall is not a continuation of a fall
from a positive value to zero (see the following figure)

1-120

2-D Standard Deviation

Rising edge
— Rising edge
I_;|

l |

Not a rising edge because it is

Rising edge - a continuation of a rise from
I —— Rising edge — a negative value to zero.

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the standard deviation value over parameter is set to Entire input and the
Running standard deviation check box is not selected. ROI processing is only
supported for 2-D inputs.

Use the ROI type parameter to specify whether the ROl is a rectangle, line, label matrix,
or binary mask. A binary mask is a binary image that enables you to specify which pixels
to highlight, or select. In a label matrix, pixels equal to 0 represent the background,
pixels equal to 1 represent the first object, pixels equal to 2 represent the second object,
and so on. When the ROI type parameter is set to Label matrix, the Label and Label
Numbers ports appear on the block. Use the Label Numbers port to specify the objects in
the label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix. For

1-121

1 Blocks — Alphabetical List

1-122

more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to
calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Description

Output
0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Description

Output
0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

2-D Standard Deviation

Output = Individual statistics for each ROI

Flag Port Description

Output
0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single statistic for all ROls

Flag Port Description

Output

0 None of the label numbers are in the label matrix.

1 At least one of the label numbers is in the label matrix.
Parameters

Running standard deviation
Enables running operation when selected.

Reset port
Specify the reset event that causes the block to reset the running standard deviation.
The sample time of the input to the Rst port must be a positive integer multiple of the
input sample time. This parameter appears only when you select the Running
standard deviation check box. For more information, see “Resetting the Running
Standard Deviation” on page 1-120.

Find the standard deviation value over

Specify whether to find the standard deviation value along rows, columns, entire
input, or the dimension specified in the Dimension parameter. For more information,
see “Basic Operation” on page 1-118.

Dimension

Specify the dimension (one-based value) of the input signal, over which the standard
deviation is computed. The value of this parameter cannot exceed the number of
dimensions in the input signal. This parameter is only visible when the Find the
standard deviation value over parameter is set to Specified dimension.

1-123

1 Biocks — Alphabetical List

1-124

Enable ROI Processing

Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the standard deviation
value over parameter is set to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-121.

Output flag indicating if label numbers are valid

When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-121.

20620
magie20) Leoed] |
2]
Constant1 [—.- vision_examples_std
- [Zx4]
[Zx4] ——————— = ROl To Workspace1
Constant
2-0 Standard

Ceviation

2-D Standard Deviation

The ex vision 2dstd calculates the standard deviation value within two ROIs.

See Also

2-D Mean Computer Vision Toolbox
2-D Variance Computer Vision Toolbox
std

MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

1-125

matlab:ex_vision_2dstd

1 Biocks — Alphabetical List

1-126

2-D Variance

Compute variance of input or sequence of inputs

WAR 3

2-D Variance

Library

Statistics

visionstatistics

Description

The 2-D Variance block computes the unbiased variance of each row or column of the
input, along vectors of a specified dimension of the input, or of the entire input. The 2-D
Variance block can also track the variance of a sequence of inputs over a period of time.
The Running variance parameter selects between basic operation and running
operation.

Port Description

Port Supported Data Types

Input * Double-precision floating point

» Single-precision floating point

¢ Fixed point

* 8-, 16-, and 32-bit signed integers

e 8-, 16-, and 32-bit unsigned integers

2-D Variance

Port

Supported Data Types

Reset

Double-precision floating point
Single-precision floating point
Boolean

8-, 16-, and 32-bit signed integers
8-, 16-, and 32-bit unsigned integers

ROI

Rectangles and lines:

Double-precision floating point
Single-precision floating point
Boolean

8-, 16-, and 32-bit signed integers
8-, 16-, and 32-bit unsigned integers

Binary Mask:

Boolean

Label

8-, 16-, and 32-bit unsigned integers

Label
Numbers

8-, 16-, and 32-bit unsigned integers

Output

Double-precision floating point
Single-precision floating point
Fixed point

8-, 16-, and 32-bit signed integers
8-, 16-, and 32-bit unsigned integers

Flag

Boolean

Basic Operation

When you do not select the Running variance check box, the block computes the

variance of each row or column of the input, along vectors of a specified dimension of the
input, or of the entire input at each individual sample time, and outputs the array y. Each
element in y is the variance of the corresponding column, row, vector, or entire input. The

1-127

1 Biocks — Alphabetical List

1-128

output y depends on the setting of the Find the variance value over parameter. For
example, consider a 3-dimensional input signal of size M-by-N-by-P:

* Entire input — The output at each sample time is a scalar that contains the
variance of the entire input.

y = var(u(:)) % Equivalent MATLAB code

* Each row — The output at each sample time consists of an M-by-1-by-P array, where
each element contains the variance of each vector over the second dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is an M-
by-1 column vector.

y = var(u,0,2) % Equivalent MATLAB code

* Each column — The output at each sample time consists of a 1-by-N-by-P array,
where each element contains the variance of each vector over the first dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is a 1-
by-N row vector.

y = var(u,0,1) % Equivalent MATLAB code

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column
vectors.

* Specified dimension — The output at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as that when you select Each column.
If Dimension is set to 2, the output is the same as when you select Each row. If
Dimension is set to 3, the output at each sample time is an M-by-N matrix containing
the variance of each vector over the third dimension of the input.

y = var(u,0,Dimension) % Equivalent MATLAB code

For purely real or purely imaginary inputs, the variance of an M-by-N matrix is the square
of the standard deviation:

For complex inputs, the variance is given by the following equation:

2

0“ = ORe2 + Oppy2

2-D Variance

Running Operation

When you select the Running variance check box, the block tracks the variance of

successive inputs to the block. In this mode, the block treats each element as a channel.

Resetting the Running Variance

The block resets the running variance whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample

time.
You specify the reset event in the Reset port parameter:

* None disables the Rst port.

*+ Rising edge — Triggers a reset operation when the Rst input does one of the
following:

* Rises from a negative value to a positive value or zero

* Rises from zero to a positive value, where the rise is not a continuation of a rise

from a negative value to zero (see the following figure)

Falling edge Falling edge
l_;| l_;|

I I

) Not a falling edge because it is
_ Falling edge a continuation of a fall from
Falling edge —— _/| a positive value to zero.
I+|

| | l

* Falling edge — Triggers a reset operation when the Rst input does one of the

following:

+ Falls from a positive value to a negative value or zero

+ Falls from zero to a negative value, where the fall is not a continuation of a fall

from a positive value to zero (see the following figure)

1-129

1 Biocks — Alphabetical List

Rising edge
— Rising edge
I_;|

l |

Not a rising edge because it is
Rising edge - a continuation of a rise from
I —— Rising edge — a negative value to zero.

* Either edge — Triggers a reset operation when the Rst input is a Rising edge or
Falling edge (as described earlier)

* Non-zero sample — Triggers a reset operation at each sample time that the Rst
input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals
have a one-sample latency. Therefore, when the block detects a reset event, there is a
one-sample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input,
select the Enable ROI processing check box. This option is only available when the
Find the variance value over parameter is set to Entire input and the Running
variance check box is not selected. ROI processing is only supported for 2-D inputs.

Use the ROI type parameter to specify whether the ROI is a binary mask, label matrix,
rectangle, or line. ROI processing is only supported for 2-D inputs.

* A binary mask is a binary image that enables you to specify which pixels to highlight,
or select.

* In alabel matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on.
When the ROI type parameter is set to Label matrix, the Label and Label Numbers
ports appear on the block. Use the Label Numbers port to specify the objects in the
label matrix for which the block calculates statistics. The input to this port must be a
vector of scalar values that correspond to the labeled regions in the label matrix.

1-130

2-D Variance

» For more information about the format of the input to the ROI port when the ROI is a
rectangle or a line, see the Draw Shapes reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify
whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate
statistical values for each ROI or the statistical value for all specified ROIs. This
parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag
indicating if ROI is within image bounds check box appears in the dialog box. If you
select this check box, the Flag port appears on the block. The following tables describe
the Flag port output based on the block parameters.

Output = Individual Statistics for Each ROI

Flag Port Description

Output
0 ROI is completely outside the input image.
1 ROI is completely or partially inside the input image.

Output = Single Statistic for All ROIs

Flag Port Description

Output
0 All ROIs are completely outside the input image.
1 At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for
the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if
input label numbers are valid check box appears in the dialog box. If you select this
check box, the Flag port appears on the block. The following tables describe the Flag port
output based on the block parameters.

1-131

1 Biocks — Alphabetical List

Output = Individual Statistics for Each ROI

Flag Port Description

Output
0 Label number is not in the label matrix.
1 Label number is in the label matrix.

Output = Single Statistic for All ROIs

Flag Port Description

Output
0 None of the label numbers are in the label matrix.
1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The parameters on the Data Types pane of the block dialog are only used for fixed-point
inputs. For purely real or purely imaginary inputs, the variance of the input is the square
of its standard deviation. For complex inputs, the output is the sum of the variance of the
real and imaginary parts of the input.

The following diagram shows the data types used within the Variance block for fixed-point
signals.

uj

The results of the magnitude-squared calculations in the figure are in the product output
data type. You can set the accumulator, product output, and output data types in the block
dialog as discussed in “Parameters” on page 1-132.

Parameters

Running variance
Enables running operation when selected.
Reset port

Specify the reset event that causes the block to reset the running variance. The
sample time of the input to the Rst port must be a positive integer multiple of the

1-132

2-D Variance

input sample time. This parameter appears only when you select the Running
variance check box. For more information, see “Resetting the Running Variance” on
page 1-129

Find the variance value over
Specify whether to find the variance along rows, columns, entire input, or the
dimension specified in the Dimension parameter. For more information, see “Basic
Operation” on page 1-127.

Dimension
Specify the dimension (one-based value) of the input signal, over which the variance
is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter is only visible when the Find the variance value
over parameter is set to Specified dimension.

Enable ROI Processing

Select this check box to calculate the statistical value within a particular region of
each image. This parameter is only available when the Find the variance value over
parameter is set to Entire input, and the block is not in running mode.

Note Full ROI processing is available only if you have a Computer Vision Toolbox
license. If you do not have a Computer Vision Toolbox license, you can still use ROI
processing, but are limited to the ROI type Rectangles.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines,
Label matrix, or Binary mask.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just
the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you
specify Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values
for each ROI or a scalar value that represents the statistical value for all the specified
ROIs. This parameter is not available if, for the ROI type parameter, you select
Binary mask.

1-133

1 Blocks — Alphabetical List

1-134

Output flag indicating if ROI is within image bounds

When you select this check box, a Flag port appears on the block. For a description of
the Flag port output, see the tables in “ROI Processing” on page 1-130.

Output flag indicating if label numbers are valid

When you select this check box, a Flag port appears on the block. This check box is
visible only when you select Label matrix for the ROI type parameter. For a
description of the Flag port output, see the tables in “ROI Processing” on page 1-130.
Rounding mode
Select the “Rounding Modes” for fixed-point operations.
Overflow mode
Select the Overflow mode for fixed-point operations.

Note See “Fixed-Point Data Types” on page 1-132 for more information on how the
product output, accumulator, and output data types are used in this block.

Input-squared product
Use this parameter to specify how to designate the input-squared product word and
fraction lengths:
* When you select Same as input, these characteristics match those of the input
to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the input-squared product, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the input-squared product. This block requires power-of-two
slope and a bias of zero.

Input-sum-squared product
Use this parameter to specify how to designate the input-sum-squared product word
and fraction lengths:
* When you select Same as input-squared product, these characteristics
match those of the input-squared product.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the input-sum-squared product, in bits.

2-D Variance

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the input-sum-squared product. This block requires power-of-
two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting
from a complex-complex multiplication in the block:

When you select Same as input-squared product, these characteristics
match those of the input-squared product.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. This block requires power-of-two slope and
a bias of zero.

Output

Choose how you specify the output word length and fraction length:

When you select Same as accumulator, these characteristics match those of
the accumulator.

When you select Same as input-squared product, these characteristics
match those of the input-squared product.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of zero.

Lock data type settings against changes by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask.

1-135

1 Blocks — Alphabetical List

1-136

Example
meagic{20) (20c20] J={In
Constant1 VAR [EK—.._ vision_examples_wvar
zeap 21 lro To Worpace!
Constant

2-0 Variance

The ex vision 2dvar calculates the variance value within two ROIs.

See Also

2-D Mean Computer Vision Toolbox
2-D Standard Deviation Computer Vision Toolbox
var MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

matlab:ex_vision_2dvar

Autothreshold

Autothreshold

Convert intensity image to binary image

By
| Autothreshold Th
Etdetric

Autothreshold

Library

Conversions

visionconversions

Description

The Autothreshold block converts an intensity image to a binary image using a threshold

value computed using Otsu's method.

This block computes this threshold value by splitting the histogram of the input image
such that the variance of each pixel group is minimized.

Complex
Port Input/Output Supported Data Types Values
Supported
I Vector or matrix of intensity values |¢ Double-precision floating point |[No
+ Single-precision floating point
* Fixed point
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned
integer
BW Scalar, vector, or matrix that Boolean No

represents a binary image

1-137

1 Blocks — Alphabetical List

Complex
Port Input/Output Supported Data Types Values

Supported
Th Threshold value Same as I port No
EMetric |Effectiveness metric Same as I port No

1-138

Use the Thresholding operator parameter to specify the condition the block places on
the input values. If you select > and the input value is greater than the threshold value,
the block outputs 1 at the BW port; otherwise, it outputs 0. If you select <= and the input
value is less than or equal to the threshold value, the block outputs 1; otherwise, it
outputs 0.

Select the Output threshold check box to output the calculated threshold values at the
Th port.

Select the Output effectiveness metric check box to output values that represent the
effectiveness of the thresholding at the EMetric port. This metric ranges from 0 to 1. If
every pixel has the same value, the effectiveness metric is 0. If the image has two pixel
values or the histogram of the image pixels is symmetric, the effectiveness metric is 1.

If you clear the Specify data range check box, the block assumes that floating-point
input values range from 0 to 1. To specify a different data range, select this check box.
The Minimum value of input and Maximum value of input parameters appear in the
dialog box. Use these parameters to enter the minimum and maximum values of your
input signal.

Use the When data range is exceeded parameter to specify the block's behavior when
the input values are outside the expected range. The following options are available:

* Ignore — Proceed with the computation and do not issue a warning message. If you
choose this option, the block performs the most efficient computation. However, if the
input values exceed the expected range, the block produces incorrect results.

* Saturate — Change any input values outside the range to the minimum or maximum
value of the range and proceed with the computation.

* Warn and saturate — Display a warning message in the MATLAB Command
Window, saturate values, and proceed with the computation.

* Error — Display an error dialog box and terminate the simulation.

If you clear the Scale threshold check box, the block uses the threshold value computed
by Otsu's method to convert intensity images into binary images. If you select the Scale

Autothreshold

threshold check box, the Threshold scaling factor appears in the dialog box. Enter a
scalar value. The block multiplies this scalar value with the threshold value computed by
Otsu's method and uses the result as the new threshold value.

Fixed-Point Data Types

The following diagram shows the data types used in the Autothreshold block for fixed-
point signals. You can use the default fixed-point parameters if your input has a word
length less than or equal to 16.

In this diagram, DT means data type. You can set the product, accumulator, quotient, and
effectiveness metric data types in the block mask.

.....

nnnnnn

Inputimage 2-DH
sy 256 bins)

Th (input BT)
s =]

Parameters

Thresholding operator

Specify the condition the block places on the input matrix values. If you select > or
<=, the block outputs 0 or 1 depending on whether the input matrix values are above,
below, or equal to the threshold value.

Output threshold
Select this check box to output the calculated threshold values at the Th port.
Output effectiveness metric

Select this check box to output values that represent the effectiveness of the
thresholding at the EMetric port.

1-139

1 Biocks — Alphabetical List

1-140

Specify data range

If you clear this check box, the block assumes that floating-point input values range
from 0 to 1. To specify a different data range, select this check box.

Minimum value of input

Enter the minimum value of your input data. This parameter is visible if you select the
Specify data range check box.

Maximum value of input

Enter the maximum value of your input data. This parameter is visible if you select
the Specify data range check box.

When data range is exceeded

Specify the block's behavior when the input values are outside the expected range.
Your options are Ignore, Saturate, Warn and saturate, or Error. This
parameter is visible if you select the Specify data range check box.

Scale threshold
Select this check box to scale the threshold value computed by Otsu's method.
Threshold scaling factor

Enter a scalar value. The block multiplies this scalar value with the threshold value
computed by Otsu's method and uses the result as the new threshold value. This
parameter is visible if you select the Scale threshold check box.

Rounding mode

Select the rounding mode for fixed-point operations. This parameter does not apply to
the Cast to input DT step shown in “Fixed-Point Data Types” on page 1-139. For this
step, Rounding mode is always set to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations.
Product 1, 2, 3, 4

11 dato type

v

»| MUIPLIER
12 duto type Product output
duto type

Autothreshold

As shown previously, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate the product
output word and fraction lengths.

When you select Specify word length, you can enter the word length of the
product values in bits. The block sets the fraction length to give you the best
precision.

When you select Same as input, the characteristics match those of the input to
the block. This choice is only available for the Product 4 parameter.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output in bits.

When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator 1, 2, 3, 4

The result of eoch oddition remoins
in the accumulator doto type.

F 3

IR

— I »| ADDER >

Input to odder - Acumulitor Aecumulator

As shown previously, inputs to the accumulator are cast to the accumulator data type.
The output of the adder remains in the accumulator data type as each element of the
input is added to it. Use this parameter to specify how to designate the accumulator
word and fraction lengths.

When you select Same as Product, these characteristics match those of the
product output.

When you select Specify word length, you can enter the word length of the
accumulator values in bits. The block sets the fraction length to give you the best
precision. This choice is not available for the Accumulator 4 parameter because
it is dependent on the input data type.

1-141

1 Blocks — Alphabetical List

1-142

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator in bits.

* When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

The Accumulator 3 parameter is only visible if, on the Main pane, you select the
Output effectiveness metric check box.

Quotient
Choose how to specify the word length and fraction length of the quotient data type:

* When you select Specify word length, you can enter the word length of the
quotient values in bits. The block sets the fraction length to give you the best
precision.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the quotient, in bits.

* When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the quotient. The bias of all signals in the Computer Vision
Toolbox software is 0.

Eff Metric

Choose how to specify the word length and fraction length of the effectiveness metric
data type. This parameter is only visible if, on the Main tab, you select the Output
effectiveness metric check box.

* When you select Specify word length, you can enter the word length of the
effectiveness metric values, in bits. The block sets the fraction length to give you
the best precision.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the effectiveness metric in bits.

* When you select Slope and bias scaling, you can enter the word length in
bits and the slope of the effectiveness metric. The bias of all signals in the
Computer Vision Toolbox software is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Autothreshold

Example

Example 1.1. Thresholding Intensity Images Using the Autothreshold Block

Convert an intensity image into a binary image. Use the Autothreshold block when
lighting conditions vary and the threshold needs to change for each video frame.

You can open the example model by typing
ex_vision autothreshold

on the MATLAB command line.

See Also

Compare To Constant Simulink

Relational Operator Simulink

graythresh Image Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-143

matlab:ex_vision_autothreshold

1 Biocks — Alphabetical List

Blob Analysis

Compute statistics for labeled regions

Ama
Elob .
=300 Analysis Sentmid

EBox

Blob Analsis

Library

Statistics

visionstatistics

Description

Use the Blob Analysis block to calculate statistics for labeled regions in a binary image.
The block returns quantities such as the centroid, bounding box, label matrix, and blob
count. The Blob Analysis block supports input and output variable size signals. You can
also use the Selector block from Simulink, to select certain blobs based on their statistics.

For information on pixel and spatial coordinate system definitions, see “Image Coordinate
Systems” (Image Processing Toolbox) and “Coordinate Systems”.

Port Descriptions

Port Input/Output Supported Data Types
BW Vector or matrix that represents a |Boolean
binary image
Area Vector that represents the 32-bit signed integer
number of pixels in labeled
regions

1-144

Blob Analysis

Port Input/Output Supported Data Types
Centroid M-by-2 matrix of centroid * Double-precision floating point
coordinates, where M represents |, Single-precision floating point
the number of blobs))
* Fixed point
BBox M-by-4 matrix of [x y width 32-bit signed integer
height] bounding box coordinates,
where M represents the number
of blobs and [x y] represents the
upper left corner of the bounding
box.
MajorAxis Vector that represents the lengths|* Double-precision floating point
of major axes of ellipses + Single-precision floating point
MinorAxis Vector that represents the lengths |Same as MajorAxis port
of minor axes of ellipses
Orientation Vector that represents the angles |Same as MajorAxis port
between the major axes of the
ellipses and the x-axis.
Eccentricity Vector that represents the Same as MajorAxis port

eccentricities of the ellipses

Diameter "2

Vector that represents the
equivalent diameters squared

Same as Centroid port

Extent

Vector that represents the results
of dividing the areas of the blobs
by the area of their bounding
boxes

Same as Centroid port

Perimeter

Vector containing an estimate of
the perimeter length, in pixels,
for each blob

Same as Centroid port

Label

Label matrix

8-, 16-, or 32-bit unsigned integer

Count

Scalar value that represents the
actual number of labeled regions
in each image

Same as Label port

1-145

1 Biocks — Alphabetical List

Dialog Box

The Main pane of the Blob Analysis dialog box appears as shown in the following figure.
Use the check boxes to specify the statistics values you want the block to output. For a
full description of each of these statistics, see the regionprops function reference page
in the Image Processing Toolbox documentation.

i =

& Function Block Parameters: Blob Analysis @
Blob Analysis

Compute statistics for connected regions in the binary image, BW.

Main Blob Properties | Data Types |

Statistics

Area [C] Orientation

Centroid [C] Eccentricity

Bounding box [”] Equivalent diameter squared
[”] Major axis length [T] Extent

["] Minor axis length [C] Perimeter

Statistics output data type: [double -

Mote: Area and Bounding box outputs are data type int32.

Label Parameters

Connectivity: [8 ~

(] output label matrix

[oK][Cancel][Help Apply

1-146

Blob Analysis

Area
Select this check box to output a vector that represents the number of pixels in
labeled regions

Centroid

Select this check box to output an M-by-2 matrix of [x y] centroid coordinates. The
rows represent the coordinates of the centroid of each region, where M represents

the number of blobs.
Example: Suppose there are two blobs, where the row and column coordinates of
their centroids are x;, y; and x,, y,, respectively. The block outputs:

X1
X2 Y2

at the Centroid port.
Bounding box
Select this check box to output an M-by-4 matrix of [x y width height] bounding boxes.

The rows represent the coordinates of each bounding box, where M represents the
number of blobs.

Example: Suppose there are two blobs, where x and y define the location of the upper-
left corner of the bounding box, and w, h define the width and height of the bounding
box. The block outputs

x1 y1 wqp hy
Xp Yo wp hy

at the BBox port.
Major axis length
Select this check box to output a vector with the following characteristics:

* Represents the lengths of the major axes of ellipses
* Has the same normalized second central moments as the labeled regions

Minor axis length
Select this check box to output a vector with the following characteristics:

* Represents the lengths of the minor axes of ellipses
* Has the same normalized second central moments as the labeled regions

1-147

1 Blocks — Alphabetical List

1-148

Orientation

Select this check box to output a vector that represents the angles between the major
axes of the ellipses and the x-axis. The angle values are in radians and range between:
“IandE
2 2
Eccentricity

Select this check box to output a vector that represents the eccentricities of ellipses
that have the same second moments as the region

Equivalent diameter squared

Select this check box to output a vector that represents the equivalent diameters
squared

Extent

Select this check box to output a vector that represents the results of dividing the
areas of the blobs by the area of their bounding boxes

Perimeter

Select this check box to output an N-by-1 vector of the perimeter lengths, in pixels, of
each blob, where N is the number of blobs.

Statistics output data type

Specify the data type of the outputs as double, single, orto Specify via Data
Types tab. The fields on the Data Types tab appear when you set the output data
type to Specify via Data Types tab.

Connectivity

Define which pixels connect to each other. If you want to connect pixels located on the
top, bottom, left, and right, select 4. If you want to connect pixels to the other pixels
on the top, bottom, left, right, and diagonally, select 8. For more information about
this parameter, see the Label block reference page.

The Connectivity parameter also affects how the block calculates the perimeter of a
blob. For example:

The following figure illustrates how the block calculates the perimeter when you set
the Connectivity parameter to 4.

Blob Analysis

[® ® ® ® ® L
[] []
® ® 9 [® ®

® ®

[] []

® ® ®

The block calculates the distance between the center of each pixel (marked by the
black dots) and estimates the perimeter to be 22.

The next figure illustrates how the block calculates the perimeter of a blob when you
set the Connectivity parameter to 8.

The block takes a different path around the blob and estimates the perimeter to be
18 + 2/2.

1-149

1 Biocks — Alphabetical List

1-150

Output label matrix

Select this check box, to output the label matrix at the Label port. The pixels equal to
0 represent the background. The pixels equal to 1 represent the first object. The
pixels equal to 2 represent the second object, and so on.

The Blob Properties pane of the Blob Analysis dialog box appears as shown in the
following figure.

-

“& Function Block Parameters: Blob Analysis @
Blob Analysis

Compute statistics for connected regions in the binary image, BW.

Main | Blob Properties | Data Types

Parameters

Maximum number of blobs: 50

Warn if maximum number of blobs is exceeded
("] output number of blobs found

["] Specify minimum blob area in pixels

[”] Specify maximum blob area in pixels

["] Exclude blobs touching image border

["] Qutput blob statistics as a variable size signal
Fill empty spaces in outputs

Fill values: -1

QK H Cancel H Help Apply

Blob Analysis

Maximum number of blobs

Specify the maximum number of labeled regions in each input image. The block uses
this value to preallocate vectors and matrices to ensure that they are long enough to
hold the statistical values. The maximum number of blobs the block outputs depends
on both the value of this parameter, and on the size of the input image. The number of
blobs the block outputs may be limited by the input image size.

Warn if maximum number of blobs is exceeded

Select this check box to output a warning when the number of blobs in an image is
greater than the value of Maximum number of blobs parameter.

Output number of blobs found

Select this check box to output a scalar value that represents the actual number of
connected regions in each image at the Count port.

Specify minimum blob area in pixels

Select this check box to enter the minimum blob area in the edit box that appears
beside the check box. The blob gets a label if the number of pixels meets the
minimum size specified. This parameter is tunable.

Specify maximum blob area in pixels

Select this check box to enter the maximum blob area in the edit box that appears
beside the check box. The blob gets a label if the number of pixels meets the
minimum size specified. The maximum allowable value is the maximum of uint32
data type. This parameter is tunable.

Exclude blobs touching image border
Select this check box to exclude a labeled blob that contains at least one border pixel.
Output blob statistics as a variable-size signal

Select this check box to output blob statistics as a variable-size signal. Selecting this
check box means that you do not need to specify fill values.

Fill empty spaces in outputs

Select this check box to fill empty spaces in the statistical vectors with the values you
specify in the Fill values parameter.

The Fill empty spaces in outputs check box does not appear when you select the
Output blob statistics as a variable-size signal check box.
Fill values

If you enter a scalar value, the block fills all the empty spaces in the statistical vectors
with this value. If you enter a vector, it must have the same length as the number of

1-151

1 Biocks — Alphabetical List

1-152

selected statistics. The block uses each vector element to fill a different statistics
vector. If the empty spaces do not affect your computation, you can deselect the Fill
empty spaces in outputs check box. As a best practice, leave this check box
selected.

The Fill values parameter is not visible when you select the Output blob statistics
as a variable-size signal check box.

The Data Types pane of the Blob Analysis dialog box appears as shown in the following

The result of each oddition remoins
in the occumulutor doto type.

QST

———»

ADDER

figure.
—
- y|MUTPURR—*
Input Product output
ot type(s] tutn fype

Actumulutor
tuto fype

Aceumulotor
o type

-
L

CAST

—

Qutput doto
Type

The parameters on the Data Types tab apply only when you set the Statistics output
data type parameter to Specify via Data Types tab.

Blob Analysis

i

& Function Block Parameters: Blob Analysis

Blob Analysis
Compute statistics for connected regions in the binary image, BW.

| Main | Blob Properties | Data Types

block input is floating point, all block data types match the input.

Fixed-point operational parameters

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the

v] Overflow mode: |Wrap

Rounding mode: [Floor

Fixed-point data types

Data Type Signed Word length Fraction length
Accumulator [Einar‘,r point scaling v] Yes 32 0
Centroid output [Einarj.r point scaling '] Yes 3z 16

["] Lock data type settings against changes by the fixed-point tools

OK][Cancel H Help Apply

Rounding mode
Select the rounding mode Floor, Ceiling, Nearest or Zero for fixed-point

operations.

Overflow mode
Select the overflow mode, Wrap or Saturate for fixed-point operations.

1-153

1 Biocks — Alphabetical List

1-154

Product output

When you select Binary point scaling, you can enter the Word length and the
Fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the Word length in bits,
and the Slope of the product output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Accumulator data type
—_—

Product output data type
MULTIPLIER

e —

4/pi data type

The block places the output of the multiplier into the Product output data type and
scaling. The computation of the equivalent diameter squared uses the product output
data type. During this computation, the block multiplies the blob area (stored in the
accumulator) by the 4/pi factor. This factor has a word length that equals the value of
Equivalent diameter squared output data type Word length. The value of the
Fraction length equals its word length minus two. Use this parameter to specify how
to designate this product output word and fraction lengths.

Accumulator

When you select Same as product output the characteristics match the
characteristics of the product output.

When you select Binary point scaling, you can enter the Word length and the
Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the Accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

Blob Analysis

The result of eoch addifion remuins
in the nccumulotor duto fype.

—_—

Input to ndder -

st

product output
utn type

Co—
| | ADDER >
Aeeumulotor Aeeumulotar
dutotype doto type

Inputs to the Accumulator get cast to the accumulator data type. Each element of
the input gets added to the output of the adder, which remains in the accumulator
data type. Use this parameter to specify how to designate this accumulator word and

fraction lengths.
Centroid output

Choose how to specify the Word length and Fraction length of the output at the

Centroid port:

* When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

* When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox

software have a bias of 0.

Equiv Diam~2 output

Choose how to specify the Word length and Fraction length of the output at the

Diameter "2 port:

* When you select Same as accumulator, these characteristics match the
characteristics of the Accumulator.

* When you select Same as product output, these characteristics match the
characteristics of the Product output.

1-155

1 Biocks — Alphabetical List

1-156

* When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Extent output

Choose how to specify the Word length and Fraction length of the output at the
Extent port:

* When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

* When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Perimeter output

Choose how to specify the Word length and Fraction length of the output at the
Perimeter port:

* When you select Same as accumulator, these characteristics match the
characteristics of the accumulator.

* When you select Binary point scaling, you can enter the Word length and
Fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the Slope of the output. All signals in the Computer Vision Toolbox
software have a bias of 0.

Lock data type settings against changes by the fixed-point tools

Select this parameter to prevent the autoscaling tool in the Fixed-Point Tool from
overriding any fixed-point scaling you specify in this block mask. For more

information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

Blob Analysis

See Also
Label Computer Vision Toolbox
regionprops Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-157

1 Blocks — Alphabetical List

1-158

Block Matching

Estimate motion between images or video frames

Blodk
| 2
M atching i

T

Blodk b atching

Library

Analysis & Enhancement

visionanalysis

Description

The Block Matching block estimates motion between two images or two video frames
using “blocks” of pixels. The Block Matching block matches the block of pixels in frame k
to a block of pixels in frame k+1 by moving the block of pixels over a search region.

Suppose the input to the block is frame k. The Block Matching block performs the
following steps:

1 The block subdivides this frame using the values you enter for the Block size
[height width] and Overlap [r c] parameters. In the following example, the
Overlap [r c] parameteris [0 0O].

2 For each subdivision or block in frame k+1, the Block Matching block establishes a
search region based on the value you enter for the Maximum displacement [r c]
parameter.

3 The block searches for the new block location using either the Exhaustive or
Three-step search method.

Block Matching

Input image = frame k

STEP 2: Establish the search region in frame k+1.

Previous block location

Search region
/ New block location

STEP 1: Subdivide the image in frame k.

Center pixel \\‘

STEP 3: Search for the new block location in frame k+1.

Search region

1-159

1 Blocks — Alphabetical List

Complex
Port Output Supported Data Types Values
Supported
/11 Scalar, vector, or matrix of |¢ Double-precision floating point No
intensity values + Single-precision floating point
» Fixed point
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
12 Scalar, vector, or matrix of |Same as I port No
intensity values
[V|~2 Matrix of velocity Same as I port No
magnitudes
Vv Matrix of velocity Same as I port Yes
components in complex
form

1-160

Use the Estimate motion between parameter to specify whether to estimate the motion
between two images or two video frames. If you select Current frame and N-th
frame back, the N parameter appears in the dialog box. Enter a scalar value that
represents the number of frames between the reference frame and the current frame.

Use the Search method parameter to specify how the block locates the block of pixels in
frame k+1 that best matches the block of pixels in frame k.

If you select Exhaustive, the block selects the location of the block of pixels in frame
k+1 by moving the block over the search region 1 pixel at a time. This process is
computationally expensive.

If you select Three-step, the block searches for the block of pixels in frame k+1 that
best matches the block of pixels in frame k using a steadily decreasing step size. The
block begins with a step size approximately equal to half the maximum search range.
In each step, the block compares the central point of the search region to eight search
points located on the boundaries of the region and moves the central point to the
search point whose values is the closest to that of the central point. The block then
reduces the step size by half, and begins the process again. This option is less
computationally expensive, though it might not find the optimal solution.

Use the Block matching criteria parameter to specify how the block measures the
similarity of the block of pixels in frame k to the block of pixels in frame k+1. If you select

Block Matching

Mean square error (MSE), the Block Matching block estimates the displacement of
the center pixel of the block as the (dy, dy) values that minimize the following MSE
equation:

1

1 _ 2
MSE(dl, dz) = N xN; (nlgz)l E%[S(nl, ny, k) s(nl + dl, ny + d2, k+1)]

In the previous equation, B is an N1 X Ny block of pixels, and s(x,y;k) denotes a pixel
location at (x,y) in frame k. If you select Mean absolute difference (MAD), the
Block Matching block estimates the displacement of the center pixel of the block as the
(d1, dp) values that minimize the following MAD equation:

1
MAD(dy,dy) = W(MZQ) ;B|s(n1, ny, k) —s(ny +dq,ny +dy, k + 1)|

Use the Block size [height width] and Overlap [r c] parameters to specify how the
block subdivides the input image. For a graphical description of these parameters, see the
first figure in this reference page. If the Overlap [r c] parameter is not [0 0], the blocks
would overlap each other by the number of pixels you specify.

Use the Maximum displacement [r c] parameter to specify the maximum number of
pixels any center pixel in a block of pixels might move from image to image or frame to
frame. The block uses this value to determine the size of the search region.

Use the Velocity output parameter to specify the block's output. If you select
Magnitude-squared, the block outputs the optical flow matrix where each element is of
the form u?+v2. If you select Horizontal and vertical components in complex
form, the block outputs the optical flow matrix where each element is of the form u + jv.
The real part of each value is the horizontal velocity component and the imaginary part of
each value is the vertical velocity component.

Fixed-Point Data Types

The following diagram shows the data types used in the Block Matching block for fixed-
point signals.

1-161

1 Blocks — Alphabetical List

MSE Block Matching
The result of each addition remains The result of each multiplication remains
in the accumulator data type. in the product data fype.

/ _ / Accumulator
< L < data type
L» MULTIPLIER CAST >

] CAST ADDER > CAST >
It Accumulator Product Product
data type ﬁgzrmgtor data type data type data type
MAD Block Matching

The result of each addition remains
in the accumulator dafa type.

/

—

, CAST ADDER
Input Accumulator
data type ﬁgﬁmgmr data type

You can set the accumulator and output data types in the block mask as discussed in the
next section.

Parameters

Estimate motion between

Select Two images to estimate the motion between two images. Select Current
frame and N-th frame back to estimate the motion between two video frames
that are N frames apart.

Enter a scalar value that represents the number of frames between the reference
frame and the current frame. This parameter is only visible if, for the Estimate
motion between parameter, you select Current frame and N-th frame back.

1-162

Block Matching

Search method

Specify how the block searches for the block of pixels in the next image or frame.
Your choices are Exhaustive or Three-step.

Block matching criteria

Specify how the block measures the similarity of the block of pixels in frame k to the
block of pixels in frame k+1. Your choices are Mean square error (MSE) or Mean
absolute difference (MAD).

Block size [height width]

Specify the size of the block of pixels.
Overlap [r c]

Specify the overlap (in pixels) of two subdivisions of the input image.
Maximum displacement [r c]

Specify the maximum number of pixels any center pixel in a block of pixels might
move from image to image or frame to frame. The block uses this value to determine
the size of the search region.

Velocity output

If you select Magnitude-squared, the block outputs the optical flow matrix where
each element is of the form u? + v2. If you select Horizontal and vertical

components in complex form, the block outputs the optical flow matrix where
each element is of the form u + jv.
Rounding mode
Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.
Product output

11 dut type

v

»| MUIIPLIER
12 duto type Product output
duto type

1-163

1 Blocks — Alphabetical List

As shown previously, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate the product
output word and fraction lengths.

* When you select Same as input, these characteristics match those of the input
to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

The result of ench oddition remoins
in the oeeumulutor dot type.

—¥ CAST ADDER
Input o ndder -
product output
ute type

Accumulotor Arcumulutor
doto fype dotu type

As depicted previously, inputs to the accumulator are cast to the accumulator data
type. The output of the adder remains in the accumulator data type as each element
of the input is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

* When you select Binary point scaling, you can enter the word length of the
output, in bits. The fractional length is always 0.

1-164

Block Matching

* When you select Slope and bias scaling, you can enter the word length, in
bits, of the output. The bias of all signals in the Computer Vision Toolbox software
is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also

|Optical Flow |Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-165

1 Blocks — Alphabetical List

1-166

Block Processing

Repeat user-specified operation on submatrices of input matrix

Block
processing

Blod Frocessing

Library
Utilities

visionutilities

Description

The Block Processing block extracts submatrices of a user-specified size from each input
matrix. It sends each submatrix to a subsystem for processing, and then reassembles each
subsystem output into the output matrix.

\\ /

Subsystem

Note Because you modify the Block Processing block's subsystem, the link between this
block and the block library is broken when you click-and-drag a Block Processing block
into your model. As a result, this block will not be automatically updated if you upgrade to
a newer version of the Computer Vision Toolbox software. If you right-click on the block
and select Mask>Look Under Mask, you can delete blocks from this subsystem without

Block Processing

triggering a warning. Lastly, if you search for library blocks in a model, this block will not
be part of the results.

The blocks inside the subsystem dictate the frame status of the input and output signals,
whether single channel or multichannel signals are supported, and which data types are
supported by this block.

Use the Number of inputs and Number of outputs parameters to specify the number
of input and output ports on the Block Processing block.

Use the Block size parameter to specify the size of each submatrix in cell array format.
Each vector in the cell array corresponds to one input; the block uses the vectors in the
order you enter them. If you have one input port, enter one vector. If you have more than
one input port, you can enter one vector that is used for all inputs or you can specify a
different vector for each input. For example, if you want each submatrix to be 2-by-3,
enter {[2 31}.

Use the Overlap parameter to specify the overlap of each submatrix in cell array format.
Each vector in the cell array corresponds to the overlap of one input; the block uses the
vectors in the order they are specified. If you enter one vector, each overlap is the same
size. For example, if you want each 3-by-3 submatrix to overlap by 1 row and 2 columns,
enter {[1 21}.

The Traverse order parameter determines how the block extracts submatrices from the
input matrix. If you select Row-wise, the block extracts submatrices by moving across
the rows. If you select Column-wise, the block extracts submatrices by moving down the
columns.

Click the Open Subsystem button to open the block's subsystem. Click-and-drag blocks
into this subsystem to define the processing operation(s) the block performs on the
submatrices. The input to this subsystem are the submatrices whose size is determined by
the Block size parameter.

Note When you place an Assignment block inside a Block Processing block's subsystem,
the Assignment block behaves as though it is inside a For Iterator block. For a description
of this behavior, see the “Iterated Assignment” section of the Assignment block reference

page.

1-167

1 Biocks — Alphabetical List

Parameters

Number of inputs
Enter the number of input ports on the Block Processing block.
Add port to supply subsystem parameters

Add an input port to the block to supply subsystem parameters. When you check this
option, a port (P) is added to the block.

Number of outputs
Enter the number of output ports on the Block Processing block.
Block size

Specify the size of each submatrix in cell array format. Each vector in the cell array
corresponds to one input.

Overlap

Specify the overlap of each submatrix in cell array format. Each vector in the cell
array corresponds to the overlap of one input.

Traverse order

Determines how the block extracts submatrices from the input matrix. If you select
Row-wise, the block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the columns.

Open Subsystem

Click this button to open the block's subsystem. Click-and-drag blocks into this
subsystem to define the processing operation(s) the block performs on the

submatrices.
See Also
For Iterator Simulink
blockproc Image Processing Toolbox

Introduced before R2006a

1-168

Bottom-hat

Bottom-hat

Perform bottom-hat filtering on intensity or binary images

|
Bottom-hat
Nhood

Bottom-hat

Library

Morphological Operations

visionmorphops

Description

Use the Bottom-hat block to perform bottom-hat filtering on an intensity or binary image
using a predefined neighborhood or structuring element. Bottom-hat filtering is the
equivalent of subtracting the input image from the result of performing a morphological
closing operation on the input image. This block uses flat structuring elements only.

Complex
ort Input/Output Supported Data Types Values
Supported
Vector or matrix of intensity * Double-precision floating point No
values * Single-precision floating point
* Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Nhood Matrix or vector of ones and Boolean No

zeros that represents the
neighborhood values

1-169

1 Blocks — Alphabetical List

Complex
ort Input/Output Supported Data Types Values
Supported
yutput Scalar, vector, or matrix that Same as I port No
represents the filtered image

1-170

If your input image is a binary image, for the Input image type parameter, select
Binary. If your input image is an intensity image, select Intensity.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and Os. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters

Input image type

If your input image is a binary image, select Binary. If your input image is an
intensity image, select Intensity.

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and Os. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

Bottom-hat

See Also

Closing Computer Vision Toolbox software

Dilation Computer Vision Toolbox software

Erosion Video and Image Processing Blockset software
Label Computer Vision Toolbox software

Opening Computer Vision Toolbox software

Top-hat Computer Vision Toolbox software

imbothat Image Processing Toolbox software

strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-171

1 Blocks — Alphabetical List

Chroma Resampling

Downsample or upsample chrominance components of images

Ch
444 to
422
Cr Cr

Chroma
Resampling

Library

Conversions

visionconversions

Description

The Chroma Resampling block downsamples or upsamples chrominance components of
pixels to reduce the bandwidth required for transmission or storage of a signal.

Complex
Port Input/Output Supported Data Types Values
Supported
Cb Matrix that represents |* Double-precision floating point No
one chrominance + Single-precision floating point
component of an image) i i
* 8-bit unsigned integer
Cr Matrix that represents |Same as Cb port No
one chrominance
component of an image

The data type of the output signals is the same as the data type of the input signals.

1-172

Chroma Resampling

Chroma Resampling Formats

The Chroma Resampling block supports the formats shown in the following diagram.

&0 |00 & 0O|6 O 0|00
(ANAN AR 60|60 80|00

&0 |00 & 0|60 0|00
SO0 |0 0 0|00 60|00

0[O0 OO0|0O0
X ¥ A A O Y pixel
00|00 OO0|0O0
OO0 0 O0|00O A\ Ccb and Cr pixel
A A X X
00|00 00|00
Downsampling

If, for the Resampling parameter, you select 4:4:4 to 4:2:2,

4:4:4 to 4:2:0 (MPEG1),4:4:4 to 4:2:0 (MPEG2),4:4:4 to 4:1:1,

4:2:2 to 4:2:0 (MPEGLl),or4:2:2 to 4:2:0 (MPEG2), the block performs a
downsampling operation. When the block downsamples from one format to another, it can
bandlimit the input signal by applying a lowpass filter to prevent aliasing.

If, for the Antialiasing filter parameter, you select Default, the block uses a built-in
lowpass filter to prevent aliasing.

If, for the Resampling parameter, you select 4:4:4 to 4:2:2,

4:4:4 to 4:2:0 (MPEG1),4:4:4 to 4:2:0 (MPEG2),0or4:4:4 to 4:1:1 and, for
the Antialiasing filter parameter, you select User-defined, the Horizontal filter

1-173

1 Blocks — Alphabetical List

1-174

coefficients parameter appears on the dialog box. Enter the filter coefficients to apply to
your input.

If, for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),

4:4:4 to 4:2:0 (MPEG2),4:2:2 to 4:2:0 (MPEG1), or

4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select
User-defined. Vertical filter coefficients parameters appear on the dialog box. Enter
an even number of filter coefficients to apply to your input signal.

If, for the Antialiasing filter parameter, you select None, the block does not filter the
input signal.

Upsampling

If, for the Resampling parameter, you select 4:2:2 to 4:4:4,

4:2:0 (MPEGl) to 4:2:2,4:2:0 (MPEGl) to 4:4:4,4:2:0 (MPEG2) to 4:2:2,
4:2:0 (MPEG2) to 4:4:4,0r4:1:1 to 4:4:4, the block performs an upsampling
operation.

When the block upsamples from one format to another, it uses interpolation to
approximate the missing chrominance values. If, for the Interpolation parameter, you
select Linear, the block uses linear interpolation to calculate the missing values. If, for
the Interpolation parameter, you select Pixel replication, the block replicates the
chrominance values of the neighboring pixels to create the upsampled image.

Row-Major Data Format

The MATLAB environment and the Computer Vision Toolbox software use column-major
data organization. However, the Chroma Resampling block gives you the option to
process data that is stored in row-major format. When you select the Input image is
transposed (data order is row major) check box, the block assumes that the input
buffer contains contiguous data elements from the first row first, then data elements from
the second row second, and so on through the last row. Use this functionality only when
you meet all the following criteria:

* You are developing algorithms to run on an embedded target that uses the row-major
format.

* You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

Chroma Resampling

When you use the row-major functionality, you must consider the following issues:

When you select this check box, the signal dimensions of the Chroma Resampling
block's input are swapped.

All the Computer Vision Toolbox blocks can be used to process data that is in the row-
major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on

an embedded target.
Step 1: .
Create block diagram ﬁ\llgc?l:ghm
-
o= = =]
Video Transpose Transpose Video
source plock block sink
block block
I | I I
-—— Step 2: >
Replace source, transpose, and
sink blocks with target source Embedded
E\r%t)e?igi?ce and sink blocks that produce target sink
block data in row-major format block

1-175

1 Blocks — Alphabetical List

1-176

Parameters

Resampling

Specify the resampling format.

Antialiasing filter

Specify the lowpass filter that the block uses to prevent aliasing. If you select
Default, the block uses a built-in lowpass filter. If you select User-defined, the
Horizontal filter coefficients and/or Vertical filter coefficients parameters
appear on the dialog box. If you select None, the block does not filter the input signal.
This parameter is visible when you are downsampling the chrominance values.

Horizontal filter coefficients

Enter the filter coefficients to apply to your input signal. This parameter is visible if,
for the Resampling parameter, you select 4:4:4 to 4:2:2,

4:4:4 to 4:2:0 (MPEG1),4:4:4 to 4:2:0 (MPEG2),0or4:4:4 to 4:1:1and,
for the Antialiasing filter parameter, you select User-defined.

Vertical filter coefficients

Enter the filter coefficients to apply to your input signal. This parameter is visible if,
for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),

4:4:4 to 4:2:0 (MPEG2),4:2:2 to 4:2:0 (MPEG1), or

4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select
User-defined.

Interpolation

Specify the interpolation method that the block uses to approximate the missing
chrominance values. If you select Linear, the block uses linear interpolation to
calculate the missing values. If you select Pixel replication, the block replicates
the chrominance values of the neighboring pixels to create the upsampled image. This
parameter is visible when you are upsampling the chrominance values. This
parameter is visible if the Resampling parameter is setto 4:2:2 to 4:4:4 ,
4:2:0 (MPEGl) to 4:4:4 ,4:2:0 (MPEG2) to 4:4:4 ,4:1:1

to 4:4:4 ,4:2:0 (MPEGl) to 4:2:2 ,0r4:2:0 (MPEG2) to 4:2:2 .

Input image is transposed (data order is row major)

When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

Chroma Resampling

References

[1] Haskell, Barry G., Atul Puri, and Arun N. Netravali. Digital Video: An Introduction to
MPEG-2. New York: Chapman & Hall, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and Communications.
Upper Saddle River, NJ: Prentice Hall, 2002.

See Also

Autothreshold Computer Vision Toolbox software
Color Space Conversion Computer Vision Toolbox software
Image Complement Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-177

1 Biocks — Alphabetical List

Closing

Perform morphological closing on binary or intensity images

b Close]

Clos ing

Library

Morphological Operations

visionmorphops

Description

The Closing block performs a dilation operation followed by an erosion operation using a
predefined neighborhood or structuring element. This block uses flat structuring

elements only.

Complex
ort Input/Output Supported Data Types Values
Supported
Vector or matrix of intensity values |* Double-precision floating point No
+ Single-precision floating point
+ Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Nhood Matrix or vector of ones and zeros |Boolean No

that represents the neighborhood
values

1-178

Closing

Complex
ort Input/Output Supported Data Types Values
Supported
yutput Vector or matrix of intensity values |Same as I port No
that represents the closed image

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and Os. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and Os. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

1-179

1 Biocks — Alphabetical List

1-180

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imclose Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

Color Space Conversion

Color Space Conversion

Convert color information between color spaces

RG'E 1o
oo

CobrSpace
Conversion

Library

Conversions

visionconversions

Description

The Color Space Conversion block converts color information between color spaces. Use
the Conversion parameter to specify the color spaces you are converting between. Your
choicesare R'G'B' to Y'CbCr,Y'CbCr to R'G'B',R'G'B' to intensity,
R'G'B' to HSV,HSV to R'G'B',sR'G'B' to XYZ XYZ to sR'G'B',sR'G'B' to
L*a*b*, and L*a*b* to sR'G'B".

» Ifthe input is uint8, YCBCR is uint8, where Y is in the range [16 235], and Cb and
Cr are in the range [16 240].

+ Ifthe inputis a double, Y is in the range [16/255 235/255] and Cb and Cr are in
the range [16/255 240/255].

Complex
Port Input/Output Supported Data Types Values
Supported
Input / M-by-N-by-P color video signal * Double-precision floating point |No
Output |where P is the number of color « Single-precision floating point
planes

* 8-bit unsigned integer

1-181

1 Biocks — Alphabetical List

Complex
Port Input/Output Supported Data Types Values
Supported

R' Matrix that represents one plane of |Same as the Input port No
the input RGB video stream

G' Matrix that represents one plane of |Same as the Input port No
the input RGB video stream

B' Matrix that represents one plane of |Same as the Input port No
the input RGB video stream

Y Matrix that represents the luma Same as the Input port No
portion of an image

Cb Matrix that represents one Same as the Input port No
chrominance component of an
image

Cr Matrix that represents one Same as the Input port No
chrominance component of an
image

I' Matrix of intensity values Same as the Input port No

H Matrix that represents the hue * Double-precision floating point |No
component of an image + Single-precision floating point

S Matrix that represents the Same as the H port No
saturation component of an image

Vv Matrix that represents the value Same as the H port No
(brightness) component of an image

X Matrix that represents the X Same as the H port No
component of an image

Y Matrix that represents the Y Same as the H port No
component of an image

Z Matrix that represents the Z Same as the H port No
component of an image

L* Matrix that represents the Same as the H port No

luminance portion of an image

1-182

Color Space Conversion

Complex
Port Input/Output Supported Data Types Values
Supported
a* Matrix that represents the a* Same as the H port No
component of an image
b* Matrix that represents the b* Same as the H port No
component of an image

The data type of the output signal is the same as the data type of the input signal.

Use the Image signal parameter to specify how to input and output a color video signal.
If you select One multidimensional signal, the block accepts an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port accepts one M-by-N

plane of an RGB video stream.

Note The prime notation indicates that the signals are gamma corrected.

Conversion Between R'G'B' and Y'CbCr Color Spaces

The following equations define R'G'B' to Y'CbCr conversion and Y'CbhCr to R'G'B’

conversion:
Y’ 16 R
Cb| =128+ A X |G’
Cr 128 B
R Y 16
G'|=Bx||Cb|—-{128
B Cr 128

The values in matrices A and B are based on your choices for the Use conversion
specified by and Scanning standard parameters.

1-183

1 Blocks — Alphabetical List

Matrix |Use conversion specified |Use conversion specified by = Rec. 709 (HDTV)
by = Rec. 601 (SDTV) Scanning standard = Scanning standard =
1125/60/2:1 1250/50/2:1
A 0.25678824 0.50412941 ().@O79R58838 0.61423059 (J@626678624 0.50412941 0.09790588
—0.1482229 —0.29099279 (1.43020664373 -0.33857195 9282829 —0.29099279 0.43921569
0.43921569 —0.36778831 —D.0¥.48923369 -0.39894216 P04BAZB589 —0.36778831 —0.0714273"
B 1.1643836 0 1{5PAG2ABB356 0 1.7pR7648336 0 115960268

1.1643836 —0.39176229 -0,

1.1643836 2.0172321

01126638356 -0.21324861 -0.
1.06438356 2.11240179

329643336 —0.39176229 -0
10643836 2.0172321

.81296765
0

1-184

Conversion from R'G'

B' to Intensity

The following equation defines conversion from the R'G'B' color space to intensity:

R

intensity = [0.299 0.587 0.114]|G’

B

Conversion Between R'G'B' and HSV Color Spaces

The R'G'B' to HSV conversion is defined by the following equations. In these equations,
MAX and MIN represent the maximum and minimum values of each R'G'B' triplet,
respectively. H, S, and V vary from 0 to 1, where 1 represents the greatest saturation and

value.

Color Space Conversion

¢ G -8B) .
(szax=mw]/6. if R = MAX
_ B -R o
R-G —
- MAX — MIN
- MAX
V = MAX

The HSV to R'G'B' conversion is defined by the following equations:
H; = |6H]|
f =6H — H;
p=1-§
q=1-fS
t=1-(1-1)S
if Hi=0, Remp=1, Gtmp=1t, Bimp=p
if Hj=1, Rtmp=4q, Gtmp=1, Bymp=p
if Hi=2, Remp=p, Gtmp =1, Bimp =1t
if H; =3, Rimp =P, Gtmp = @, Btmp =1
if Hi=4, Rimp=1t, Gtmp =P, Bimp =1
if Hi =5, Remp=1, Gtmp =P, Brmp = q
u = V/max(Remp, Grmp, Btmp)

R’ = uRymp
B’ = uBimp

Conversion Between sR'G'B' and XYZ Color Spaces

The sR'G'B' to XYZ conversion is a two-step process. First, the block converts the gamma-
corrected sR'G'B' values to linear sRGB values using the following equations:

1-185

1 Blocks — Alphabetical List

1-186

If R'srGB, G'srgB, B'srge < 0.03928

RsrcB = R'spgp/12.92

GsrGB = G'srgp/12.92

BsreB = B'srgp/12.92

otherwise, if R'srep, G'srop B'srag > 0.03928

RsgreB = [(R'sRGB + 0.055)/1‘055]2.4
GsrGB = [(G'sRGB + 0.055)/1'055]2.4

Bsrgp = [(B'sRGB + 0.055)/1.055]2.4

Then the block converts the SRGB values to XYZ values using the following equation:

X 0.41239079926596 0.35758433938388 0.18048078840183] [RsrGB
Y| =(0.21263900587151 0.71516867876776 0.07219231536073| X |GsrGB
Z 0.01933081871559 0.11919477979463 0.95053215224966] |Bsrga

The XYZ to sR'G'B' conversion is also a two-step process. First, the block converts the
XYZ values to linear sRGB values using the following equation:

RsrgB 0.41239079926596 0.35758433938388 0.18048078840183]"1 [X
Gsrgg| = [0.21263900587151 0.71516867876776 0.07219231536073| X |Y
BsrgB 0.01933081871559 0.11919477979463 0.95053215224966 Z

Then the block applies gamma correction to obtain the sR'G'B' values. This process is
described by the following equations:

Color Space Conversion

If Rsrg, Gsra, Bsrgp = 0.00304

R'sre = 12.92RgrgB

G'sreB = 12.92Grap

B'sreB = 12.92BsggB

otherwise, if RsrgB, GsraB Bsrgp > 0.00304
R'srgB = 1.055Rsrgp(1-0/2.4) - 0.055

G'srgB = 1.055Gspgp(1-0/2.4) — 0.055

B'srgB = 1.055B4gpgp(1.0/2.4) — 0.055

Note Computer Vision Toolbox software uses a D65 white point, which is specified in
Recommendation ITU-R BT.709, for this conversion. In contrast, the Image Processing
Toolbox conversion is based on ICC profiles, and it uses a D65 to D50 Bradford adaptation
transformation to the D50 white point. If you are using these two products and comparing
results, you must account for this difference.

Conversion Between sR'G'B' and L*a*b* Color Spaces

The Color Space Conversion block converts sR'G'B' values to L*a*b* values in two steps.
First it converts sR'G'B' to XYZ values using the equations described in “Conversion
Between sR'G'B' and XYZ Color Spaces” on page 1-185. Then it uses the following
equations to transform the XYZ values to L*a*b* values. Here, X,, Y, and Z, are the

tristimulus values of the reference white point you specify using the White point
parameter:

L* =116(Y = 16, for Y/Y, > 0.008856
L* =903.3Y/Y,, otherwise

a* = 500(f(X/Xp) — f(Y/Yp)
b* =200(f(Y/Y,) — f(Z/Zy)),
where f(t) = t'/3, for t > 0.008856
f(t)=7.787t + 16/166, otherwise

The block converts L*a*b* values to sR'G'B' values in two steps as well. The block
transforms the L*a*b* values to XYZ values using these equations:

1-187

1 Blocks — Alphabetical List

1-188

For Y/Y, > 0.008856

X = X,(P + a*/500)°

Y =v,pP

Z = Zy(P - b*/200)°,
where P = (L* + 16)/116

Parameters

Conversion

Specify the color spaces you are converting between. Your choices are R'G'B' to
Y'CbCr,Y'CbCr to R'G'B',R'G'B' to intensity,R'G'B' to HSV, HSV to
R'G'B',sR'G'B' to XYZ XYZ to sR'G'B',sR'G'B' to L*a*b*, and L*a*b*
to sR'G'B".

Use conversion specified by

Specify the standard to use to convert your values between the R'G'B' and Y'CbCr
color spaces. Your choices are Rec. 601 (SDTV) orRec. 709 (HDTV). This
parameter is only available if, for the Conversion parameter, you select R'G'B' to
Y'CbCrorY'CbCr to R'G'B".

Scanning standard

Specify the scanning standard to use to convert your values between the R'G'B' and
Y'CbCr color spaces. Your choices are 1125/60/2:1 or 1250/50/2: 1. This
parameter is only available if, for the Use conversion specified by parameter, you
select Rec. 709 (HDTV).

White point
Specify the reference white point. This parameter is visible if, for the Conversion
parameter, you select sSR'G'B' to L*a*b* or L*a*b* to sR'G'B".

Image signal
Specify how to input and output a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color

signals, additional ports appear on the block. Each port accepts one M-by-N plane
of an RGB video stream.

Color Space Conversion

References

[1] Poynton, Charles A. A Technical Introduction to Digital Video. New York: John Wiley &
Sons, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Recommendation ITU-R BT.709-5. Parameter values for the HDTV standards for
production and international programme exchange.

[4] Stokes, Michael, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta, “A
Standard Default Color Space for the Internet - SRGB.” November 5, 1996.

[5] Berns, Roy S. Principles of Color Technology, 3rd ed. New York: John Wiley & Sons,

2000.

See Also

Chroma Resampling Computer Vision Toolbox software
rgb2hsv MATLAB software

hsv2rgb MATLAB software

rgb2ycbcr Image Processing Toolbox software
ycbcr2rgb Image Processing Toolbox software
rgb2gray Image Processing Toolbox software
makecform Image Processing Toolbox software
applycform Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

1 Biocks — Alphabetical List

Introduced before R2006a

1-190

Compositing

Compositing

Combine pixel values of two images, overlay one image over another, or highlight selected
pixels

Image
Blend L

Imagez

Campasiting

Library

Text & Graphics

visiontextngfix

Description

You can use the Compositing block to combine two images. Each pixel of the output image
is a linear combination of the pixels in each input image. This process is defined by the
following equation:

O, j) = (1 = X)*I1(, j) + X *I2(1, j)

You can define the amount by which to scale each pixel value before combining them
using the opacity factor, X, where , 0 = X < 1.

You can use the Compositing block to overlay one image over another image. The masking
factor and the location determine which pixels are overwritten. Masking factors can be 0
or 1, where 0 corresponds to not overwriting pixels and 1 corresponds to overwriting
pixels.

You can also use this block to highlight selected pixels in the input image. The block uses
a binary input image at the Mask port, to specify which pixels to highlight.

Note This block supports intensity and color images.

1-191

1 Blocks — Alphabetical List

Fixed-Point Data Types

The following diagram shows the data types used in the Compositing block for fixed-point
signals. These data types applies when the Operation parameter is set to Blend.

inta2

—

' ADDER | Accumulutor
Futor . ot type
dotn type — | MUTIPLIER—" CAST

Input DR —»| ast —

ot type Fuctor
dutu fype | Output duto

—_ fype
»| MUTIPLIER

Arewmulotor
doto type

—» (AT
Input
ot type

ADDER

—plos |
[scamuror | -+—»

—| AT Accumulutor
ot type

You can set the product output, accumulator, and output data types in the block mask as
discussed in the next section.

Parameters

Operation

Specify the operation you want the block to perform. If you choose Blend, the block
linearly combines the pixels of one image with another image. If you choose Binary
mask, the block overwrites the pixel values of one image with the pixel values of
another image. If you choose Highlight selected pixels, the block uses the
binary image input at the Mask port. Using this image, the block then determines
which pixels are set to the maximum value supported by their data type.

1-192

Compositing

Blend

If, for the Operation parameter, you choose Blend, the Opacity factor(s) source
parameter appears on the dialog box. Use this parameter to indicate where to specify
the opacity factor(s).

* Ifyou choose Specify via dialog, the Opacity factor(s) parameter appears
on the dialog box. Use this parameter to define the amount by which the block
scales each pixel values for input image at the Image2 port before combining
them with the pixel values of the input image at Image1l port. You can enter a
scalar value used for all pixels or a matrix of values that is the same size as the
input image at the Image2 port.

* Ifyou choose Input port, the Factor port appears on the block. The input to this
port must be a scalar or matrix of values as described for the Opacity factor(s)
parameter. If the input to the Imagel and Image2 ports is floating point, the
input to this port must be the same floating-point data type.

Binary mask

If, for the Operation parameter, you choose Binary mask, the Mask source
parameter appears on the dialog box. Use this parameter to indicate where to specify
the masking factor(s).

» Ifyou choose Specify via dialog, the Mask parameter appears on the dialog
box. Use this parameter and the location source of the image to define which
pixels are overwritten. You can enter 0 or 1 to use for all pixels in the image, or a
matrix of Os and 1s that defines the factor for each pixel.

» Ifyou choose Input port, the Factor port appears on the block. The input to this
port must be a 0 or 1 whose data type is Boolean. Or, a matrix of 0s or 1s whose
data type is Boolean, as described for the Mask parameter.

Highlight selected pixels

If, for the Operation parameter, you choose Highlight selected pixels, the
block uses the binary image input at the Mask port to determine which pixels are set
to the maximum value supported by their data type. For example, for every pixel value
set to 1 in the binary image, the block sets the corresponding pixel in the input image
to the maximum value supported by its data type. For every 0 in the binary image, the
block leaves the corresponding pixel value alone.

1-193

1 Biocks — Alphabetical List

1-194

Opacity factor(s) source

Indicate where to specify any opacity factors. Your choices are Specify via
dialog and Input port. This parameter is visible if, for the Operation parameter,
you choose Blend.

Opacity factor(s)

Define the amount by which the block scales each pixel value before combining them.
You can enter a scalar value used for all pixels or a matrix of values that defines the
factor for each pixel. This parameter is visible if, for the Opacity factor(s) source
parameter, you choose Specify via dialog. Tunable.

Mask source

Indicate where to specify any masking factors. Your choices are Specify via
dialog and Input port. This parameter is visible if, for the Operation parameter,
you choose Binary mask.

Mask

Define which pixels are overwritten. You can enter 0 or 1, which is used for all pixels,
or a matrix of Os and 1s that defines the factor for each pixel. This parameter is
visible if, for the Mask source parameter, you choose Specify via dialog.
Tunable.

Location source

Use this parameter to specify where to enter the location of the upper-left corner of
the image input at input port Image2. You can choose either Specify via dialog
or Input port.

When you choose Specify via dialog, you can set the Location [x y] parameter.

When you choose Input port, the Location port appears on the block. The input to
this port must be a two-element vector as described for the Location [x y] parameter.

Location [x y]

Enter a two-element vector that specifies the row and column position of the upper-
left corner of the image input at Image?2 port. The position is relative to the upper-
left corner of the image input at Imagel port. This parameter is visible if, for the
Location source parameter, you choose Specify via dialog. Tunable.

Positive values move the image down and to the right; negative values move the
image up and to the left. If the first element is greater than the number of rows in the
Imagel matrix, the value is clipped to the total number of rows. If the second
element is greater than the number of columns in the input Imagel matrix, the value
is clipped to the total number of columns.

Compositing

These parameters apply only when the Operation parameter is set to Blend.

Rounding mode

Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.
Opacity factor
Choose how to specify the word length and fraction length of the opacity factor:

* When you select Same word length as input, these characteristics match
those of the input to the block.

* When you select Specify word length, enter the word length of the opacity
factor.

* When you select Binary point scaling, you can enter the word length of the
opacity factor, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, of the opacity factor. The bias of all signals in the Computer Vision Toolbox
software is 0.

Product output

11 dato type

»| MUIPLIER
12 data type Produtt output
duto type

h J

As the previous figure shows, the block places the output of the multiplier into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths.

* When you select Same as first input, these characteristics match those of
the input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

1-195

1 Biocks — Alphabetical List

1-196

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

The result of ench oddition remuins
in the occumulotor doto type.

—» ST ADDER

Input fo neder - Acumnuletor ‘Accumulotor

As the previous figure shows, the block takes inputs to the accumulator and casts
them to the accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to it.

* When you select Same as product output, these characteristics match those
of the product output.

* When you select Same as first input, these characteristics match those of
the input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software software is 0.

Output
Choose how to specify the word length and fraction length of the output of the block:

* When you select Same as first input, these characteristics match those of
the input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

Compositing

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision

Toolbox software is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Supported Data Types

Complex
Port Input/Output Supported Data Types Values
Supported
Image 1 M-by-N matrix of intensity values Double-precision floating point |No
or an M-by-N-by-P color video Single-precision floating point
signal where P is the number of))
color planes Fixed point
Boolean
8-, 16-, and 32-bit signed integer
8-, 16-, and 32-bit unsigned
integer
Image 2 |M-by-N matrix of intensity values |Same as Image 1 port No
or an M-by-N-by-P color video
signal where P is the number of
color planes
Factor Scalar or matrix of opacity or Double-precision floating point |No

masking factor

Single-precision floating point
Fixed point

Boolean

8-, 16-, and 32-bit signed integer

8-, 16-, and 32-bit unsigned
integer

1-197

1 Biocks — Alphabetical List

Port

Input/Output

Supported Data Types

Complex
Values
Supported

Mask

Binary image that specifies which
pixels to highlight

Same as Factor port

When the Operation parameter is
set to Highlight selected
pixels, the input to the Mask port
must be a Boolean data type.

No

Location

Two-element vector [x y], that
specifies the position of the upper-
left corner of the image input at
port I2

Double-precision floating point.
(Only supported if the input to
the Image 1 and Image 2 ports is
a floating-point data type.)

* Single-precision floating point.
(Only supported if the input to
the Image 1 and Image 2 ports is
a floating-point data type.)

* 8-, 16-, and 32-bit signed integer

* 8-, 16-, and 32-bit unsigned
integer

No

Output

Vector or matrix of intensity or
color values

Same as Image 1 port

No

1-198

See Also

Insert Text

Computer Vision Toolbox

Draw Markers

Computer Vision Toolbox

Draw Shapes

Computer Vision Toolbox

Compositing

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-199

1 Biocks — Alphabetical List

Contrast Adjustment

Adjust image contrast by linearly scaling pixel values

Contrast
Adjustment

Contrast Adjustment

Library

Analysis & Enhancement

visionanalysis

Description

The Contrast Adjustment block adjusts the contrast of an image by linearly scaling the
pixel values between upper and lower limits. Pixel values that are above or below this
range are saturated to the upper or lower limit value, respectively.

1-200

Contrast Adjustment

Number of pixels
3000 - Lower Input Limit Upper Input Limit
|
l .
£ | |
| |
| |
1500 4 | I
These values are | [
scaled to lower |
T output limit. : !
|
" Pl o
50 100 150 200 250
Number of pixels
2000 Values within the upper and
lower input limits are linearly
scaled within the upper and
-T- lower output limits.
1000 —
T Fixelvale
I 25 50 75 100 125 1
| |
Lower Qutput Limit Upper Output Limit

Mathematically, the contrast adjustment operation is described by the following equation,
where the input limits are [low _in high_in] and the output limits are [low out high out]:

low_out, Input < low_in

high out —low out
high_in —low_in

high out, Input = high in

Output = {low_out + (Input — low in)

, low_in < Input < high in

1-201

1 Blocks — Alphabetical List

Complex
Port Input/Output Supported Data Types Values
Supported
I Vector or matrix of intensity ¢ Double-precision floating point No
values + Single-precision floating point
+ Fixed point
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Output Scalar, vector, or matrix of |Same as I port No
intensity values or a scalar,
vector, or matrix that
represents one plane of the
RGB video stream

1-202

Specifying upper and lower limits

Use the Adjust pixel values from and Adjust pixel values to parameters to specify the
upper and lower input and output limits. All options are described below.

Input limits

Use the Adjust pixel values from parameter to specify the upper and lower input limits.
If you select Full input data range [min max], uses the minimum input value as
the lower input limit and the maximum input value as the upper input limit.

If you select User-defined, the Range [low high] parameter associated with this
option appears. Enter a two-element vector of scalar values, where the first element
corresponds to the lower input limit and the second element corresponds to the upper
input limit.

If you select Range determined by saturating outlier pixels, the Percentage
of pixels to saturate [low high] (in %), Specify number of histogram bins (used to
calculate the range when outliers are eliminated), and Number of histogram bins
parameters appear on the block. The block uses these parameter values to calculate the
input limits in this three-step process:

Find the minimum and maximum input values, [min_in max_in].

Scale the pixel values from [min_in max_in] to [0 num_bins-1], where num_bins is
the scalar value you specify in the Number of histogram bins parameter. This
parameter always displays the value used by the block. Then the block calculates the

Contrast Adjustment

histogram of the scaled input. For additional information about histograms, see the
2D-Histogram block reference page.

3 Find the lower input limit such that the percentage of pixels with values smaller than
the lower limit is at most the value of the first element of the Percentage of pixels
to saturate [low high] (in %) parameter. Similarly, find the upper input limit such
that the percentage of pixels with values greater than the upper limit is at least the
value of the second element of the parameter.

Output limits

Use the Adjust pixel values to parameter to specify the upper and lower output limits.
If you select Full data type range, the block uses the minimum value of the input
data type as the lower output limit and the maximum value of the input data type as the
upper out

If you select User-defined range, the Range [low high] parameter appears on the
block. Enter a two-element vector of scalar values, where the first element corresponds to
the lower output limit and the second element corresponds to the upper output limit.

For INF, -INF and NAN Input Values

If any input pixel value is either INF or - INF, the Contrast Adjustment block will change
the pixel value according to how the parameters are set. The following table shows how
the block handles these pixel values.

If Adjust pixel values from Contrast Adjustment block will:
parameter is set to...
Full data range [min,max] Set the entire output image to the lower limit of the

Range determined by saturating Adjust pixel values to parameter setting.

outlier pixels

User defined range Lower and higher limits of the Adjust pixel values
to parameter set to - INF and INF , respectively.

If any input pixel has a NAN value, the block maps the pixels with valid numerical values
according to the user-specified method. It maps the NAN pixels to the lower limit of the
Adjust pixels values to parameter.

1-203

1 Blocks — Alphabetical List

Examples

See “Adjust the Contrast of Intensity Images” in the Computer Vision Toolbox User's
Guide.

Fixed-Point Data Types

The following diagram shows the data types used in the Contrast Adjustment block for
fixed-point signals:

histograrn

FIXEDFOINT TAB NAWES: SUB-STSTEMS:

IN_DT: Datatype of the input image Searh
EXD_DT: IN_DT with extra bit for sign Gakbulate the pimelvalue that comesponds
F1_DT: Datatype of podust 1 0 Thrin the cumulatie histgmm (GOF).

P2_DT: Daatype of pmduct 2

1-204

Parameters

Adjust pixel values from
Specify how to enter the upper and lower input limits. Your choices are Full input
data range [min max], User-defined, and Range determined by
saturating outlier pixels.

Range [low high]
Enter a two-element vector of scalar values. The first element corresponds to the
lower input limit, and the second element corresponds to the upper input limit. This
parameter is visible if, for the Adjust pixel values from parameter, you select User -
defined.

Percentage of pixels to saturate [low high] (in %)

Enter a two-element vector. The block calculates the lower input limit such that the
percentage of pixels with values smaller than the lower limit is at most the value of

Contrast Adjustment

the first element. It calculates the upper input limit similarly. This parameter is visible
if, for the Adjust pixel values from parameter, you select Range determined by
saturating outlier pixels.

Specify number of histogram bins (used to calculate the range when outliers are
eliminated)

Select this check box to change the number of histogram bins. This parameter is
editable if, for the Adjust pixel values from parameter, you select Range
determined by saturating outlier pixels.

Number of histogram bins

Enter the number of histogram bins to use to calculate the scaled input values. This
parameter is available if you select the Specify number of histogram bins (used to
calculate the range when outliers are eliminated) check box.

Adjust pixel values to

Specify the upper and lower output limits. If you select Full data type range, the
block uses the minimum value of the input data type as the lower output limit and the
maximum value of the input data type as the upper output limit. If you select User -
defined range, the Range [low high] parameter appears on the block.

Range [low high]
Enter a two-element vector of scalar values. The first element corresponds to the
lower output limit and the second element corresponds to the upper output limit. This
parameter is visible if, for the Adjust pixel values to parameter, you select User-
defined range

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1

The product output type when the block calculates the ratio between the input data
range and the number of histogram bins.

Accumulator
data type

MULTIPLIER +——
sfix8_En7 Product output

data type

1-205

1 Blocks — Alphabetical List

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate this
product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox software is 0.

Product 2

The product output type when the block calculates the bin location of each input
value.

Accumulator
data type

MULTIPLIR ——

sfix8_En7 Product output
data type

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate this
product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox software is 0.

This parameter is visible if, for the Adjust pixel values from parameter, you select
Range determined by saturating outlier pixels.
Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1-206

Contrast Adjustment

See Also

2D-Histogram

Computer Vision Toolbox software

Histogram Equalization

Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced in R2006b

1-207

1 Blocks — Alphabetical List

1-208

Corner Detection

Calculate corner metric matrix and find corners in images

Library

Analysis & Enhancement

visionanalysis

Description

The Corner Detection block finds corners in an image using the Harris corner detection
(by Harris & Stephens), minimum eigenvalue (by Shi & Tomasi), or local intensity
comparison (Features from Accelerated Segment Test, FAST by Rosten & Drummond)
method. The block finds the corners in the image based on the pixels that have the largest

corner metric values.

For the most accurate results, use the “Minimum Eigenvalue Method” on page 1-209. For
the fastest computation, use the “Local Intensity Comparison” on page 1-210. For the
trade-off between accuracy and computation, use the “Harris Corner Detection Method”

on page 1-210.

Corner Detection

Port Description

Port Description Supported Data Types
I Matrix of intensity values * Double-precision floating point
* Single-precision floating point
* Fixed point
* 8-, 16-, and 32-bit signed integer
e 8-, 16-, and 32-bit unsigned integer
Loc M-by-2 matrix of [x y] coordinates, | 32-bit unsigned integer
that represents the locations of
the corners. M represents the
number of corners and is less than
or equal to the Maximum
number of corners parameter
Count Scalar value that represents the |32-bit unsigned integer
number of detected corners
Metric Matrix of corner metric values Same as I port
that is the same size as the input
image

Minimum Eigenvalue Method

This method is more computationally expensive than the Harris corner detection
algorithm because it directly calculates the eigenvalues of the sum of the squared
difference matrix, M.

The sum of the squared difference matrix, M, is defined as follows:

AC

M =
CB

The previous equation is based on the following values:
A=) ew
B=()"®w

C= (L) ew

1-209

1 Blocks — Alphabetical List

1-210

where I, and I are the gradients of the input image, I, in the x and y direction,
respectively. The ® symbol denotes a convolution operation.

Use the Coefficients for separable smoothing filter parameter to define a vector of
filter coefficients. The block multiplies this vector of coefficients by its transpose to create
a matrix of filter coefficients, w.

The block calculates the smaller eigenvalue of the sum of the squared difference matrix.
This minimum eigenvalue corresponds to the corner metric matrix.

Harris Corner Detection Method

The Harris corner detection method avoids the explicit computation of the eigenvalues of
the sum of squared differences matrix by solving for the following corner metric matrix,
R:

R=AB-C? - k(A +B)?
A, B, C are defined in the previous section, “Minimum Eigenvalue Method” on page 1-209.

The variable k corresponds to the sensitivity factor. You can specify its value using the
Sensitivity factor (0<k<0.25) parameter. The smaller the value of k, the more likely it
is that the algorithm can detect sharp corners.

Use the Coefficients for separable smoothing filter parameter to define a vector of
filter coefficients. The block multiplies this vector of coefficients by its transpose to create
a matrix of filter coefficients, w.

Local Intensity Comparison

This method determines that a pixel is a possible corner if it has either, N contiguous
valid bright surrounding pixels, or N contiguous dark surrounding pixels. Specifying the
value of N is discussed later in this section. The next section explains how the block finds
these surrounding pixels.

Suppose that p is the pixel under consideration and j is one of the pixels surrounding p.
The locations of the other surrounding pixels are denoted by the shaded areas in the
following figure.

Corner Detection

Surrounding
pixel —>
Pixel under
consideration ——~p—__ |
> p
\
Angle

I, and I; are the intensities of pixels p and j, respectively. Pixel j is a valid bright
surrounding pixel if I; — I, = T. Similarly, pixel j is a valid dark surrounding pixel if
Ip—1j=T.In these equations, T is the value you specified for the Intensity comparison

threshold parameter.

The block repeats this process to determine whether the block has N contiguous valid
surrounding pixels. The value of N is related to the value you specify for the Maximum
angle to be considered a corner (in degrees), as shown in the following table.

Number of Valid Surrounding Pixels, Angle (degrees)

N

15
14
13
12

22.5
45
67.5
90

1-211

1 Biocks — Alphabetical List

Number of Valid Surrounding Pixels, Angle (degrees)

N

11 112.5
10 135
9 157.5

After the block determines that a pixel is a possible corner, it computes its corner metric
using the following equation:

R=max > |Lb=[|-T, > |b-I|-T,
JIET+T JIjET,-T

Fixed-Point Data Types

The following diagram shows the data types used in the Corner Detection block for fixed-
point signals. These diagrams apply to the Harris corner detection and minimum
eigenvalue methods only.

Rew | MEM_DT
Diff > | MEM_DT

h 4

MEM_DT

Smoothing

Horizontal Gradient

Dot Produd Smoothing1

Y
)

Y

E IN_DT Celumn | MEM_DT -
npu MEM_DT WEM D ouT D
Dift | o B = Smocthing MO Matnic 10T

Wertical Gradient

L 2
m

Dot product1

Smoething2

MEM_DT
Smocthing ~TEm BT

Dot Preduct2

Comer Metric

Smoothing3

Filter_Coefficients

CONV |rocanzs b
co 1

CONV — » MEM_DT
Vertical

Convolution

Horizontal

Convelution

Smeocthing

1-212

Corner Detection

WL of COEF_DT

Ratio_Trace

| oVTeT .

B I . OUT_DT >+
S W

Dot Froduct® »-

Agd2

= == = OuUT_DT
c o,
e

Dot Produd?

Comer Mefric by Harmis Algerithm

HE MEM_DT, —
e . gy pr, | VY= VuT2%2
Qy=Qu=<<2
Dot Product3 Ey=Eu

4
ol Laft shift 2 bits

v

Corner Metric by Minimum Eigenvalue Algorithm

The following table summarizes the variables used in the previous diagrams.

Variable Name
IN DT

MEM DT

OUT DT

COEF DT

Definition

Input data type
Memory data type
Metric output data type
Coefficients data type

1-213

1 Blocks — Alphabetical List

1-214

Parameters

Method

Specify the method to use to find the corner values. Your choices are Harris corner
detection (Harris & Stephens), Minimum eigenvalue (Shi & Tomasi),
and Local intensity comparison (Rosten & Drummond).

Sensitivity factor (0<k<0.25)

Specify the sensitivity factor, k. The smaller the value of k the more likely the
algorithm is to detect sharp corners. This parameter is visible if you set the Method
parameter to Harris corner detection (Harris & Stephens). This
parameter is tunable.

Coefficients for separable smoothing filter

Specify a vector of filter coefficients for the smoothing filter. This parameter is visible
if you set the Method parameter to Harris corner detection (Harris &
Stephens) or Minimum eigenvalue (Shi & Tomasi).

Intensity comparison threshold

Specify the threshold value used to find valid surrounding pixels. This parameter is
visible if you set the Method parameter to Local intensity comparison
(Rosten & Drummond). This parameter is tunable.

Maximum angle to be considered a corner (in degrees)

Specify the maximum corner angle. This parameter is visible if you set the Method
parameter to Local intensity comparison (Rosten & Drummond). This
parameter is tunable for Simulation only.

Output

Specify the block output. Your choices are Corner location, Corner location
and metric matrix, and Metric matrix. The block outputs the corner locations
in an M-by-2 matrix of [x y] coordinates, where M represents the number of corners.
The block outputs the corner metric value in a matrix, the same size as the input
image.

When you set this parameter to Corner location or Corner location and
metric matrix, the Maximum number of corners, Minimum metric value that
indicates a corner, and Neighborhood size (suppress region around detected
corners) parameters appear on the block.

To determine the final corner values, the block follows this process:

Corner Detection

Find the pixel with the largest corner metric value.

Verify that the metric value is greater than or equal to the value you specified for
the Minimum metric value that indicates a corner parameter.

3 Suppress the region around the corner value by the size defined in the
Neighborhood size (suppress region around detected corners) parameter.

The block repeats this process until it finds all the corners in the image or it finds the
number of corners you specified in the Maximum number of corners parameter.

The corner metric values computed by the Minimum eigenvalue and Local
intensity comparison methods are always non-negative. The corner metric
values computed by the Harris corner detection method can be negative.

Maximum number of corners

Enter the maximum number of corners you want the block to find. This parameter is
visible if you set the Output parameter to Corner location or Corner location
and metric matrix.

Minimum metric value that indicates a corner

Specify the minimum corner metric value. This parameter is visible if you set the
Output parameter to Corner location or Corner location and metric
matrix. This parameter is tunable.

Neighborhood size (suppress region around detected corners)

Specify the size of the neighborhood around the corner metric value over which the
block zeros out the values. Enter a two-element vector of positive odd integers, [r c].
Here, r is the number of rows in the neighborhood and c is the number of columns.
This parameter is visible if you set the Qutput parameter to Corner location or
Corner location and metric matrix.

Rounding mode
Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.
Coefficients
Choose how to specify the word length and the fraction length of the coefficients:
* When you select Same word length as input, the word length of the

coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that

1-215

1 Blocks — Alphabetical List

provides you with the best precision possible given the value and word length of
the coefficients.

When you select Specify word length, you can enter the word length of the
coefficients, in bits. The block automatically sets the fraction length to give you
the best precision.

When you select Binary point scaling, you can enter the word length and the
fraction length of the coefficients, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the coefficients. The bias of all signals in the Computer
Vision Toolbox software is 0.

Product output

As shown in the following figure, the output of the multiplier is placed into the
product output data type and scaling.

Input data type

Product output data type

MULTIPLIER >

vy

Coefficient data type

Use this parameter to specify how to designate the product output word and fraction
lengths.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox software is 0.

Accumulator

As shown in the following figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it.

1-216

Corner Detection

The result of each addition remains
in the accumulator data type.

/

A

ST > ADDRR [
Input fo adder - Accumulator ﬁcim}luluior
input data type data type ata type

Use this parameter to specify how to designate this accumulator word and fraction
lengths:

When you select Same as input, these characteristics match those of the input.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox software is 0.

Memory

Choose how to specify the memory word length and fraction length:

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Metric output
Choose how to specify the metric output word length and fraction length:

When you select Same as accumulator, these characteristics match those of
the accumulator.

When you select Same as input, these characteristics match those of the input
to the block.

1-217

1 Biocks — Alphabetical List

1-218

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] C. Harris and M. Stephens. “A Combined Corner and Edge Detector.” Proceedings of
the 4th Alvey Vision Conference. August 1988, pp. 147-151.

[2]]. Shi and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. June 1994, pp. 593-600.

[3] E. Rosten and T. Drummond. “Fusing Points and Lines for High Performance
Tracking.” Proceedings of the IEEE International Conference on Computer Vision
Vol. 2 (October 2005): pp. 1508-1511.

See Also

Find Local Maxima Computer Vision Toolbox software
Estimate Geometric Computer Vision Toolbox software
Transformation

matchFeatures Computer Vision Toolbox software
extractFeatures Computer Vision Toolbox software
detectSURFFeatures Computer Vision Toolbox software

Corner Detection

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2007b

1-219

1 Biocks — Alphabetical List

Deinterlacing

Remove motion artifacts by deinterlacing input video signal

Deinterlacing -

Deinterlacing

Library

Analysis & Enhancement

visionanalysis

Description

The Deinterlacing block takes the input signal, which is the combination of the top and
bottom fields of the interlaced video, and converts it into deinterlaced video using line
repetition, linear interpolation, or vertical temporal median filtering.

Note This block supports intensity and color images on its ports.

Complex
ort Input/Output Supported Data Types Values

Supported
nput Combination of top and bottom * Double-precision floating point No

fields of interlaced video

* Single-precision floating point

* Fixed point

* 8-, 16-, and 32-bit signed integer

* 8-, 16-, and 32-bit unsigned integer

1-220

Deinterlacing

Jutput Frames of deinterlaced video Same as Input port No

Use the Deinterlacing method parameter to specify how the block deinterlaces the
video.

The following figure illustrates the block's behavior if you select Line repetition.

1-221

1 Biocks — Alphabetical List

Line Repetition

Original Interlaced Video

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

1-222

Top Field Bottom Field

A B (Row 1

Row 2 D E F
G H Row 3

Row 4 J K L
M N 0 Row 5

Row 6 P Q R

Block Input Block Output - Deinterlaced Video

A B (Row 1 A B (
D E F Row 2 A B (
6 H | Row 3 6 H I
J K L Row 4 6 H I
M N 0 Row 5 M N 0
P Q R Row 6 M N 0

The following figure illustrates the block's behavior if you select Linear
interpolation.

Deinterlacing

Linear Interpolation

Original Interlaced Video

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Top Field
A B
6 H
M N
Block Input
A B
D E
G H
J K
M N
P Q

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Bottom Field
D E F
J K L
P Q R

Block Output - Deinterlaced Video

A B (
(A+6)/2 (B+H)/2 (C+1)/2

G H |
(G+M)/2 (H+N)/2 (1+0)/2

M N 0

M N 0

The following figure illustrates the block's behavior if you select Vertical temporal
median filtering.

1-223

1 Blocks — Alphabetical List

Vertical Temporal Median Filtering

Original Inferlaced Video

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

1-224

Top Field Bottom Field
A B (Row 1
Row 2 D E F
6 H Row 3
Row 4 J K L
M N 0 Row 5
Row 6 P Q R
Block Input Block Output - Deinterlaced Video
A B (Row 1 A B (
D E F Row 2 median([A,D,G]) median([B,EH]) median([CFI])
G H | Row 3 G H I
! K L Rowd medion([G,JM) median(H KN]) median(1L0])
M N 0 Row 5 M N 0
P Q R Row 6 M N 0

Row-Major Data Format

The MATLAB environment and the Computer Vision Toolbox software use column-major
data organization. However, the Deinterlacing block gives you the option to process data
that is stored in row-major format. When you select the Input image is transposed
(data order is row major) check box, the block assumes that the input buffer contains
contiguous data elements from the first row first, then data elements from the second row

Deinterlacing

second, and so on through the last row. Use this functionality only when you meet all the
following criteria:

You are developing algorithms to run on an embedded target that uses the row-major
format.

You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

When you select this check box, the first two signal dimensions of the Deinterlacing
block's input are swapped.

All the Computer Vision Toolbox blocks can be used to process data that is in the row-
major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on
an embedded target.

1-225

1 Biocks — Alphabetical List

Step 1:

Create block diagram Glggliisthm
-
—— > —
Video Transpose Transpose Video
source plock block sink
block block
| I I
~<—— Step 2: >
Replace source, transpose, and
sink blocks with target source Embedded
E\rrgbe?%%i?ce and s_ink bIocks_ that produce target sink
block data in row-major format block

Example

The following example shows you how to use the Deinterlacing block to remove motion
artifacts from an image.

1 Open the example model by typing
ex_deinterlace

at the MATLAB command prompt.

2 Double-click the Deinterlacing block. The model uses this block to remove the motion
artifacts from the input image. The Deinterlacing method parameter is set to
Vertical temporal median filtering.

1-226

matlab:ex_deinterlace

Deinterlacing

[Function Block Parameters: Deinterlacing |

Dreinterlacing

Remaoves matioh artifacts fron images composed of weaved top and bottam figlds
of an interlaced zignal.

e | Fixed-pointl

Parameter

Dreinterlacing method: I\-"ertical temporal median filtering j

™ Input image iz ransposed [data order is row major]

ok I Cancel | Help | Apply |

Run the model.

The original image that contains the motion artifacts appears in the Input Image
window.

1-227

1 Biocks — Alphabetical List

) Input Image {576x720) =10l x|
N

Axes

The clearer output image appears in the Output Image window.

1-228

Deinterlacing

) Output Image (576x720) =10l x|
]

Axes

Fixed-Point Data Types

The following diagram shows the data types used in the Deinterlacing block for fixed-
point signals.

1-229

1 Blocks

— Alphabetical List

The result of each addition remains
in the accumulator data type.

/ Accumulator Accumulator

< data type data fype Output
data type
Input data type > ADDER > RIGHT SHIFT > CAST —
EEE—— (AST >
Accumulator
data type

1-230

You can set the product output, accumulator, and output data types in the block mask as
discussed in the next section.

Parameters

Deinterlacing method

Specify how the block deinterlaces the video. Your choices are Line repetition,
Linear interpolation, orVertical temporal median filtering.

Input image is transposed (data order is row major)

When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

Note The parameters on the Data Types pane are only available if, for the
Deinterlacing method, you select Linear interpolation.

Rounding mode

Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.

Deinterlacing

Accumulator
The result of each addition remains
in the accumulator data type.
CAST > ADDR |
Input to adder - Accumulator ﬁ\cgun:uluior
input data type data type ata type

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths:

When you select Same as product output, these characteristics match those
of the product output.

When you select Same as input, these characteristics match those of the input.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Output

Choose how to specify the output word length and fraction length:

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

1-231

1 Blocks — Alphabetical List

1-232

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

Demosaic

Demosaic

Demosaic Bayer's format images

| Demaossic Image |

Library

The following figure illustrates a 4-by-4 image in Bayer's format with each pixel labeled R,

Conversions
visionconversions
Description
G, or B.
B G B 6
6 R G R
B G B G
G R 6 R

The Demosaic block takes in images in Bayer's format and outputs RGB images. The block
performs this operation using a gradient-corrected linear interpolation algorithm or a

bilinear interpolation algorithm.

1-233

1 Biocks — Alphabetical List

Port

Input/Output

Supported Data Types

Complex
Values
Supported

Matrix of intensity values

o If, for the Interpolation
algorithm parameter, you
select Bilinear, the
number of rows and
columns must be greater
than or equal to 3.

o If, for the Interpolation
algorithm parameter, you
select Gradient-
corrected linear, the
number of rows and
columns must be greater
than or equal to 5.

Double-precision floating point
Single-precision floating point
Fixed point

8-, 16-, and 32-bit signed integer

8-, 16-, and 32-bit unsigned integer

No

R, G B

Matrix that represents one
plane of the input RGB video
stream. Outputs from the R, G,
or B ports have the same data

type.

Same as I port

No

Image

M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes.

Same as I port

No

Use the Interpolation algorithm parameter to specify the algorithm the block uses to
calculate the missing color information. If you select Bilinear, the block spatially
averages neighboring pixels to calculate the color information. If you select Gradient-
corrected linear, the block uses a Weiner approach to minimize the mean-squared
error in the interpolation. This method performs well on the edges of objects in the image.

For more information, see [1].

Use the Sensor alignment parameter to specify the alignment of the input image. Select
the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels in the top-

1-234

Demosaic

left corner of the image. You specify the sequence in left-to-right, top-to-bottom order. For
example, for the image at the beginning of this reference page, you would select BGGR.

Both methods use symmetric padding at the image boundaries. For more information, see
the Image Pad block reference page.

Use the Output image signal parameter to specify how to output a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Fixed-Point Data Types

The following diagram shows the data types used in the Demosaic block for fixed-point
signals.

The result of each addition remains
in the accumulator data type.

/

Input) Output
v ADDER CAST _.d"'l‘]’ ki
ULTPLIER Accumulator or AT Accumulator
Input Accumulator data type

data type s(r]?g l;;tpgutpul data type

You can set the product output and accumulator data types in the block mask as
discussed in the next section.

Parameters

Interpolation algorithm

Specify the algorithm the block uses to calculate the missing color information. Your
choices are Bilinear or Gradient-corrected linear.

Sensor alignment

Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels
in the top left corner of the image. You specify the sequence in left-to-right, top-to-
bottom order.

1-235

1 Blocks — Alphabetical List

1-236

Output image signal

Specify how to output a color video signal. If you select One multidimensional
signal, the block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals, additional
ports appear on the block. Each port outputs one M-by-N plane of an RGB video
stream.

Rounding mode

Select the rounding mode for fixed-point operations.
Overflow mode

Select the overflow mode for fixed-point operations.
Product output

Accumulator
data type

) MULTIPLIER }—
sfix8_En7 Product output

data type

As depicted in the previous figure, the output of the multiplier is placed into the
product output data type and scaling. Use this parameter to specify how to designate
this product output word and fraction lengths:

When you select Same as input, these characteristics match those of the input to
the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Demosaic

Accumulator
The result of each addition remains
in the accumulator data type.
> ADDER
—> CAST > Accuml
Input fo adder - Accumulator dccumu afor
input data type data fype ata type

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths:

* When you select Same as product output, these characteristics match those
of the product output.
* When you select Same as input, these characteristics match those of the input.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation for
Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May 2004.
http://research.microsoft.com/pubs/102068/Demosaicing ICASSP04.pdf.

1-237

1 Blocks — Alphabetical List

[2] Gunturk, Bahadir K., John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and Russel
M. Mersereau, “Demosaicking: Color Filter Array Interpolation,” IEEE Signal
Processing Magazine, Vol. 22, Number 1, January 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2006b

1-238

Dilation

Dilation

Find local maxima in binary or intensity image

|
Lrilate
Nhood

Dilation

Library

Morphological Operations

visionmorphops

Description

The Dilation block rotates the neighborhood or structuring element 180 degrees. Then it
slides the neighborhood or structuring element over an image, finds the local maxima,
and creates the output matrix from these maximum values. If the neighborhood or
structuring element has a center element, the block places the maxima there, as
illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a
bias toward the lower-right corner, as a result of the rotation. The block places the
maxima there, as illustrated in the following figure.

1-239

1 Blocks — Alphabetical List

This block uses flat structuring elements only.

Complex
ort Input/Output Supported Data Types Values
Supported
Vector or matrix of intensity * Double-precision floating point No
values + Single-precision floating point
* Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Nhood Matrix or vector of ones and zeros | Boolean No
that represents the neighborhood
values
Jutput Vector or matrix of intensity Same as I port No
values that represents the dilated
image

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood

or structuring element that the block applies to the image. Specify a neighborhood by
entering a matrix or vector of 1s and 0s. Specify a structuring element with the strel

1-240

Dilation

function from the Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the use of a more
efficient algorithm. If you enter an array of STREL objects, the block applies each object
to the entire matrix in turn.

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and Os. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imdilate Image Processing Toolbox software
strel Image Processing Toolbox software

1-241

1 Biocks — Alphabetical List

1-242

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

Draw Markers

Draw Markers

Draw markers by embedding predefined shapes on output image

Image

L= marker=
P= " i)

el
Dz fularkers

Library

Text & Graphics

visiontextngfix

Description

The Draw Markers block can draw multiple circles, x-marks, plus signs, stars, or squares
on images by overwriting pixel values. Overwriting the pixel values embeds the shapes.

This block uses Bresenham's circle drawing algorithm to draw circles and Bresenham's
line drawing algorithm to draw all other markers.

1-243

1 Biocks — Alphabetical List

Port Description

Complex
ort Input/Output Supported Data Types Values
Supported
mage M-by-N matrix of intensity values or an M-|* Double-precision floating point No
by-N-by-P color values where P is the « Single-precision floating point
number of color planes))
* Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned
integer
, G, B Scalar, vector, or matrix that represents |Same as Image port No
one plane of the input RGB video stream.
Inputs to the R, G, and B ports must have
the same dimensions and data type.
ts M-by-2 matrix of [x y] coordinates, * Double-precision floating point No
X W * Single-precision floating point
o 7 * 8-, 16-, and 32-bit signed integer
2 W
* 8-, 16-, and 32-bit unsigned
integer
XM YM
If the input to the Image port is an
where M is the total number of markers |integer, fixed point, or boolean data
and each [x y] pair defines the center of a |type, the input to the Pts port must
marker. also be an integer data type.
01 Four-element vector of integers [x y width |+ Double-precision floating point No
helght] that define a rectangular area in |, Single-precision floating point
which to draw the markers. The first two o)
elements represent the one-based [xy] |* 8- 16- and 32-bit signed integer
coordinates of the upper-left corner of the ¢ 8-, 16-, and 32-bit unsigned
area. The second two elements represent integer
the width and height of the area.
Ir P-element vector or M-by-P matrix where |Same as Image port No

P is the number of color planes.

1-244

Draw Markers

Complex
ort Input/Output Supported Data Types Values
Supported
yutput Scalar, vector, or matrix of pixel values Same as Image port No
that contain the marker(s)

The output signal is the same size and data type as the inputs to the Image, R, G, and B

ports.

Parameters

Marker shape

Specify the type of marker(s) to draw. Your choices are Circle, X-mark, Plus, Star,

or Square.

When you select Circle, X-mark, or Star, and you select the Use antialiasing
check box, the block performs a smoothing algorithm. The algorithm is similar to the

poly2mask function to determine which subpixels to draw.

Marker size

Enter a scalar value that represents the size of the marker, in pixels.

Enter a scalar value, M, that defines a (2M+1)-by-(2M+1) pixel square into which the
marker fits. M must be greater than or equal to 1.

Filled

Select this check box to fill the marker with an intensity value or a color. This
parameter is visible if, for the Marker shape parameter, you choose Circle or

Square.

When you select the Filled check box, the Fill color source, Fill color and Opacity

factor (between 0 and 1) parameters appear in the dialog box.

Fill color source

Specify source for fill color value. You can select Specify via dialog or Input
port. This parameter appears when you select the Filled check box. When you select

Input port, the color input port clr appears on the block.

1-245

1 Blocks — Alphabetical List

Fill color

If you select Black, the marker is black. If you select White, the marker is white. If
you select User-specified value, the Color value(s) parameter appears in the
dialog box. This parameter is visible if you select the Filled check box.

Border color source

Specify source for the border color value to either Specify via dialog or Input
port. Border color options are visible when the fill shapes options are not selected.
This parameter is visible if you select the Filled check box. When you select Input

port, the color input port clr appears on the block.

Border color

Specify the appearance of the shape's border. If you select Black, the border is black.
If you select White, the border is white. If you select User-specified value, the
Color value(s) parameter appears in the dialog box. This parameter is visible if you
clear the Fill shapes check box.

Color value(s)

Specify an intensity or color value for the marker's border or fill. This parameter
appears when you set the Border color or Fill color parameters to User -
specified value. Tunable.

The following table describes what to enter for the color value based on the block
input and the number of shapes you are drawing.

Block Input Color Value(s) for Drawing Color Value(s) for Drawing

One Marker or Multiple Multiple Markers with Unique
Markers with the Same Color Color
Intensity Scalar intensity value R-element vector where R is the
image number of markers

Color image P-element vector where P is the P-by-R matrix where P is the
number of color planes number of color planes and R is
the number of markers

For each value in the parameter, enter a number between the minimum and maximum

values that can be represented by the data type of the input image. If you enter a
value outside this range, the block produces an error message.

1-246

Draw Markers

Opacity factor (between 0 and 1)

Specify the opacity of the shading inside the marker, where 0 indicates transparent
and 1 indicates opaque. This parameter appears when you select the Filled check

box. This parameter is tunable.

The following table describes what to enter for the Opacity factor(s) (between 0
and 1) parameter based on the block input and the number of markers you are

drawing.

Opacity Factor value for Drawing
One Marker or Multiple Markers
with the Same Color

Oopacity Factor value for Drawing
Multiple Marker with Unique Color

Scalar intensity value

R-element vector where R is the
number of markers

Draw markers in

Specify the area in which to draw the markers. When you select Entire image, you
can draw markers in the entire image. When you select Specify region of
interest via port, the ROI port appears on the block. Enter a four-element
vector, [Xx y width height], where [x y] are the coordinates of the upper-left

corner of the area.

Use antialiasing

Perform a smoothing algorithm on the marker. This parameter is visible if, for the
Marker shape parameter, you select Circle, X-mark, or Star.

Image signal

Specify how to input and output a color video signal. When you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. When you select Separate

color signals, additional ports appear on the block. Each port accepts one M-by-N

plane of an RGB video stream.

See Also

Draw Shapes

Computer Vision Toolbox software

Insert Text Computer Vision Toolbox software

1-247

1 Biocks — Alphabetical List

1-248

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

Draw Shapes

Draw Shapes

Draw rectangles, lines, polygons, or circles on images

Irnage

Dorze
Rectanglkes

RO

Fts

D=w Shapes

Library

Text & Graphics

visiontextngfix

Description

The Draw Shapes block draws multiple rectangles, lines, polygons, or circles on images
by overwriting pixel values. As a result, the shapes are embedded on the output image.

This block uses Bresenham's line drawing algorithm to draw lines, polygons, and
rectangles. It uses Bresenham's circle drawing algorithm to draw circles.

The output signal is the same size and data type as the inputs to the Image, R, G, and B
ports.

You can set the shape fill or border color via the input port or via the input dialog. Use the
color input or color parameter to determine the appearance of the rectangle(s), line(s),
polygon(s), or circle(s).

1-249

1 Biocks — Alphabetical List

1-250

Port Description

Complex
Port Input/Output Supported Data Types Values
Supported
Image |M-by-N matrix of intensity values | Double-precision floating [No
or an M-by-N-by-P color values point
where P is the number of color « Single-precision floating
planes point
¢ Fixed point
* Boolean
e 8-, 16-, and 32-bit signed
integer
* 8-, 16-, and 32-bit
unsigned integer
R, G, B |Scalar, vector, or matrix that is one | Same as Image port No
plane of the input RGB video
stream. Inputs to the R, G, and B
ports must have the same
dimensions and data type.
Pts Use integer values to define one- |¢ Double-precision floating |No

based shape coordinates. If you
enter noninteger values, the block
rounds them to the nearest
integer.

point (only supported if the
input to the I or R, G, and
B ports is floating point)

Single-precision floating
point (only supported if the
input to the [or R, G, and
B ports is floating point)

8-, 16-, and 32-bit signed
integer

8-, 16-, and 32-bit
unsigned integer

Draw Shapes

Complex
Port Input/Output Supported Data Types Values
Supported

ROI 4-element vector of integers [xy |* Double-precision floating |No

width height], that define a point

rectangular area in which to draw |, Single-precision floating

the shapes. The first two elements point

represent the one-based o

coordinates of the upper-left * 8-, 16-, and 32-bit signed

corner of the area. The second two | Dteger

elements represent the width and |¢ 8-, 16-, and 32-bit

height of the area. unsigned integer
Clr This port can be used to Same as Image port No

dynamically specify shape color.

P-element vector or an M-by-P

matrix, where M is the number of

shapes, and P, the number of color

planes.

You can specify a color (RGB), for

each shape, or specify one color

for all shapes.
Output |[Scalar, vector, or matrix of pixel Same as Image port No

values that contain the shape(s)

Drawing Shapes and Lines

Use the Shape parameter and Pts port to draw the following shapes or lines:

+ “Drawing Rectangles” on page 1-252

* “Drawing Lines and Polylines” on page 1-252

* “Drawing Polygons” on page 1-254

* “Drawing Circles” on page 1-256

1-251

1 Blocks — Alphabetical List

Drawing Rectangles

The Draw Shapes block lets you draw one or more rectangles. Set the Shape parameter
to Rectangles, and then follow the instructions in the table to specify the input to the
Pts port to obtain the desired number of rectangles.

Shape

Input to the Pts Port

Drawn Shape

Single Rectangle

Four-element row vector
[Xx y width height] where

* Xxand y are the one-based coordinates of
the upper-left corner of the rectangle.

e width and height are the width, in
pixels, and height, in pixels, of the
rectangle. The values of width and
height must be greater than 0.

(x,y)

(x + width-1, y + height-1

M Rectangles

M-by-4 matrix
X1 N Widthl height1
X2 W widthy heightz
XM Vv widthpy heightyy

where each row of the matrix corresponds
to a different rectangle and is of the same
form as the vector for a single rectangle.

M=2
(x1,y1)

(x4 + width1-1, y1 + heighti-1)
(xy)

A

(x2 + widthz-1, y2 + heightz-1)

Drawing Lines and Polylines

The Draw Shapes block lets you draw either a single line, or one or more polylines. You
can draw a polyline with a series of connected line segments. Set the Shape parameter to
Lines, and then follow the instructions in the table to specify the input to the Pts port to
obtain the desired shape.

1-252

Draw Shapes

Shape

Input to the Pts Port

Drawn Shape

Single Line

Four-element row vector [X; y; X» V>l
where

* X; and y; are the coordinates of the
beginning of the line.

* X, and Yy, are the coordinates of the end
of the line.

(x1, y1)

\xé "

M Lines

M-by-4 matrix
X11 Y11 X12 V12
X21 Y21 X22 V22
XM1 YM1 XM2 YMm2

where each row of the matrix corresponds
to a different line and is of the same form as
the vector for a single line.

X11 y11

\m yio)

XM yrn

s

Xru ym

Single Polyline with
(L-1) Segments

Vector of size 2L, where L is the number of
vertices, with format, [X;, yi, X5,

Y2, o XLy yl_]

* x; and y; are the coordinates of the
beginning of the first line segment.

* X, and y, are the coordinates of the end
of the first line segment and the
beginning of the second line segment.

* x; and yy, are the coordinates of the end
of the (L-1) line segment.

The polyline always contains (L-1) number
of segments because the first and last
vertex points do not connect. The block
produces an error message when the
number of rows is less than two or not a
multiple of two.

1-253

1 Biocks — Alphabetical List

Shape

Input to the Pts Port

Drawn Shape

M Polylines with
(L-1) Segments

M-by-2L matrix

X11 Y11 X122 yiz2
X21 Y21 X22 Y22 -

XM1 YM1 XM2 Ym2

X1L ViL
XL V2L

= XML VML

where each row of the matrix corresponds
to a different polyline and is of the same
form as the vector for a single polyline.
When you require one polyline to contain
less than (L-1) number of segments, fill the
matrix by repeating the coordinates of the

last vertex.

The block produces an error message if the
number of rows is less than two or not a

multiple of two.

M=3,L=5 (K14, y1e)
(X1L YiL

(x11, yn)

- *Added L=5 matrix
(22, yas) = (s, ys) entry equal to L=4
value, because this
polyline contains one
less number of
segments

(%21, y21) (%23, y23)

(xzz yzz)

()<|.|L ymL) ()(ma y”:)

(xuz, yir2) (xm3, Yus)

()Cm ym)

If you select the Use antialiasing check box, the block applies an edge smoothing

algorithm.

For an example of how to use the Draw Shapes block to draw a line, see “Detect Lines in

Images”.

Drawing Polygons

The Draw Shapes block lets you draw one or more polygons. Set the Shape parameter to
Polygons, and then follow the instructions in the table to specify the input to the Pts port

to obtain the desired number of polygons.

1-254

Draw Shapes

Shape

Input to the Pts Port

Drawn Shape

Single Polygon with
L line segments

Row vector of size 2L, where L is the
number of vertices, with format, [x; y; X,
Yo ... X_ Y] where

* x; and y; are the coordinates of the
beginning of the first line segment.

* X, and y, are the coordinates of the end
of the first line segment and the
beginning of the second line segment.

* x; and yy, are the coordinates of the end
of the (L-1)' line segment and the
beginning of the L' line segment.

The block connects [x; y;] to [x. y.] to
complete the polygon. The block produces
an error if the number of rows is negative
or not a multiple of two.

(L YY) [
(X1, y1)

(x2, y2)

M Polygons with the
largest number of
line segments in any
line being L

M-by-2L matrix

X11 Y11 X12 Y12 - XiL YiL

X21 Y21 X22 Y22 - X2L oL

XM1 Ym1 XM2 Ym2 - XML VML

where each row of the matrix corresponds
to a different polygon and is of the same
form as the vector for a single polygon. If
some polygons are shorter than others,
repeat the ending coordinates to fill the
polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

M=3, L=5
)h y1

X1L Vi
(x11, y11)
K1 y1

(x12, y12)

(X2s, y2a) = (Xos. ya5)
(Xa1, y=1) &(Xzz y23)
(X2, y22)

Kn ym

(XHL ynL
f :(Xn y”)(n yn

Xm ym

“Added L=5 matrix
entry equal to L=4
value, because this
polyline contains one
less number of
segments.

1-255

1 Blocks — Alphabetical List

Drawing Circles

The Draw Shapes block lets you draw one or more circles. Set the Shape parameter to
Circles, and then follow the instructions in the table to specify the input to the Pts port
to obtain the desired number of circles.

Shape Input to the Pts Port Drawn Shape

Single Circle Three-element row vector
[x y radius] where

* X and y are coordinates for the center of
the circle.

* radius is the radius of the circle, which
must be greater than 0.

M Circles M-by-3 matrix

X1 N radiu51
X2 W radiu52

(x1,y1)

XM VM radiuspyy

where each row of the matrix corresponds
to a different circle and is of the same form
as the vector for a single circle.

(x2,y2)

Parameters

Shape

Specify the type of shape(s) to draw. Your choices are Rectangles, Lines,
Polygons, or Circles.

1-256

Draw Shapes

The block performs a smoothing algorithm when you select the Use antialiasing
check box with either Lines, Polygons, or Circles. The block uses an algorithm
similar to the poly2mask function to determine which subpixels to draw.

Fill shapes
Fill the shape with an intensity value or a color.

When you select this check box, the Fill color source, Fill color and Opacity factor
(between 0 and 1) parameters appear in the dialog box.

Note If you are generating code and you select the Fill shapes check box, the word
length of the block input(s) cannot exceed 16 bits.

When you do not select the Fill shapes check box, the Border color source, and
Border color parameters are available.

Fill color source

Specify source for fill color value to either Specify via dialog or Input port.
This parameter appears when you select the Fill shapes check box. When you select
Input port, the color input port clr appears on the block.

Fill color

Specify the fill color for shape. You can specify either Black, White, or User-
specified value. When you select User-specified value, the Color value(s)
parameter appears in the dialog box. This parameter is visible if you select the Fill
shapes check box.

Border color source

Specify source for the border color value to either Specify via dialog or Input
port. Border color options are visible when the fill shapes options are not selected.
Border color source appears when you select the Fill shapes check box. When you
select Input port, the color input port clr appears on the block.

Border color

Specify the appearance of the shape's border. You can specify either Black, White,
or User-specified value. If you select User-specified value, the Color
value(s) parameter appears in the dialog box. This parameter appears when you
clear the Fill shapes check box.

1-257

1 Biocks — Alphabetical List

Color value(s)

Specify an intensity or color value for the shape's border or fill. This parameter
applies when you set the Border color or Fill color parameter to User-specified
value. This parameter is tunable.

The following table describes what to enter for the color value based on the block
input and the number of shapes you are drawing.

Block Input Color Value(s) for Color Value(s) for
Drawing One Shape or Drawing Multiple
Multiple Shapes with Shapes with Unique

the Same Color Color
Intensity image Scalar intensity value R-element vector where R
is the number of shapes
Color image P-element vector where P R-by-P matrix where P is
is the number of color the number of color
planes planes and R is the

number of shapes

For each value in the Color Value(s) parameter, enter a number between the
minimum and maximum values that can be represented by the data type of the input
image. If you enter a value outside this range, the block produces an error message.

Opacity factor (between 0 and 1)

Specify the opacity of the shading inside the shape, where 0 is transparent and 1 is
opaque. This parameter is visible if you select the Fill shapes check box.

The following table describes what to enter for this parameter based on the block
input and the number of shapes you are drawing. This parameter applies when you
select the Filled check box.

Opacity Factor value for Drawing Opacity Factor value for Drawing
One Shape or Multiple Shapes with (Multiple Shapes with Unique Color
the Same Color

Scalar intensity value R-element vector where R is the
number of shapes

Draw shapes in
Specify the type of area in which to draw shapes. You can define one of the following:

1-258

Draw Shapes

* Entire image, enables you to draw shapes in the entire image.

* Specify region of interest via port. When you select this option, the
ROI port appears on the block. Enter a four-element vector of integer values, [x vy
width height], where [x y] are the coordinates of the upper-left corner of the
area.

Note If you specify values that are outside the image, the block sets the values to
the image boundaries.

Use antialiasing

Perform a smoothing algorithm on the line, polygon, or circle. This parameter is
visible if, for the Shape parameter, you select Lines, Polygons, or Circles.

Image signal
Specify how to input and output a color video signal. Select one of the following:
* One multidimensional signal, the block accepts an M-by-N-by-P color video
signal, where P is the number of color planes, at one port.

* Separate color signals, additional ports appear on the block. Each port
accepts one M-by-N plane of an RGB video stream.

See Also
Draw Markers Computer Vision Toolbox software
Insert Text Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-259

1 Blocks — Alphabetical List

1-260

Edge Detection

Find edges of objects in images using Sobel, Prewitt, Roberts, or Canny method

| Sobel Edgep

Edge Detection

Library

Analysis & Enhancement

visionanalysis

Description

If, for the Method parameter, you select Sobel, Prewitt, or Roberts, the Edge
Detection block finds the edges in an input image by approximating the gradient
magnitude of the image. The block convolves the input matrix with the Sobel, Prewitt, or
Roberts kernel. The block outputs two gradient components of the image, which are the
result of this convolution operation. Alternatively, the block can perform a thresholding
operation on the gradient magnitudes and output a binary image, which is a matrix of
Boolean values. If a pixel value is 1, it is an edge.

If, for the Method parameter, you select Canny, the Edge Detection block finds edges by
looking for the local maxima of the gradient of the input image. It calculates the gradient
using the derivative of the Gaussian filter. The Canny method uses two thresholds to
detect strong and weak edges. It includes the weak edges in the output only if they are
connected to strong edges. As a result, the method is more robust to noise, and more
likely to detect true weak edges.

Edge Detection

Complex
Port Input/Output Supported Data Types Values
Supported
I Matrix of intensity values | Double-precision floating point No
* Single-precision floating point
+ Fixed point (not supported for the Canny
method)
* 8-, 16-, 32-bit signed integer (not supported
for the Canny method)
e 8-, 16-, 32-bit unsigned integer (not
supported for the Canny method)
Th Matrix of intensity values |Same as I port No
Edge |Matrix that representsa |Boolean No
binary image
Gv Matrix of gradient Same as I port No
responses to the vertical
edges
Gh Matrix of gradient Same as I port No
responses to the horizontal
edges
G45 Matrix of gradient Same as I port No
responses to edges at 45
degrees
G135 |Matrix of gradient Same as I port No

responses to edges at 135
degrees

The output of the Gv, Gh, G45, and G135 ports is the same data type as the input to the I
port. The input to the Th port must be the same data type as the input to the I port.

Use the Method parameter to specify which algorithm to use to find edges. You can
select Sobel, Prewitt, Roberts, or Canny to find edges using the Sobel, Prewitt,

Roberts, or Canny method.

1-261

1 Blocks — Alphabetical List

1-262

Sobel, Prewitt, and Roberts Methods

Use the Output type parameter to select the format of the output. If you select Binary
image, the block outputs a Boolean matrix at the Edge port. The nonzero elements of this
matrix correspond to the edge pixels and the zero elements correspond to the background
pixels. If you select Gradient components and, for the Method parameter, you select
Sobel or Prewitt, the block outputs the gradient components that correspond to the
horizontal and vertical edge responses at the Gh and Gv ports, respectively. If you select
Gradient components and, for the Method parameter, you select Roberts, the block
outputs the gradient components that correspond to the 45 and 135 degree edge
responses at the G45 and G135 ports, respectively. If you select Binary image and
gradient components, the block outputs both the binary image and the gradient
components of the image.

Select the User-defined threshold check box to define a threshold values or values. If
you clear this check box, the block computes the threshold for you.

Use the Threshold source parameter to specify how to enter your threshold value. If you
select Specify via dialog, the Threshold parameter appears in the dialog box. Enter
a threshold value that is within the range of your input data. If you choose Input port,
use input port Th to specify a threshold value. This value must have the same data type as
the input data. Gradient magnitudes above the threshold value correspond to edges.

The Edge Detection block computes the automatic threshold using the mean of the
gradient magnitude squared image. However, you can adjust this threshold using the
Threshold scale factor (used to automatically calculate threshold value)
parameter. The block multiplies the value you enter with the automatic threshold value to
determine a new threshold value.

Select the Edge thinning check box to reduce the thickness of the edges in your output
image. This option requires additional processing time and memory resources.

Note This block is most efficient in terms of memory usage and processing time when
you clear the Edge thinning check box and use the Threshold parameter to specify a
threshold value.

Canny Method

Select the User-defined threshold check box to define the low and high threshold
values. If you clear this check box, the block computes the threshold values for you.

Edge Detection

Use the Threshold source parameter to specify how to enter your threshold values. If
you select Specify via dialog, the Threshold [low high] parameter appears in the
dialog box. Enter the threshold values. If a pixel's magnitude in the gradient image, which
is formed by convolving the input image with the derivative of the Gaussian filter, exceeds
the high threshold, then the pixel corresponds to a strong edge. Any pixel connected to a
strong edge and having a magnitude greater than the low threshold corresponds to a
weak edge. If, for the Threshold source parameter, you choose Input port, use input
port Th to specify a two-element vector of threshold values. These values must have the
same data type as the input data.

The Edge Detection block computes the automatic threshold values using an
approximation of the number of weak and nonedge image pixels. Enter this approximation
for the Approximate percentage of weak edge and nonedge pixels (used to
automatically calculate threshold values) parameter.

Use the Standard deviation of Gaussian filter parameter to define the Gaussian filter
whose derivative is convolved with the input image.

Fixed-Point Data Types

The following diagram shows the data types used in the Edge Detection block for fixed-
point signals.

The result of each addition remains
in the accumulator data type.

/

A

) > ADDRR ooosT L
MULTIPLIER > CAST >

[nput Product output Accumulator ﬁ;ﬁg'}‘”lgmr Output

duﬁu type data type data type YP data type

The block squares the threshold and compares it to the sum of the squared gradients to
avoid using square roots.

1-263

1 Blocks — Alphabetical List

Threshold:
EEEE—
MULTIPLIER > CAST .
Input Product output Accumulator
data type data type data type
Gradients:
—»
MULTIPLIER > CAST
Accumulator Product output Accumulator
d oty data type data type
- » ADDRR —
Accumulator
data type
EEE—
MULTIPLIER > CAST
Product output Accumulator
Accumulator data type dota ype
data type

1-264

You can set the product output and accumulator data types in the block mask as

discussed in the next section.

Parameters

Method

Select the method by which to perform edge detection. Your choices are Sobe',

Prewitt, Roberts, or Canny.

Output type

Select the desired form of the output. If you select Binary image, the block outputs
a matrix that is filled with ones, which correspond to edges, and zeros, which
correspond to the background. If you select Gradient components and, for the
Method parameter, you select Sobel or Prewitt, the block outputs the gradient
components that correspond to the horizontal and vertical edge responses. If you
select Gradient components and, for the Method parameter, you select Roberts,
the block outputs the gradient components that correspond to the 45 and 135 degree

Edge Detection

edge responses. If you select Binary image and gradient components, the
block outputs both the binary image and the gradient components of the image. This
parameter is visible if, for the Method parameter, you select Sobel, Prewitt, or
Roberts.

User-defined threshold

If you select this check box, you can enter a desired threshold value. If you clear this
check box, the block computes the threshold for you. This parameter is visible if, for
the Method parameter, you select Sobel, Prewitt, or Roberts, and, for the
Output type parameter, you select Binary image or Binary image and
gradient components. This parameter is also visible if, for the Method parameter,
you select Canny.

Threshold source

If you select Specify via dialog, enter your threshold value in the dialog box. If
you choose Input port, use the Th input port to specify a threshold value that is the
same data type as the input data. This parameter is visible if you select the User-
defined threshold check box.

Threshold

Enter a threshold value that is within the range of your input data. This parameter is
visible if, for the Method parameter, you select Sobel, Prewitt, or Roberts, you
select the User-defined threshold check box, and, for Threshold source
parameter, you select Specify via dialog..

Threshold [low high]

Enter the low and high threshold values that define the weak and strong edges. This
parameter is visible if, for the Method parameter, you select Canny. Then you select
the User-defined threshold check box, and, for Threshold source parameter, you
select Specify via dialog. Tunable.

Threshold scale factor (used to automatically calculate threshold value)

Enter a multiplier that is used to adjust the calculation of the automatic threshold.
This parameter is visible if, for the Method parameter, you select Sobel, Prewitt,
or Roberts, and you clear the User-defined threshold check box. Tunable.

Edge thinning

Select this check box if you want the block to perform edge thinning. This option
requires additional processing time and memory resources. This parameter is visible
if, for the Method parameter, you select Sobel, Prewitt, or Roberts, and for the
Output type parameter, you select Binary image or Binary image and
gradient components.

1-265

1 Blocks — Alphabetical List

1-266

Approximate percentage of weak edge and nonedge pixels (used to automatically
calculate threshold values)

Enter the approximate percentage of weak edge and nonedge image pixels. The block
computes the automatic threshold values using this approximation. This parameter is
visible if, for the Method parameter, you select Canny. Tunable.

Standard deviation of Gaussian filter

Enter the standard deviation of the Gaussian filter whose derivative is convolved with
the input image. This parameter is visible if, for the Method parameter, you select
Canny.

Rounding mode

Select the rounding mode for fixed-point operations.
Overflow mode

Select the overflow mode for fixed-point operations.

Product output

| data type
MULTIPLIER |—
’ Product output
Internal coefficients’ data type
data type
—
MULTIPLIER |—
’ Product output
é\ccumulaior data type
afa fype

Here, the internal coefficients are the Sobel, Prewitt, or Roberts masks. As depicted
in the previous figure, the output of the multiplier is placed into the product output
data type and scaling. Use this parameter to specify how to designate this product
output word and fraction lengths.

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

Edge Detection

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

The result of euch oddition remoins
in the necumulotor duto type.

F

. L,

» osT > ADDER
Input fo uelder - | hecumulator
produd output Accumulitor

dote type
dot type duto type fyp

B
»

As depicted in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate this accumulator word and fraction lengths.

* When you select Same as product output, these characteristics match those
of the product output.

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Gradients

Choose how to specify the word length and fraction length of the outputs of the Gv
and Gh ports. This parameter is visible if, for the Output type parameter, you choose
Gradient components orBinary image and gradient components:

* When you select Same as accumulator, these characteristics match those of
the accumulator.

1-267

1 Blocks — Alphabetical List

1-268

* When you select Same as product output, these characteristics match those
of the product output.

* When you select Same as first input, these characteristics match those of
the first input to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[2] Pratt, William K. Digital Image Processing, 2nd ed. New York: John Wiley & Sons,
1991.

See Also

|edge |Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Edge Detection

Introduced before R2006a

1-269

1 Biocks — Alphabetical List

Erosion

Find local minima in binary or intensity images

|
Erode
Hhood

Erozion

Library

Morphological Operations

visionmorphops

Description

The Erosion block slides the neighborhood or structuring element over an image, finds
the local minima, and creates the output matrix from these minimum values. If the
neighborhood or structuring element has a center element, the block places the minima
there, as illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a
bias toward the upper-left corner and places the minima there, as illustrated in the
following figure.

1-270

Erosion

This block uses flat structuring elements only.

Complex
ort Input/Output Supported Data Types Values
Supported
Vector or matrix of intensity values |* Double-precision floating point No
» Single-precision floating point
* Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Nhood Matrix or vector of 1s and Os that |Boolean No
represents the neighborhood
values
Jutput | Vector or matrix of intensity values |Same as I port No

that represents the eroded image

The output signal is the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood
or structuring element that the block applies to the image. Specify a neighborhood by

entering a matrix or vector of 1s and 0s. Specify a structuring element with the strel

function from the Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the use of a more
efficient algorithm. If you enter an array of STREL objects, the block applies each object
to the entire matrix in turn.

1-271

1 Biocks — Alphabetical List

1-272

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and Os. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Label Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imerode Image Processing Toolbox software
strel Image Processing Toolbox software

Erosion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-273

1 Biocks — Alphabetical List

Estimate Geometric Transformation

Estimate geometric transformation from matching point pairs

Pi=1
Pt=z Frojective TForm
Hum

Estimate Geometric
Transformation

Library

Geometric Transformations

visiongeotforms

Description

Use the Estimate Geometric Transformation block to find the transformation matrix which
maps the greatest number of point pairs between two images. A point pair refers to a
point in the input image and its related point on the image created using the
transformation matrix. You can select to use the RANdom SAmple Consensus (RANSAC)
or the Least Median Squares algorithm to exclude outliers and to calculate the
transformation matrix. You can also use all input points to calculate the transformation
matrix.

Complex
Port Input/Output Supported Data Types Values

Supported
Pts1/Pts2 |M-by-2 Matrix of one- |* Double No

based [x y] point « Single
coordinates, where M

represents the number
of points. * 8, 16, 32-bit unsigned integer

* 8, 16, 32-bit signed integer

1-274

Estimate Geometric Transformation

Complex
Port Input/Output Supported Data Types Values
Supported
Num Scalar value that * 8, 16, 32-bit signed integer No
represents the number |, g 16 32 hit unsigned integer
of valid points in Pts1
and Pts 2.
TForm 3-by-2 or 3-by-3 * Double No
transformation matrix. |, Single
Inlier M-by-1 vector Boolean No
indicating which
points have been used
to calculate TForm.

Ports Pts1 and Pts2 are the points on two images that have the same data type. The
block outputs the same data type for the transformation matrix

When Pts1 and Pts2 are single or double, the output transformation matrix will also
have single or double data type. When Pts1 and Pts2 images are built-in integers, the
option is available to set the transformation matrix data type to either Single or Double.
The TForm output provides the transformation matrix. The Inlier output port provides
the Inlier points on which the transformation matrix is based. This output appears when
you select the Output Boolean signal indicating which point pairs are inliers
checkbox.

RANSAC and Least Median Squares Algorithms

The RANSAC algorithm relies on a distance threshold. A pair of points, pf(image a, Pts1)
and plb(image b, Pts 2) is an inlier only when the distance between p,b and the projection
of pfbased on the transformation matrix falls within the specified threshold. The distance
metric used in the RANSAC algorithm is as follows:

Num

d= -21 min(D(p?, y(pf:H)), t)
1=

The Least Median Squares algorithm assumes at least 50% of the point pairs can be
mapped by a transformation matrix. The algorithm does not need to explicitly specify the

1-275

1 Blocks — Alphabetical List

distance threshold. Instead, it uses the median distance between all input point pairs. The
distance metric used in the Least Median of Squares algorithm is as follows:

d = median(D(p?, w(p§:H)), D(p3, w(pS: H)), ..., D(0&ums w(p%: H)))
For both equations:
pf is a point in image a (Pts1)
p,b is a point in image b (Pts2)
w(p{: H) is the projection of a point on image a based on transformation matrix H

D(plb, p?) is the distance between two point pairs on image b
t is the threshold
Numis the number of points

The smaller the distance metric, the better the transformation matrix and therefore the
more accurate the projection image.

Transformations

The Estimate Geometric Transformation block supports Nonreflective similarity,
Affine, and Projective transformation types, which are described in this section.

Nonreflective similarity transformation supports translation, rotation, and isotropic
scaling. It has four degrees of freedom and requires two pairs of points.

& o
hy —hy

The transformation matrix is: H = [hy hp
hs hy

1-276

Estimate Geometric Transformation

The projection of a point [x y] by His: [x y] =[xy 1]JH

affine transformation supports nonisotropic scaling in addition to all transformations that
the nonreflective similarity transformation supports. It has six degrees of freedom that
can be determined from three pairs of noncollinear points.

== S

The transformation matrix is: H = [hy hs
h3 hg
The projection of a point [x y] by His: [x y] =[xy 1]H

Projective transformation supports tilting in addition to all transformations that the
affine transformation supports.

&‘
hy hy hy

The transformation matrix is : h = |hp hs hg
hs hg hg

The projection of a point [x y] by His represented by homogeneous coordinates as:
[u vwl=[xyllH
Distance Measurement

For computational simplicity and efficiency, this block uses algebraic distance. The
algebraic distance for a pair of points, [x? yG]T on image a, and [x? y?] on image b,
according to transformation H,is defined as follows;

For projective transformation:

1
—~ —~ 2 —~ —~ 2.5
D(pf, wip{:H)) = (@ = w0 + (0 = wyP))?, where [79 59 7] = [x@ y 1]H

1-277

1 Blocks — Alphabetical List

1-278

For Nonreflective similarity or affine transformation:

D(pb, w(pf:H)) = (R = X0’ + G4 = 5712,

where [x® 59| =[x y2 1]H
Algorithm

The block performs a comparison and repeats it K number of times between successive
transformation matrices. If you select the Find and exclude outliers option, the
RANSAC and Least Median Squares (LMS) algorithms become available. These
algorithms calculate and compare a distance metric. The transformation matrix that
produces the smaller distance metric becomes the new transformation matrix that the
next comparison uses. A final transformation matrix is resolved when either:

* K number of random samplings is performed

* The RANSAC algorithm, when enough number of inlier point pairs can be mapped,
(dynamically updating K)

The Estimate Geometric Transformation algorithm follows these steps:

1 A transformation matrix H is initialized to zeros

2 Setcount = 0 (Randomly sampling).

3 While count < K, where K is total number of random samplings to perform,
perform the following;

a Increment the count; count = count + 1.

b Randomly select pair of points from images a and b, (2 pairs for Nonreflective
similarity, 3 pairs for affine, or 4 pairs for projective).

¢ Calculate a transformation matrix H, from the selected points.

d If Hhas a distance metric less than that of H, then replace H with H.

(Optional for RANSAC algorithm only)

i Update K dynamically.
ii Exit out of sampling loop if enough number of point pairs can be mapped by
H.
4 Use all point pairs in images a and b that can be mapped by H to calculate a refined
transformation matrix H
5 Iterative Refinement, (Optional for RANSAC and LMS algorithms)

Estimate Geometric Transformation

Denote all point pairs that can be mapped by H as inliers.

Use inlier point pairs to calculate a transformation matrix H.

¢ If Hhas a distance metric less than that of H, then replace H with H, otherwise
exit the loop.

T

Number of Random Samplings

The number of random samplings can be specified by the user for the RANSAC and Least
Median Squares algorithms. You can use an additional option with the RANSAC
algorithm, which calculates this number based on an accuracy requirement. The Desired
Confidence level drives the accuracy.

The calculated number of random samplings, K used with the RANSAC algorithm, is as
follows:

K = log(- p)
log(1 - ¢%)

where

* pis the probability of independent point pairs belonging to the largest group that can
be mapped by the same transformation. The probability is dynamically calculated
based on the number of inliers found versus the total number of points. As the
probability increases, the number of samplings, K, decreases.

* ¢ is the probability of finding the largest group that can be mapped by the same
transformation.

* sisequal to the value 2, 3, or 4 for Nonreflective similarity, affine, and projective
transformation, respectively.

Iterative Refinement of Transformation Matrix

The transformation matrix calculated from all inliers can be used to calculate a refined
transformation matrix. The refined transformation matrix is then used to find a new set of
inliers. This procedure can be repeated until the transformation matrix cannot be further
improved. This iterative refinement is optional.

1-279

1 Blocks — Alphabetical List

1-280

Parameters

Transformation Type

Specify transformation type, either Nonreflective similarity, Affine, or
Projective transformation. If you select Projective transformation, you can also
specify a scalar algebraic distance threshold for determining inliers. If you select
either Affine or Projective transformation, you can specify the distance threshold
for determining inliers in pixels. See “Transformations” on page 1-276 for a more
detailed discussion. The default value is Projective.

Find and exclude outliers

When selected, the block finds and excludes outliers from the input points and uses
only the inlier points to calculate the transformation matrix. When this option is not
selected, all input points are used to calculate the transformation matrix.

Method

Select either the RANdom SAmple Consensus (RANSAC) orthe Least Median of
Squares algorithm to find outliers. See “RANSAC and Least Median Squares
Algorithms” on page 1-275 for a more detailed discussion. This parameter appears
when you select the Find and exclude outliers check box.

Algebraic distance threshold for determining inliers

Specify a scalar threshold value for determining inliers. The threshold controls the
upper limit used to find the algebraic distance in the RANSAC algorithm. This
parameter appears when you set the Method parameter to Random Sample
Consensus (RANSAC) and the Transformation type parameter to Projective.
The default value is 1.5.

Distance threshold for determining inliers (in pixels)

Specify the upper limit distance a point can differ from the projection location of its
associating point. This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC) and you set the value of the
Transformation type parameter to Nonreflective similarity or Affine. The
default value is 1.5.

Determine number of random samplings using

Select Specified value to enter a positive integer value for number of random
samplings, or select Desired confidence to set the number of random samplings
as a percentage and a maximum number. This parameter appears when you select the
Find and exclude outliers check box, and you set the value of the Method
parameter to Random Sample Consensus (RANSAC).

Estimate Geometric Transformation

Number of random samplings

Specify the number of random samplings for the algorithm to perform. This
parameter appears when you set the value of the Determine number of random
samplings using parameter to Specified value.

Desired confidence (in %)

Specify a percent by entering a number between 0 and 100. The Desired confidence
(in %) value represents the probability of the algorithm to find the largest group of
points that can be mapped by a transformation matrix. This parameter appears when
you set the Determine number of random samplings using parameter to
Desired confidence.

Maximum number of random samplings

Specify an integer number for the maximum number of random samplings. This
parameter appears when you set the Method parameter to Random Sample
Consensus (RANSAC) and you set the value of the Determine number of random
samplings using parameter to Desired confidence.

Stop sampling earlier when a specified percentage of point pairs are determined
to be inlier

Specify to stop random sampling when a percentage of input points have been found
as inliers. This parameter appears when you set the Method parameter to Random
Sample Consensus (RANSAC).

Perform additional iterative refinement of the transformation matrix

Specify whether to perform refinement on the transformation matrix. This parameter
appears when you select Find and exclude outliers check box.

Output Boolean signal indicating which point pairs are inliers

Select this option to output the inlier point pairs that were used to calculate the
transformation matrix. This parameter appears when you select the Find and
exclude outliers check box. The block will not use this parameter with signed or
double, data type points.

When Pts1 and Pts2 are built-in integers, set transformation matrix date type to

Specify transformation matrix data type as Single or Double when the input points
are built-in integers. The block will not use this parameter with signed or double, data
type points.

1-281

1 Blocks — Alphabetical List

1-282

Examples

Calculate transformation matrix from largest group of point
pairs

Examples of input data and application of the Estimate Geometric Transformation block
appear in the following figures. Figures (a) and (b) show the point pairs. The points are
denoted by stars or circles, and the numbers following them show how they are paired.
Some point pairs can be mapped by the same transformation matrix. Other point pairs
require a different transformation matrix. One matrix exists that maps the largest number
of point pairs, the block calculates and returns this matrix. The block finds the point pairs
in the largest group and uses them to calculate the transformation matrix. The point pairs
connected by the magenta lines are the largest group.

The transformation matrix can then be used to stitch the images as shown in Figure (e).

Estimate Geometric Transformation

1-283

1 Biocks — Alphabetical List

1-284

Video Mosaicking

To see an example of the Estimate Geometric Transformation block used in a model with
other blocks, see the “Video Mosaicking” example.

Troubleshooting

The success of estimating the correct geometric transformation depends heavily on the
quality of the input point pairs. If you chose the RANSAC or LMS algorithm, the block will
randomly select point pairs to compute the transformation matrix and will use the
transformation that best fits the input points. There is a chance that all of the randomly
selected point pairs may contain outliers despite repeated samplings. In this case, the
output transformation matrix, TForm, is invalid, indicated by a matrix of zeros.

To improve your results, try the following:

Increase the percentage of inliers in the input points.

Increase the number for random samplings.

For the RANSAC method, increase the desired confidence.

For the LMS method, make sure the input points have 50% or more inliers.

Use features appropriate for the image contents

Be aware that repeated patterns, for example, windows in office building, will cause false
matches when you match the features. This increases the number of outliers.

Do not use this function if the images have significant parallax. You can use the
estimateFundamentalMatrix function instead.

Choose the minimum transformation for your problem.

If a projective transformation produces the error message, “A portion of the input image
was transformed to the location at infinity. Only transformation matrices that do not
transform any part of the image to infinity are supported.”, it is usually caused by a
transformation matrix and an image that would result in an output distortion that does
not fit physical reality. If the matrix was an output of the Estimate Geometric
Transformation block, then most likely it could not find enough inliers.

References

R. Hartley and A. Ziserman, “Multiple View Geometry in Computer Vision,” Second
edition, Cambridge University Press, 2003

Estimate Geometric Transformation

See Also
cp2tform Image Processing Toolbox
vipmosaicking Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced in R2008a

1-285

matlab:vipmosaicking

1 Blocks — Alphabetical List

1-286

Find Local Maxima

Find local maxima in matrices

| Local Idx
Th M=ima 5oyt

Find Local hzsxima

Library

Statistics

visionstatistics

Description

The Find Local Maxima block finds the local maxima within an input matrix. It does so by
comparing the maximum value in the matrix to a user-specified threshold. The block
considers a value to be a valid local maximum when the maximum value is greater than or
equal to the specified threshold. The determination of the local maxima is based on the
neighborhood, an area around and including the maximum value. After finding the local
maxima, the block sets all the matrix values in the neighborhood, including the maximum
value, to 0. This step ensures that subsequent searches do not include this maximum. The
size of the neighborhood must be appropriate for the data set. That is, the threshold must
eliminate enough of the values around the maximum so that false peaks are not
discovered. The process repeats until the block either finds all valid maximas or the
number of local maximas equal the Maximum number of local maxima value. The
block outputs one-based [x y] coordinates of the maxima. The data to all input ports must
be the same data type.

If the input to this block is a Hough matrix output from the Hough Transform block, select
the Input is Hough matrix spanning full theta range check box. If you select this
check box, the block assumes that the Hough port input is antisymmetric about the rho
axis and theta ranges from -pi/2 to pi/2 radians. If the block finds a local maxima near the
boundary, and the neighborhood lies outside the Hough matrix, then the block detects
only one local maximum. It ignores the corresponding antisymmetric maximum.

Find Local Maxima

Parameters

Maximum number of local maxima
Specify the maximum number of maxima you want the block to find.
Neighborhood size

Specify the size of the neighborhood around the maxima over which the block zeros
out the values. Enter a two-element vector of positive odd integers, [rc]. Here, r
represents the number of rows in the neighborhood, and ¢ represents the number of
columns.

Source of threshold value

Specify how to enter the threshold value. If you select Input port, the Th port
appears on the block. If you select Specify via dialog, the Threshold parameter
appears in the dialog box. Enter a scalar value that represents the value all maxima
should meet or exceed.

Threshold

Enter a scalar value that represents the value all maxima should meet or exceed. This
parameter is visible if, for the Source of threshold value parameter, you choose
Specify via dialog.

Input is Hough matrix spanning full theta range

If you select this check box, the block assumes that the Hough port input is
antisymmetric about the rho axis and theta ranges from -pi/2 to pi/2 radians.

Index output data type

Specify the data type of the Idx port output. Your choices are double, single,
uint8, uint16, or uint32.

Output variable size signal

Specify output data type. When you uncheck the Qutput variable size signal, the
Count output data type parameter appears in the dialog box.

Count output data type

Specify the data type of the Count port output. Your choices are double, single,
uint8, uint16, or uint32. This parameter applies when you clear the Output
variable size signal check box.

1-287

1 Biocks — Alphabetical List

Examples

See “Detect Lines in Images” in the Computer Vision Toolbox User's Guide.

Supported Data Types

The block outputs the one-based [x y] coordinates of the maxima at the Idx port and the
number of valid local maxima found at the Count port.

Complex
Port Input/Output Supported Data Types Values
Supported
I/Hough Matrix in which you want to |+ Double-precision floating point No
find the maxima. + Single-precision floating point
¢ Fixed point
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Th Scalar value that represents|Same as I[/Hough port No
the value the maxima
should meet or exceed.
Idx An M-by-2 matrix of one- * Double-precision floating point No
based [x y] coordinates, * Single-precision floating point
where M represents the)))
Y e 8-, 16-, and 32-bit unsigned integer
found.
Count Scalar value that represents|Same as Idx port No

the number of maxima that
meet or exceed the
threshold value.

1-288

See Also

|Hough Lines

Computer Vision Toolbox

Find Local Maxima

Corner Detection Computer Vision Toolbox
houghpeaks Image Processing Toolbox
hough Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-289

1 Blocks — Alphabetical List

1-290

Frame Rate Display

Calculate average update rate of input signal

232854

Frame Rate
[risplay

Library
Sinks

visionsinks

Description

The Frame Rate Display block calculates and displays the average update rate of the
input signal. This rate is in relation to the wall clock time. For example, if the block
displays 30, the model is updating the input signal 30 times every second. You can use
this block to check the video frame rate of your simulation. During code generation,
Simulink Coder does not generate code for this block.

Note This block supports intensity and color images on its port.

Frame Rate Display

Complex
Port Input Supported Data Types Values

Supported
Input |M-by-N matrix of intensity * Double-precision floating point No

values or an M-by-N-by-P color
video signal where P is the))
number of color planes * Fixed point
* Boolean

* Single-precision floating point

* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer

Use the Calculate and display rate every parameter to control how often the block
updates the display. When this parameter is greater than 1, the block displays the
average update rate for the specified number of video frames. For example, if you enter
10, the block calculates the amount of time it takes for the model to pass 10 video frames
to the block. It divides this time by 10 and displays this average video frame rate on the
block.

Note If you do not connect the Frame Rate Display block to a signal line, the block
displays the base (fastest) rate of the Simulink model.

Parameters

Calculate and display rate every
Use this parameter to control how often the block updates the display.

See Also

To Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video To Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software

1-291

1 Biocks — Alphabetical List

Introduced before R2006a

1-292

From Multimedia File

From Multimedia File

Read video frames and audio samples from compressed multimedia file

vipmen.avi mane b
W 1202180, 20.0 #:; =

Froem Multimedia File

Library

Sources

visionsources

Description

The From Multimedia File block reads audio samples, video frames, or both from a
multimedia file. The block imports data from the file into a Simulink model.

Note This block supports code generation for the host computer that has file I/0O
available. You cannot use this block with Simulink Desktop Real-Time™ software because
that product does not support file I/0.

The generated code for this block relies on prebuilt library files. You can run this code
outside the MATLAB environment, or redeploy it, but be sure to account for these extra
library files when doing so. The packNGo function creates a single zip file containing all of
the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may
need to add precompiled shared library files to your system path. See “Simulink Coder”,
“Simulink Shared Library Dependencies”, and “Accelerating Simulink Models” for details.

This block allows you to read WMA/WMYV streams to disk or across a network connection.
Similarly, the To Multimedia File block allows you to write WMA/WMYV streams to disk or

1-293

1 Biocks — Alphabetical List

across a network connection. If you want to play an MP3/MP4 file in Simulink, but you do
not have the codecs, you can re-encode the file as WMA/WMYV, which are supported by the
Computer Vision Toolbox.

Platform Supported File Name Extensions
All Platforms AVI (.avi)
Windows® Image:

.jpg,.bmp

Video:

MPEG (.mpeg)

MPEG-2 (.mp2)

MPEG-1.mpg

MPEG-4, including H.264 encoded video (.mp4, .m4v)

Motion JPEG 2000 (.mj2)

Windows Media Video (.wmv,.asf, .asx, .asx)

and any format supported by Microsoft DirectShow® 9.0 or higher.

Audio:

WAVE (.wav)

Windows Media Audio File (.wma)

Audio Interchange File Format (.aif, .aiff)
Compressed Audio Interchange File Format(.aifc),
MP3 (.mp3)

Sun Audio (.au)

Apple (.snd)

Macintosh Video:

.avi

Motion JPEG 2000 (.mj2)

MPEG-4, including H.264 encoded video (.mp4, .m4v)
Apple QuickTime Movie (.mov)

and any format supported by QuickTime as listed on http://
support.apple.com/kb/HT3775.

Audio:
Uncompressed .avi

Linux® Motion JPEG 2000 (.mj2)

Any format supported by your installed plug-ins for GStreamer 0.1
or higher, as listed on http://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg Theora (.ogg).

1-294

From Multimedia File

Ports

The output ports of the From Multimedia File block change according to the content of
the multimedia file. If the file contains only video frames, the Image, intensity I, or R,G,B
ports appear on the block. If the file contains only audio samples, the Audio port appears
on the block. If the file contains both audio and video, you can select the data to emit. The
following table describes available ports.

Port Description

Image M-by-N-by-P color video signal where P is the number of color planes.

I M-by-N matrix of intensity values.

R G, B Matrix that represents one plane of the RGB video stream. Outputs from the
R, G, or B ports must have same dimensions.

Audio Vector of audio data.

Y, Cb, Cr Matrix that represents one frame of the YCbhCr video stream. The Y, Cb, Cr
ports produce the following outputs:
Y: M x N
Ch: M X%
Cr: My

Sample Rates

The sample rate that the block uses depends on the audio and video sample rate. While
the FMMF block operates at a single rate in Simulink, the underlying audio and video
streams can produce different rates. In some cases, when the block outputs both audio
and video, makes a small adjustment to the video rate.

Sample Time Calculations Used for Video and
Audio Files

Cel‘[(AudioSampleRate/FPS)
AudioSampleRate

Sample time =

1-295

1 Blocks — Alphabetical List

When audio sample time, AUdIOS;?Sp leRate
1

FPS*

In this case, to prevent synchronization problems, the block drops the corresponding

is noninteger, the equation cannot reduce to

video frame when the audio stream leads the video stream by more than %

In summary, the block outputs one video frame at each Simulink time step. To calculate
the number of audio samples to output at each time step, the block divides the audio
sample rate by the video frame rate (fps). If the audio sample rate does not divide evenly
by the number of video frames per second, the block rounds the number of audio samples
up to the nearest whole number. If necessary, the block periodically drops a video frame
to maintain synchronization for large files.

Parameters

File name

Specify the name of the multimedia file from which to read. The block determines the
type of file (audio and video, audio only, or video only) and provides the associated
parameters.

If the location of the file does not appear on your MATLAB path, use the Browse
button to specify the full path. Otherwise, if the location of this file appears on your
MATLAB path, enter only the file name. On Windows platforms, this parameter
supports URLs that point to MMS (Microsoft Media Server) streams.

Inherit sample time from file

Select the Inherit sample time from file check box if you want the block sample
time to be the same as the multimedia file. If you clear this check box, enter the block
sample time in the Desired sample time parameter field. The file that the From
Multimedia File block references, determines the block default sample time. You can
also set the sample time for this block manually. If you do not know the intended
sample rate of the video, let the block inherit the sample rate from the multimedia
file.

Desired sample time

Specify the block sample time. This parameter becomes available if you clear the
Inherit sample time from file check box.

1-296

From Multimedia File

Number of times to play file
Enter a positive integer or inf to represent the number of times to play the file.
Output end-of-file indicator

Use this check box to determine whether the output is the last video frame or audio

sample in the multimedia file. When you select this check box, a Boolean output port
labeled EOF appears on the block. The output from the EOF port defaults to 1 when
the last video frame or audio sample is output from the block. Otherwise, the output
from the EOF port defaults to 0.

Multimedia outputs

Specify Video and audio, Video only, or Audio only output file type. This
parameter becomes available only when a video signal has both audio and video.

Samples per audio channel

Specify number of samples per audio channel. This parameter becomes available for
files containing audio.

Output color format

Specify whether you want the block to output RGB, Intensity, or YCbCr 4:2:2
video frames. This parameter becomes available only for a signal that contains video.
If you select RGB, use the Image signal parameter to specify how to output a color
signal.

Image signal

Specify how to output a color video signal. If you select One multidimensional
signal, the block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals, additional
ports appear on the block. Each port outputs one M-by-N plane of an RGB video
stream. This parameter becomes available only if you set the Image color space
parameter to RGB and the signal contains video.

Audio output sampling mode
Select Sample based or Frame based output. This parameter appears when you
specify a file containing audio for the File name parameter.

Audio output data type

Set the data type of the audio samples output at the Audio port. This parameter
becomes available only if the multimedia file contains audio. You can choose double,
single, int16, or uint8 types.

1-297

1 Blocks — Alphabetical List

1-298

Video output data type

Set the data type of the video frames output at the R, G, B, or Image ports. This
parameter becomes available only if the multimedia file contains video. You can
choose double, single, int8, uint8, int16, uint16, int32, uint32, or Inherit
from file types.

Supported Data Types

For source blocks to display video data properly, double- and single-precision floating-
point pixel values must be between 0 and 1. For other data types, the pixel values must be
between the minimum and maximum values supported by their data type.

Port Supported Data Types Supports Complex
Values?

Image * Double-precision floating point No

» Single-precision floating point

* 8-, 16-, and 32-bit signed integers

* 8-, 16-, and 32-bit unsigned integers
R, G B Same as the Image port No
Audio * Double-precision floating point No

* Single-precision floating point

* 16-bit signed integers

* 8-bit unsigned integers
Y, Cb,Cr Same as the Image port No
See Also
To Multimedia File Computer Vision Toolbox
“Specify Sample Time” Simulink
(Simulink)

From Multimedia File

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

The executable generated from this block relies on prebuilt dynamic library files (.d11
files) included with MATLAB. Use the packNGo function to package the code generated
from this block and all the relevant files in a compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project in another development environment
where MATLAB is not installed. For more details, see .

Introduced before R2006a

1-299

1 Biocks — Alphabetical List

Gamma Correction

Apply or remove gamma correction from images or video streams

Famma,

FHamma Somection

I D -garmma |

Garma Somection]

Library

Conversions

visionconversions

Description

Use the Gamma Correction block to apply or remove gamma correction from an image or
video stream. For input signals normalized between 0 and 1, the block performs gamma
correction as defined by the following equations. For integers and fixed-point data types,
these equations are generalized by applying scaling and offset values specific to the data

type:
1

Spg = Y

N ¥Bp + Bp

Bp

_ s
FS - Y-n
Bp

1-300

Gamma Correction

e
Co =FsBp —-S;¢Bp
Ssl, I<B,
I'= 1

FsI'-Cy, I>B,

Sis is the slope of the straight line segment. Bp is the break point of the straight line
segment, which corresponds to the Break point parameter. Fg is the slope matching
factor, which matches the slope of the linear segment to the slope of the power function
segment. C is the segment offset, which ensures that the linear segment and the power
function segments connect. Some of these parameters are illustrated by the following
diagram.

= Gamma| . K ==De-gamma

SisBp

For normalized input signals, the block removes gamma correction, which linearizes the

input video stream, as defined by the following equation:

1-301

1 Biocks — Alphabetical List

I'
, I’SSLsB
Srs P
(F#C) s
FS ’ LS P

Typical gamma values range from 1 to 3. Most monitor gamma values range from 1.8 to
2.2. Check with the manufacturer of your hardware to obtain the exact gamma value.
Gamma function parameters for some common standards are shown in the following

table:

Standard Slope Break Point Gamma
CIE L* 9.033 0.008856 3
Recommendation ITU-R BT.709-3, Parameter (4.5 0.018 gy
Values for the HDTV Standards for 9
Production and International Programme

Exchange

sRGB 12.92 0.00304 2.4

Note This block supports intensity and color images on its ports.

The properties of the input and output ports are summarized in the following table:

Complex
Port |[Input/Output Supported Data Types Values
Supported
I M-by-N matrix of intensity values or|¢ Double-precision floating point No

an M-by-N-by-P color video signal
where P is the number of color

planes
length)

* Single-precision floating point
* Fixed point (up to 16-bit word

* 8- and 16-bit signed integer
* 8- and 16-bit unsigned integer

1-302

Gamma Correction

Complex
Port |[Input/Output Supported Data Types Values

Supported
I' M-by-N matrix of intensity values or |Same as I port No

an M-by-N-by-P color video signal
where P is the number of color
planes

Use the Operation parameter to specify the block's operation. If you want to perform
gamma correction, select Gamma. If you want to linearize the input signal, select De-
gamma.

If, for the Operation parameter, you select Gamma, use the Gamma parameter to enter
the desired gamma value of the output video stream. This value must be greater than or
equal to 1. If, for the Operation parameter, you select De -gamma, use the Gamma
parameter to enter the gamma value of the input video stream.

Select the Linear segment check box if you want the gamma curve to have a linear
portion near black. If you select this check box, the Break point parameter appears on
the dialog box. Enter a scalar value that indicates the I-axis value of the end of the linear
segment. The break point is shown in the first diagram of this block reference page.

Parameters

Operation
Specify the block's operation. Your choices are Gamma or De-gamma.
Gamma

If, for the Operation parameter, you select Gamma, enter the desired gamma value of
the output video stream. This value must be greater than or equal to 1. If, for the
Operation parameter, you select De-gamma, enter the gamma value of the input
video stream.

Linear segment
Select this check box if you want the gamma curve to have a linear portion near the
origin.

Break point

Enter a scalar value that indicates the I-axis value of the end of the linear segment.
This parameter is visible if you select the Linear segment check box.

1-303

1 Biocks — Alphabetical List

References

[1] Poynton, Charles. Digital Video and HDTV Algorithms and Interfaces. San Francisco,
CA: Morgan Kaufman Publishers, 2003.

See Also
Color Space Conversion Computer Vision Toolbox software
imadjust Image Processing Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-304

Gaussian Pyramid

Gaussian Pyramid

Perform Gaussian pyramid decomposition

Zaussian
Fyramid

Faussian
Fyramid

Library

Transforms

visiontransforms

Description

The Gaussian Pyramid block computes Gaussian pyramid reduction or expansion to resize
an image. The image reduction process involves lowpass filtering and downsampling the
image pixels. The image expansion process involves upsampling the image pixels and
lowpass filtering. You can also use this block to build a Laplacian pyramid. For more
information, see “Examples” on page 1-307.

Note This block supports intensity and color images on its ports.

1-305

1 Biocks — Alphabetical List

Complex
Port Output Supported Data Types Values
Supported
Input In Reduce mode, the input * Double-precision floating point No
can be an M-by-N matrix of |, Single-precision floating point
intensity values or an M-by-N-))
by-P color video signal where Fixed point
P is the number of color * 8-, 16-, 32-bit signed integer
planes. * 8-, 16-, 32-bit unsigned integer
In Expand mode, the input
can be a scalar, vector, or M-
by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes.
Output |In Reduce mode, the output |Same as Input port No

can be a scalar, vector, or
matrix that represents one
level of a Gaussian pyramid.

In Expand mode, the output
can be a matrix that
represents one level of a
Gaussian pyramid.

1-306

Use the Operation parameter to specify whether to reduce or expand the input image. If
you select Reduce, the block applies a lowpass filter and then downsamples the input
image. If you select Expand, the block upsamples and then applies a lowpass filter to the

input image.

Use the Pyramid level parameter to specify the number of times the block upsamples or
downsamples each dimension of the image by a factor of 2. For example, suppose you
have a 4-by-4 input image. You set the Operation parameter to Reduce and the Pyramid
level to 1. The block filters and downsamples the image and outputs a 2-by-2 pixel output
image. If you have an M-by-N input image and you set the Operation parameter to
Reduce, you can calculate the dimensions of the output image using the following

equation:

Gaussian Pyramid

(M (N
0811(7) —-by- ce11(7)

You must repeat this calculation for each successive pyramid level. If you have an M-by-N
input image and you set the Operation parameter to Expand, you can calculate the
dimensions of the output image using the following equation:

[(M —1)2H+ 1] —by - [(N —1)2H+ 1]

In the previous equation, I is the scalar value from 1 to inf that you enter for the
Pyramid level parameter.

Use the Coefficient source parameter to specify the coefficients of the lowpass filter. If
you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2], usethea
parameter to define the coefficients in the vector of separable filter coefficients. If you
select Specify via dialog, use the Coefficient for separable filter parameter to
enter a vector of separable filter coefficients.

Examples
The following example model shows how to construct a Laplacian pyramid:
1 Open this model by typing

ex_laplacian

at the MATLAB command prompt.

Video

M3 er

Y

Criginal

4
=
_<

¥

. Gaussian Gaussian Video
»
cameraman.tif P Pyramid P Fyramid —p®—.|mﬁﬁﬁva

Selector Reduce Expand Laplacian { level=0)

Gaussian Gaussian {) Video
Pyramid Pyramid Im'a'PE;_.\.'Er

Reducel Expand1 Laplacian level=1)

Image From File

Y

1-307

matlab:ex_laplacian

1 Biocks — Alphabetical List

1-308

2

Run the model to see the following results.

B Original |- B (]

File Tools View Simulation Help
= 8@ | % Y| Bl
@wﬂmﬂ

Gaussian Pyramid

-

Laplacian (level=0) E'@

File Tools View Simulation Help

=B @ ® S| 0%

® - &

[Tty

]

[-253x253

[T=0.000

=N ol =X

Fi To Vi Simu Hi

= B @w >

[Ti=Ca

[r127x127

[T=0.000

1-309

1 Biocks — Alphabetical List

1-310

You can construct a Laplacian pyramid if the dimensions of the input image, R-by-C,
satisfy R = MRZN +landC = MCZN + 1, where My, M, and N are integers. In this

example, you have an input matrix that is 256-by-256. If you set My and M. equal to 63
and N equal to 2, you find that the input image needs to be 253-by-253. So you use a
Submatrix block to crop the dimensions of the input image to 253-by-253.

Fixed-Point Data Types

The following diagram shows the data types used in the Gaussian Pyramid block for fixed-
point signals:

The result of ench nddition remoins
in the vecumulotor doto type.

— . >
— |MULTPUER > »| ADDER > T >

Input Product output Accumulutor Aecumulator Output dafa
durte type(s) dot ype dirta type durto type Type

You can set the coefficients table, product output, accumulator, and output data types in
the block mask.

Parameters

Operation
Specify whether you want to reduce or expand the input image.
Pyramid level

Specify the number of times the block upsamples or downsamples each dimension of
the image by a factor of 2.

Coefficient source
Determine how to specify the coefficients of the lowpass filter. Your choices are

Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2] or Specify via
dialog.

Gaussian Pyramid

Enter a scalar value that defines the coefficients in the default separable filter [1/4-
a/2 1/4 a 1/4 1/4-a/2]. This parameter is visible if, for the Coefficient source
parameter, you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4-
a/2].

Coefficients for separable filter
Enter a vector of separable filter coefficients. This parameter is visible if, for the
Coefficient source parameter, you select Specify via dialog.
Rounding mode
Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.
Coefficients
Choose how to specify the word length and the fraction length of the coefficients:
* When you select Same word length as input, the word length of the
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that

provides you with the best precision possible given the value and word length of
the coefficients.

* When you select Specify word length, you can enter the word length of the
coefficients, in bits. The block automatically sets the fraction length to give you
the best precision.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the coefficients, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the coefficients. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Product output

Input data type

Product output data type
MULTIPLIER >

Yy

Coefficient data type

1-311

1 Blocks — Alphabetical List

1-312

As shown in the previous figure, the output of the multiplier is placed into the product
output data type and scaling. Use this parameter to specify how to designate the
product output word and fraction lengths.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Accumulator

The result of euch oddition remoins
in the necumulotor duto type.

F

L,

—¥ CasT ADDER b
Input to ntlder - ’

Accumulutor Aeeumulotor
s;[:s I::piumm durotype dute type

As shown in the previous figure, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the accumulator data type
as each element of the input is added to it. Use this parameter to specify how to
designate the accumulator word and fraction lengths.

When you select Same as product output, these characteristics match those
of the product output.

When you select Same as input, these characteristics match those of the input
to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. The bias of all signals in the Computer
Vision Toolbox blocks is 0.

Gaussian Pyramid

Output
Choose how to specify the word length and fraction length of the output of the block:
* When you select Same as input, these characteristics match those of the input
to the block.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the output. The bias of all signals in the Computer Vision
Toolbox blocks is 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

See Also

|Resize |C0mputer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-313

1 Biocks — Alphabetical List

Histogram Equalization

Enhance contrast of images using histogram equalization

|
Histogram

Equalization
Hist

Histagram
Equalization

Library

Analysis & Enhancement

visionanalysis

Description

The Histogram Equalization block enhances the contrast of images by transforming the
values in an intensity image so that the histogram of the output image approximately

matches a specified histogram.

Complex
Port Input/Output Supported Data Types Values

Supported
I Matrix of intensity values * Double-precision floating point No

* Single-precision floating point
* Fixed point

o 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned integer

1-314

Histogram Equalization

Complex
Port Input/Output Supported Data Types Values
Supported
Hist Vector of integer values that |¢ Double-precision floating point No
represents the desired + Single-precision floating point
intensity values in each bin o)
* 8-, 16-, 32-bit signed integer
e 8-, 16-, 32-bit unsigned integer
Output Matrix of intensity values Same as I port No

If the data type of input to the I port is floating point, the input to Hist port must be the
same data type. The output signal has the same data type as the input signal.

Use the Target histogram parameter to designate the histogram you want the output
image to have.

If you select Uniform, the block transforms the input image so that the histogram of the
output image is approximately flat. Use the Number of bins parameter to enter the
number of equally spaced bins you want the uniform histogram to have.

If you select User-defined, the Histogram source and Histogram parameters appear
on the dialog box. Use the Histogram source parameter to select how to specify your
histogram. If, for the Histogram source parameter, you select Specify via dialog,
you can use the Histogram parameter to enter the desired histogram of the output
image. The histogram should be a vector of integer values that represents the desired
intensity values in each bin. The block transforms the input image so that the histogram
of the output image is approximately the specified histogram.

If, for the Histogram source parameter, you select Input port, the Hist port appears
on the block. Use this port to specify your desired histogram.

Note The vector input to the Hist port must be normalized such that the sum of the
values in all the bins is equal to the number of pixels in the input image. The block does
not error if the histogram is not normalized.

1-315

1 Biocks — Alphabetical List

1-316

Examples

See “Adjust the Contrast of Intensity Images” and“Adjust the Contrast of Color Images” in
the Computer Vision Toolbox User's Guide.

Parameters

Target histogram

Designate the histogram you want the output image to have. If you select Uniform,
the block transforms the input image so that the histogram of the output image is
approximately flat. If you select User-defined, you can specify the histogram of
your output image.

Number of bins

Enter the number of equally spaced bins you want the uniform histogram to have.
This parameter is visible if, for the Target histogram parameter, you select
Uniform.

Histogram source

Select how to specify your histogram. Your choices are Specify via dialog and
Input port. This parameter is visible if, for the Target histogram parameter, you
select User-defined.

Histogram

Enter the desired histogram of the output image. This parameter is visible if, for the
Target histogram parameter, you select User-defined.

See Also
imadjust Image Processing Toolbox
histeq Image Processing Toolbox

Histogram Equalization

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-317

1 Blocks — Alphabetical List

1-318

Hough Lines

Find Cartesian coordinates of lines described by rho and theta pairs

Library

Transforms

S

Description

The Hough Lines block finds the points of intersection between the reference image

boundary lines and the line specified by a (rho, theta) pair. The block outputs one-based [x
y] coordinates for the points of intersection. The boundary lines indicate the left and right
vertical boundaries and the top and bottom horizontal boundaries of the reference image.

If the line specified by the (rho, theta) pair does not intersect two border lines in the
reference image, the block outputs the values, [(0,0), (0,0)]. This output intersection
value allows the next block in your model to ignore the points. Generally, the Hough Lines
block precedes a block that draws a point or shape at the intersection.

The following figure shows the input and output coordinates for the Hough Lines block.

Hough Lines

thetal
or'[iﬁhcml theta?] -
theta2
rhol’] B Thete 1 Y11 Y12 Y2
. Ur[rhul r‘.fmﬂ] — AR HL:_’”gh PEl—
rho2 | e X971 Vo1 Xog Yoo
Hough Lines
Reference image
Port Description
Complex
ort Input/Output Supported Data Types Values
Supported
‘heta Vector of theta values that represent |* Double-precision floating point No
input lines + Single-precision floating point
» Fixed point (signed, word length less than
or equal to 32)
* 8-, 16-, and 32-bit signed integer
tho Vector of rho values that represent |Same as Theta port No
input lines
ef Matrix that represents a binary or |* Double-precision floating point No

intensity image or matrix that
represents one plane of an RGB
image

» Single-precision floating point

* Fixed-point (signed and unsigned)
* Custom data types

* Boolean

* 8-, 16-, and 32-bit signed integer

* 8-, 16-, and 32-bit unsigned integer

1-319

1 Blocks — Alphabetical List

Complex
ort Input/Output Supported Data Types Values
Supported
ts M-by-4 matrix of intersection values, |* 32-bit signed integer No
where M is the number of input
lines
Parameters

Sine value computation method

If you select Trigonometric function, the block computes sine and cosine values
to calculate the intersections of the lines during the simulation. If you select Table
lookup, the block computes and stores the trigonometric values to calculate the
intersections of the lines before the simulation starts. In this case, the block requires
extra memory.

For floating-point inputs, set the Sine value computation method parameter to
Trigonometric function. For fixed-point inputs, set the parameter to Table
lookup.

Theta resolution (radians)
Use this parameter to specify the spacing of the theta-axis. This parameter appears in
the dialog box only if, for the Sine value computation method parameter, you
select Table lookup. parameter appears in the dialog box.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Sine table

Choose how to specify the word length of the values of the sine table. The fraction
length of the sine table values always equals the word length minus one:

When you select Specify word length, you can enter the word length of the sine
table.

The sine table values do not obey the Rounding mode and Overflow mode
parameters; they saturate and round to Nearest.

1-320

Hough Lines

Product output

Use this parameter to specify how to designate this product output word and fraction
lengths:

When you select Same as first input, the characteristics match the
characteristics of the first input to the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits,
and the slope of the product output. All signals in the Computer Vision Toolbox blocks
have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the product
output.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths.

When you select Same as product output the characteristics match the
characteristics of the product output.

When you select Binary point scaling, you can enter the Word length and the
Fraction length of the accumulator; in bits.

When you select Slope and bias scaling, you can enter the Word length, in
bits, and the Slope of the Accumulator. All signals in the Computer Vision Toolbox
software have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the accumulator
data type in this block.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

1-321

1 Biocks — Alphabetical List

Examples

The following figure shows Line 1 intersecting the boundaries of the reference image at
[(X11, Y11) (X12, Y12)]and Line 2 intersecting the boundaries at [(X;1, Y1) (X2,

Y22)]
(a2 yaz)
thetat ~a/
—-——
b\
|:K11 ytﬁ‘ I:Xu ‘_-,-‘1;]'
—

Reference image boundary

/ ™~

See “Detect Lines in Images” in the Computer Vision Toolbox User Guide.

See Also
Find Local Maxima Computer Vision Toolbox
Hough Transform Computer Vision Toolbox

1-322

Hough Lines

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-323

1 Biocks — Alphabetical List

Hough Transform

Find lines in images

., Hough
' T'3“5fr"rHDuﬂh i

Hzugh Transform

Library

Transforms

visiontransforms

Description

Use the Hough Transform block to find straight lines in an image. The block outputs the
Hough space matrix and, optionally, the rho-axis and theta-axis vectors. Peak values in the
matrix represent potential straight lines in the input image. Generally, the Hough
Transform block precedes the Hough Lines block which uses the output of this block to
find straight lines in an image. You can instead use a custom algorithm to locate peaks in
the Hough space matrix in order to identify potential straight lines.

Supported
)
ort Input/Output Supported Data Types Complex Values
W Matrix that represents a binary |Boolean No
image
lough Parameter space matrix * Double-precision floating point No

* Single-precision floating point

» Fixed point (unsigned, fraction length
equal to 0)

* 8-, 16-, 32-bit unsigned integer

1-324

Hough Transform

ort Input/Output Supported Data Types zgm;:g(eelalues
‘heta Vector of theta values * Double-precision floating point No
* Single-precision floating point
» Fixed point (signed)
* 8-, 16-, 32-bit signed integer
tho Vector of rho values Same as Theta port No
Parameters

Theta resolution (radians)

Specify the spacing of the Hough transform bins along the theta-axis.
Rho resolution (pixels)

Specify the spacing of the Hough transform bins along the rho-axis.
Output theta and rho values

If you select this check box, the Theta and Rho ports appear on the block. The block
outputs theta and rho-axis vector values at these ports.

Output data type
Specify the data type of your output signal.

Rounding mode
Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.
Sine table
Choose how to specify the word length of the values of the sine table:

* When you select Binary point scaling, you can enter the word length of the
sine table values, in bits.

* When you select Slope and bias scaling, you can enter the word length of
the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode
parameters; they always saturate and round to Nearest.

1-325

1 Biocks — Alphabetical List

1-326

Rho
Choose how to specify the word length and the fraction length of the rho values:
* When you select Binary point scaling, you can enter the word length and the
fraction length of the rho values, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the rho values. All signals in Computer Vision Toolbox blocks
have a bias of 0.

Product output
. Use this parameter to specify how to designate the product output word and fraction
lengths:
* When you select Binary point scaling, you can enter the word length and the
fraction length of the product output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the product output. All signals in Computer Vision Toolbox
blocks have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the product
output.
Accumulator
Use this parameter to specify how to designate this accumulator word and fraction
lengths:
* When you select Same as product output, these characteristics match the
characteristics of the product output.

* When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. All signals in Computer Vision Toolbox
blocks have a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use of the
accumulator data type in this block.

Hough Transform

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

Hough output
Choose how to specify the word length and fraction length of the Hough output of the
block:
* When you select Binary point scaling, you can enter the word length of the
Hough output, in bits. The fraction length always has a value of 0.

* When you select Slope and bias scaling, you can enter the word length, in
bits, of the Hough output. The slope always has a value of 0. All signals in
Computer Vision Toolbox blocks have a bias of 0.

Theta output
Choose how to specify the word length and fraction length of the theta output of the
block:
* When you select Binary point scaling, you can enter the word length and the
fraction length of the theta output, in bits.

* When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the theta output. All signals in Computer Vision Toolbox
blocks have a bias of 0.

Algorithm

The Hough Transform block implements the Standard Hough Transform (SHT). The SHT
uses the parametric representation of a line:

rho = x * cos(theta) + y * sin(theta)

1-327

1 Blocks — Alphabetical List

1-328

/S

v

1
theta |
A

rho

/

R
Y

The upper-left corner pixel is assumed to be at x=0,y=0.
The variable rho indicates the perpendicular distance from the origin to the line.

The variable theta indicates the angle of inclination of the normal line from the x-axis. The
range of theta is —% <0< + % with a step-size determined by the Theta resolution
(radians) parameter. The SHT measures the angle of the line clockwise with respect to
the positive x-axis.

The Hough Transform block creates an accumulator matrix. The (rho, theta) pair
represent the location of a cell in the accumulator matrix. Every valid (logical true) pixel
of the input binary image represented by (R,C) produces a rho value for all theta values.
The block quantizes the rho values to the nearest number in the rho vector. The rho
vector depends on the size of the input image and the user-specified rho resolution. The
block increments a counter (initially set to zero) in those accumulator array cells
represented by (rho, theta) pairs found for each pixel. This process validates the point
(R,C) to be on the line defined by (rho, theta). The block repeats this process for each
logical true pixel in the image. The Hough block outputs the resulting accumulator
matrix.

Examples

See “Detect Lines in Images” in the Computer Vision Toolbox User Guide.

Hough Transform

See Also

Find Local Maxima

Computer Vision Toolbox

Hough Lines Computer Vision Toolbox

hough Image Processing Toolbox
houghlines Image Processing Toolbox
houghpeaks Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-329

1 Blocks — Alphabetical List

1-330

Image Complement

Compute complement of pixel values in binary or intensity images

Image
Complement

Image Complement

Library

Conversions

visionconversions

Description

The Image Complement block computes the complement of a binary or intensity image.
For binary images, the block replaces pixel values equal to 0 with 1 and pixel values equal
to 1 with 0. For an intensity image, the block subtracts each pixel value from the
maximum value that can be represented by the input data type and outputs the
difference.

For example, suppose the input pixel values are given by x(i) and the output pixel values
are given by y(i). If the data type of the input is double or single precision floating-point,
the block outputs y(i) = 1.0-x(i). If the input is an 8-bit unsigned integer, the block outputs
y(i) = 255-x(i).

Image Complement

Complex
ort Input/Output Supported Data Types Values
Supported
nput Vector or matrix of intensity values * Double-precision floating No
point
* Single-precision floating point
* Boolean
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned
integer
Jutput |Complement of a binary or intensity Same as Input port No

The dimensions, data type, complexity, and frame status of the input and output signals
are the same.

See Also

Autothreshold Computer Vision Toolbox software
Chroma Resampling Computer Vision Toolbox software
Color Space Conversion Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-331

1 Blocks — Alphabetical List

1-332

Image Data Type Conversion

Convert and scale input image to specified output data type

Sonver Image
1o single

Irmage Data Type
Conversion

Library

Conversions

visionconversions

Description

The Image Data Type Conversion block changes the data type of the input to the user-
specified data type and scales the values to the new data type's dynamic range. To
convert between data types without scaling, use the Simulink Data Type Conversion
block.

When converting between floating-point data types, the block casts the input into the
output data type and clips values outside the range to 0 or 1. When converting to the
Boolean data type, the block maps 0 values to 0 and all other values to one. When
converting to or between all other data types, the block casts the input into the output
data type and scales the data type values into the dynamic range of the output data type.
For double- and single-precision floating-point data types, the dynamic range is between 0
and 1. For fixed-point data types, the dynamic range is between the minimum and
maximum values that can be represented by the data type.

Note This block supports intensity and color images on its ports.

Image Data Type Conversion

Complex
ort Input/Output Supported Data Types Values
Supported
nput M-by-N matrix of intensity values or|* Double-precision floating point No
an M-by-N-by-P color video signal |, gingle-precision floating point
where P is the number of color])
planes » Fixed point (word length less than or
equal to 16)
* Boolean
* 8-, 16-bit signed integer
* 8-, 16-bit unsigned integer
Jutput M-by-N matrix of intensity values or|Same as Input port No
an M-by-N-by-P color video signal
where P is the number of color
planes

The dimensions, complexity, and frame status of the input and output signals are the
same.

Use the Output data type parameter to specify the data type of your output signal
values.

Parameters

Output data type
Use this parameter to specify the data type of your output signal.
Signed

Select this check box if you want the output fixed-point data to be signed. This
parameter is visible if, for the Qutput data type parameter, you choose Fixed-
point.

Word length

Use this parameter to specify the word length of your fixed-point output. This
parameter is visible if, for the Output data type parameter, you choose Fixed-
point.

1-333

1 Biocks — Alphabetical List

Fraction length

Use this parameter to specify the fraction length of your fixed-point output. This
parameter is visible if, for the Output data type parameter, you choose Fixed-
point.

See Also

|Aut0threshold |Computer Vision Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-334

Image From File

Image From File

Import image from image file

peppers.png lmage

Irmauge Fmom File

Library

Sources

visionsources

Description

Use the Image From File block to import an image from a supported image file. For a list
of supported file formats, see the imread function reference page in the MATLAB
documentation. If the image is a M-by-N array, the block outputs a binary or intensity
image, where M and N are the number of rows and columns in the image. If the image is
a M-by-N-by-P array, the block outputs a color image, where M and N are the number of
rows and columns in each color plane, P.

Complex
Port |Output Supported Data Types Values

Supported
Image |M-by-N matrix of intensity values |[* Double-precision floating point Yes

or an M-by-N-by-P color video
signal where P is the number of
color planes

Single-precision floating point
Fixed point

Boolean

8-, 16-, 32-bit signed integer
8-, 16-, 32-bit unsigned integer

1-335

1 Blocks — Alphabetical List

Complex
Port |Output Supported Data Types Values

Supported
R, G, B |Scalar, vector, or matrix that Same as I port Yes

represents one plane of the input
RGB video stream. Outputs from
the R, G, or B ports have the
same dimensions.

1-336

For the Computer Vision Toolbox blocks to display video data properly, double- and single-
precision floating-point pixel values must be between 0 and 1. If the input pixel values
have a different data type than the one you select using the Output data type parameter,
the block scales the pixel values, adds an offset to the pixel values so that they are within
the dynamic range of their new data type, or both.

Use the File name parameter to specify the name of the graphics file that contains the
image to import into the Simulink modeling and simulation software. If the file is not on
the MATLAB path, use the Browse button to locate the file. This parameter supports URL
paths.

Use the Sample time parameter to set the sample period of the output signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer
character, |, as the delimiter. This parameter is visible if you set the Image signal
parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of
your output signal.

Image From File

Parameters

File name

Specify the name of the graphics file that contains the image to import into the
Simulink environment.

Sample time
Enter the sample period of the output signal.
Image signal

Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port outputs one M-by-N plane
of an RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character, |, as the delimiter.
This parameter is visible if you set the Image signal parameter to Separate color
signals.

Output data type
Specify the data type of your output signal.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned.
This parameter is only visible if, from the Output data type list, you select Fixed-
point.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible if, from the Output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the following two methods:
* Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

* Choose User-defined to specify the output scaling in the Fraction length
parameter.

1-337

1 Biocks — Alphabetical List

This parameter is only visible if, from the Output data type list, you select Fixed-
point or when you select User-defined.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set fraction length in output to parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types
using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point
Designer™ library. This parameter is only visible when you select User-defined for
the Output data type parameter.

See Also

From Multimedia File Computer Vision Toolbox software

Image From Workspace Computer Vision Toolbox software

To Video Display Video and Image Processing Blockset software
Video From Workspace Computer Vision Toolbox software

Video Viewer Computer Vision Toolbox software

im2double MATLAB software

im2uint8 Image Processing Toolbox software

imread MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-338

Image From Workspace

Image From Workspace

Import image from MATLAB workspace

chechker_boad(10) Image

Irmage Fmorn Waorkspace

Library

Sources

visionsources

Description

Use the Image From Workspace block to import an image from the MATLAB workspace. If
the image is a M-by-N workspace array, the block outputs a binary or intensity image,
where M and N are the number of rows and columns in the image. If the image is a M-by-
N-by-P workspace array, the block outputs a color image, where M and N are the number
of rows and columns in each color plane, P.

Complex
Port Output Supported Data Types Values

Supported
Image |M-by-N matrix of intensity * Double-precision floating point No

values or an M-by-N-by-P color |,
video signal where P is the
number of color planes

Single-precision floating point
» Fixed point

* Boolean

* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned integer

1-339

1 Biocks — Alphabetical List

Complex
Port Output Supported Data Types Values

Supported
R, G, B |[Scalar, vector, or matrix that Same as I port No

represents one plane of the
RGB video stream. Outputs
from the R, G, or B ports have
the same dimensions.

1-340

For the Computer Vision Toolbox blocks to display video data properly, double- and single-
precision floating-point pixel values must be between 0 and 1. If the input pixel values
have a different data type than the one you select using the Output data type parameter,
the block scales the pixel values, adds an offset to the pixel values so that they are within
the dynamic range of their new data type, or both.

Use the Value parameter to specify the MATLAB workspace variable that contains the
image you want to import into Simulink environment.

Use the Sample time parameter to set the sample period of the output signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If
you select One multidimensional signal, the block outputs an M-by-N-by-P color
video signal, where P is the number of color planes, at one port. If you select Separate
color signals, additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer
character, |, as the delimiter. This parameter is visible if you set the Image signal
parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of
your output signal.

Parameters

Value

Specify the MATLAB workspace variable that you want to import into Simulink
environment.

Image From Workspace

Sample time
Enter the sample period of the output signal.
Image signal

Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port outputs one M-by-N plane
of an RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character, |, as the delimiter.
This parameter is visible if you set the Image signal parameter to Separate color
signals.

Output data type
Specify the data type of your output signal.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This
parameter is only visible if, from the Output data type list, you select Fixed-point.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible if, from the Output data type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the following two methods:
* Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

* Choose User-defined to specify the output scaling in the Fraction length
parameter.

This parameter is only visible if, from the Output data type list, you select Fixed-
point or when you select User-defined.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter is only visible when you select Fixed-point
or User-defined for the Output data type parameter and User-defined for the
Set fraction length in output to parameter.

1-341

1 Biocks — Alphabetical List

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types
using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point
Designer library. This parameter is only visible when you select User-defined for
the Output data type parameter.

See Also

From Multimedia File Computer Vision Toolbox software
To Video Display Computer Vision Toolbox software
Video From Workspace Computer Vision Toolbox software
Video Viewer Computer Vision Toolbox software
im2double Image Processing Toolbox software
im2uint8 Image Processing Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-342

Image Pad

Image Pad

Pad signal along its rows, columns, or both

|
Irnage Pad
Fial

Irnzge Pad

Library
Utilities

visionutilities

Description

The Image Pad block expands the dimensions of a signal by padding its rows, columns, or
both. To crop an image, you can use the Simulink Selector block, DSP System Toolbox™
Submatrix block, or the Image Processing Toolbox imcrop function.

Complex Values

Port Input/Output Supported Data Types Supported

Image /1 |M-by-N matrix of intensity Double-precision floating point. |Yes
values or an M-by-N-by-P |, gingle precision floating point.
color video signal, where P
is the number of color

planes. * Boolean.

* 8-, 16-, 32-bit signed integer.

* Fixed point.

* 8-, 16-, 32-bit unsigned integer.

PVal Scalar value that represents|Same as I port. Yes
the constant pad value.

Output |Padded scalar, vector, or Same as I port. Yes
matrix.

1-343

1 Biocks — Alphabetical List

Examples

Pad with a Constant Value

Suppose you want to pad the rows of your input signal with three initial values equal to 0
and your input signal is defined as follows:

Unp 2p1 Lpg
g 2171 912
Qop Ty oy

Set the Image Pad block parameters as follows:

* Method = Constant

* Pad value source = Specify via dialog
+ Pad value =0

* Specify = Output size

* Add columns to = Left

* Output row mode = User-specified

* Number of output columns = 6

* Add rows to = No padding

The Image Pad block outputs the following signal:

00 UCIDD aDl CIDE‘
00 Dﬂlo all le
000agyayyag,

1-344

Image Pad

Pad by Repeating Border Values

Suppose you want to pad your input signal with its border values, and your input signal is
defined as follows:

Unp 2p1 Lpg
tip 2171 912
Qop Tgq oy

Set the Image Pad block parameters as follows:

* Method = Replicate

* Specify = Pad size

* Add columns to = Both left and right
¢ Number of added columns = 2

* Add rows to = Both top and bottom

* Number of added rows = [1 3]

The Image Pad block outputs the following signal:

%00 %00 %00 %01 %02, %02 Y02| yaput matrix
app oo o2 902
Q10 Q1010 99 Q19 Q719
QAgp Agp @ Qgg Aoy

Qg Agp Agp gy Agg Agg Ay
(920 @201920 @21 9221999 D99

The border values of the input signal are replicated on the top, bottom, left, and right of
the input signal so that the output is a 7-by-7 matrix. The values in the corners of this

1-345

1 Biocks — Alphabetical List

output matrix are determined by replicating the border values of the matrices on the top,
bottom, left and right side of the original input signal.

Pad with Mirror Image

Suppose you want to pad your input signal using its mirror image, and your input signal is
defined as follows:

tUpg &g Yps2
g 2171 919
Qop dgq Aoy

Set the Image Pad block parameters as follows:

* Method = Symmetric

* Specify = Pad size

* Add columns to = Both left and right
* Number of added columns = [5 6]

* Add rows to = Both top and bottom

* Number of added rows = 2

The Image Pad block outputs the following signal:

@17 @q9'Qqy Qyq B1p'8qq G1q A15'dqy Tqq Aqp'T1g Bqq Cqg

Input matrix

-———_ —_= = = —|____

Gpy aoz:“oz Qp1 aoolaoo %1 CI02'%2 @p1 9o0,%00 @01 Qo2
@p1 2oy %02 201 “ooflna ag, ﬂozf‘oz @o1 @ooy%o0 201 902
@17 919|919 @11 9p1|%1p F11 F19|%12 P11 F101%10 F11 D12
@gq Qgglagy Ggy @gqllgg gy Agglagy agy agglagg agy @y

“21“22'“22 21“20]_20“21 221_“22“21 23'“20“21“22

| I | I
@11 919 919 911 %01 01 %11 %12 @19 911 F10,%10 @11 12

1-346

Image Pad

The block flips the original input matrix and each matrix it creates about their top,
bottom, left, and right sides to populate the 7-by-13 output signal. For example, in the
preceding figure, you can see how the block flips the input matrix about its right side to
create the matrix directly to its right.

Pad Using a Circular Repetition of Elements

Suppose you want to pad your input signal using a circular repetition of its values. Your
input signal is defined as follows:

Unp 2p1 Lpg
g 2171 912
Qop Ty oy

Set the Image Pad block parameters as follows:

* Method = Circular

* Specify = Output size

* Add columns to = Both left and right
* Number of output columns =9

* Add rows to = Both top and bottom

* Number of output rows = 9

The Image Pad block outputs the following signal:

1-347

1 Blocks — Alphabetical List

Qpp @1 %p2'%on P01 oo Foo Fo1 Fo2

a10@11 C‘12'“10 71 “12'“10 11 @13

a a a a a a a a a
20 %21 2.21 20 %21 25- 20 %21 22___.In|:|u'rmu'rr‘|x

N — Lo]
Qpp 91 aozﬁon Ll ‘1021“00 Apy Aoy
10 %11 %19|%0 %11 T29 %10 %11 912
Qgp @9y Agg|lgp G Tggl Top gy Tag

@gp Aoy ApglGgg Gpy Gpgl Bpp Fo1 Ty

a1paqy CI12'6110 aqq alzlalo 171 aqy

I [
920 921 Ao Ggp @21 Ggg 90 @21 29

The block repeats the values of the input signal in a circular pattern to populate the 9-
by-9 output matrix.

Parameters

Method
Specify how you want the block to pad your signal. The data type of the input signal is
the data type of the output signal.

Use the Method parameter to specify how you pad the input signal.

* Constant — Pad with a constant value

* Replicate — Pad by repeating its border values

* Symmetric — Pad with its mirror image

* Circular — Pad using a circular repetition of its elements

If you set the Method parameter to Constant, the Pad value source parameter
appears on the dialog box.

* Input port — The PVal port appears on the block. Use this port to specify the
constant value with which to pad your signal

* Specify via dialog — The Pad value parameter appears in the dialog box.
Enter the constant value with which to pad your signal.

1-348

Image Pad

Pad value source

If you select Input port, the PVal port appears on the block. Use this port to specify
the constant value with which to pad your signal. If you select Specify via
dialog, the Pad value parameter becomes available. This parameter is visible if, for
the Method parameter, you select Constant.

Pad value
Enter the constant value with which to pad your signal. This parameter is visible if,
for the Pad value source parameter, you select Specify via dialog. This
parameter is tunable.

Specify
If you select Pad size, you can enter the size of the padding in the horizontal and
vertical directions.

If you select Output size, you can enter the total number of output columns and
rows. This setting enables you to pad the input signal. See the previous section for
descriptions of the Add columns to and Add rows to parameters.

Add columns to

The Add columns to parameter controls the padding at the left, right or both sides of
the input signal.

* Left — The block adds additional columns on the left side.

* Right — The block adds additional columns on the right side.

* Both left and right — The block adds additional columns to the left and right
side.

* No padding — The block does not change the number of columns.

Use the Add columns to and Number of added columns parameters to specify the
size of the padding in the horizontal direction. Enter a scalar value, and the block
adds this number of columns to the left, right, or both sides of your input signal. If
you set the Add columns to parameter to Both left and right, you can enter a
two element vector. The left element controls the number of columns the block adds
to the left side of the signal; the right element controls the number of columns the
block adds to the right side of the signal.

Output row mode
Use the Output row mode parameter to describe how to pad the input signal.

* User-specified — Use the Number of output rows parameter to specify the
total number of rows.

1-349

1 Biocks — Alphabetical List

1-350

* Next power of two — The block pads the input signal along the rows until the
length of the rows is equal to a power of two. When the length of the input signal's
rows is equal to a power of two, the block does not pad the input signal's rows.

Number of added columns

This parameter controls how many columns are added to the right and/or left side of
your input signal. Enter a scalar value, and the block adds this number of columns to
the left, right, or both sides of your signal. If, for the Add columns to parameter you
select Both left and right, enter a two-element vector. The left element controls
the number of columns the block adds to the left side of the signal and the right
element controls how many columns the block adds to the right side of the signal.
This parameter is visible if, for the Specify parameter, you select Pad size.

Add rows to

The Add rows to parameter controls the padding at the top and bottom of the input
signal.

* Top — The block adds additional rows to the top.

* Bottom — The block adds additional rows to the bottom.

* Both top and bottom — The block adds additional rows to the top and bottom.
* No padding — The block does not change the number of rows.

Use the Add rows to and Number of added rows parameters to specify the size of
the padding in the vertical direction. Enter a scalar value, and the block adds this
number of rows to the top, bottom, or both of your input signal. If you set the Add
rows to parameter to Both top and bottom, you can enter a two element vector.
The left element controls the number of rows the block adds to the top of the signal;
the right element controls the number of rows the block adds to the bottom of the
signal.

Output column mode

Describe how to pad the input signal. If you select User-specified, the Row size
parameter appears on the block dialog box. If you select Next power of two, the block
pads the input signal along the rows until the length of the rows is equal to a power of
two. This parameter is visible if, for the Specify parameter, you select Output size.

Use the Output column mode parameter to describe how to pad the input signal.

* User-specified — Use the Number of column rows parameter to specify the
total number of columns.

Image Pad

* Next power of two — The block pads the input signal along the columns until
the length of the columns is equal to a power of two. When the length of the input
signal's columns is equal to a power of two, the block does not pad the input
signal's columns.

Number of added rows

This parameter controls how many rows are added to the top, bottom, or both of your
input signal. Enter a scalar value and the block adds this number of columns to the
top, bottom, or both of your signal. If, for the Add rows to parameter you select Both
top and bottom, enter a two-element vector. The left element controls the number
of rows the block adds to the top of the signal and the right element controls how
many rows the block adds to the bottom of the signal. This parameter is visible if you
set the Specify parameter to Pad size.

Action when truncation occurs
The following options are available for the Action when truncation occurs
parameter:
* None — Select this option when you do not want to be notified that the input
signal is truncated.

* Warning — Select this option when you want to receive a warning in the MATLAB
Command Window when the input signal is truncated.

* Error — Select this option when you want an error dialog box displayed and the
simulation terminated when the input signal is truncated.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

See Also

Selector | Submatrix | imcrop

Introduced in R2007a

1-351

1 Blocks — Alphabetical List

1-352

Insert Text

Draw text on image or video stream.

Image
Select
Color "text..!
Location
Opacity

Inzert Text

Library
Text & Graphics

visiontextngfix

Description

The Insert Text block draws formatted text or numbers on an image or video stream. The
block uses the FreeType 2.3.5 library, an open-source font engine, to produce stylized text
bitmaps. To learn more about the FreeType Project, visit https://

www . freetype.org/. The Insert Text block does not support character sets other than
ASCII.

The Insert Text block lets you draw one or more instances of text including:

* Assingle instance of text
* Multiple instances of the same text
» Multiple instances of text, with different text at each location

https://www.freetype.org/
https://www.freetype.org/

Insert Text

Port Description

Port

Description

Supported Data Types

Image

M-by-N matrix of intensity values
or an M-by-N-by-P color video
signal where P represents the
number of color planes.

Double-precision floating point
Single-precision floating point

Fixed point(signed, word length less than
or equal to 32.)

Boolean
8-, 16-, 32-bit signed integer
8-, 16-, 32-bit unsigned integer

R, G B

Matrix that represents one plane

of the RGB video stream. Outputs
from the R, G, or B ports have the
same dimensions and data type.

Same as Input port

Select

One-based index value that
indicates which text to display.

Double-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

Single-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a floating-point
data type.)

Boolean
8-, 16-, 32-bit signed integer

8-, 16-, 32-bit unsigned integer

1-353

1 Biocks — Alphabetical List

1-354

Port

Description

Supported Data Types

Variabl
es

Vector or matrix whose values are
used to replace ANSI C printf-
style format specifications.

The data types supported by this port depend
on the conversion specification you are using
in the Text parameter.

%d, %i, and %u:

* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned integer
%c and %s:

* 8-bit unsigned integer

%f:

* Double-precision floating point
» Single-precision floating point
%0, %X, %X, %e, %E, %g, and %G:
* Double-precision floating point
* Single-precision floating point
* 8-, 16-, 32-bit signed integer

* 8-, 16-, 32-bit unsigned integer

Color

Intensity input — Scalar value
used for all character vectors or a
vector of intensity values whose
length is equal to the number of
character vectors.

Color input — Three-element
vector that specifies one color for
all of the character vectors or
anM-by-3 matrix of color values,
where M represents the number
of character vectors.

Same as Input port (The input to this port
must be the same data type as the input to
the Input port.)

Insert Text

Port |Description Supported Data Types
Locati |M-by-2 matrix of one-based [xy] |* Double-precision floating point. (This data
on coordinates, where M represents type is only supported if the input to the I
the number of text character or R, G, and B ports is a floating-point
vectors to insert. Location data type.)
specifies the top-left corner of the |, gingle-precision floating point. (This data
text character vector bounding type is only supported if the input to the I
box. or R, G, and B ports is a floating-point
data type.)
* Boolean
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Opacit |Scalar value that is used for all * Double-precision floating point. (This data

y character vectors or vector of
opacity values whose length is
equal to the number of character
vectors.

type is only supported if the input to the
Input or R, G, and B ports is a double-
precision floating-point data type.)

Single-precision floating point. (This data
type is only supported if the input to the I
or R, G, and B ports is a single-precision
floating-point data type.)

ufix8 En7 (This data type is only

supported if the input to the I or R, G, and
B ports is a fixed-point data type.)

Row-Major Data Format

MATLAB and the Computer Vision Toolbox blocks use column-major data organization.
However, the Insert Text block gives you the option to process data that is stored in row-
major format. When you select the Input image is transposed (data order is row
major) check box, the block assumes that the input buffer contains contiguous data
elements from the first row first, then data elements from the second row second, and so
on through the last row. Use this functionality only when you meet all the following

criteria:

* You are developing algorithms to run on an embedded target that uses the row-major

format.

1-355

1 Biocks — Alphabetical List

1-356

* You want to limit the additional processing required to take the transpose of signals at
the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

* When you select this check box, the first two signal dimensions of the Insert Text
block's input are swapped.

» All Computer Vision Toolbox software blocks can be used to process data that is in the
row-major format, but you need to know the image dimensions when you develop your
algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter
coefficients are transposed. If you are using the Rotate block, you need to use negative
rotation angles, etc.

* Only three blocks have the Input image is transposed (data order is row major)
check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks.
You need to select this check box to enable row-major functionality in these blocks. All
other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on
an embedded target.

Step 1: .
Create block diagram Qllgc?lzghm
-
o= = =]
Video Transpose Transpose Video
source plock block sink
block block
I I I I
~—— Step 2: >
Replace source, transpose, and
sink blocks with target source Embedded
E%%?igi?ce and sink blocks that produce target sink
block data in row-major format block

Insert Text

Parameters

Text

Specify the text character vector to be drawn on the image or video stream. This
parameter can be a single text character vector, such as 'Figurel', a cell array of
character vectors, such as { 'Figurel', 'Figure2'}, or an ANSI C printf-style
format specifications, such as %s.. To create a Select port enter a cell array of
character vectors. To create a Variables port, enter ANSI C printf-style format
specifications, such as %d, %T, or %s.

When you enter a cell array of character vectors, the Insert Text block does not
display all of the character vectors simultaneously. Instead, the Select port appears
on the block to let you indicate which text character vectors to display. The input to
this port must be a scalar value, where 1 indicates the first character vector. If the
input is less than 1 or greater than one less than the number of character vectors in
the cell array, no text will be drawn on the image or video frame.

When you enter ANSI C printf-style format specifications, such as %d, %, or %s, the
Variables port appears on the block. The block replaces the format specifications in
the Text parameter with each element of the input vector . Use the %s option to
specify a set of text character vectors for the block to display simultaneously at
different locations. For example, using a Constant block, enter [uint8('Textl') 0
uint8('Text2')] for the Constant value parameter. The following table
summarizes the supported conversion specifications.

Text Parameter Supported Conversion Specifications

Supported Support for multiple Support for mixed

specifications instances of the same (specifications
specification

%d, %i, %u, %c, %f, %o, |Yes No

%x, %X, %e, %E, %g, and

%G

%s No No

Color value source

Select where to specify the text color. Your choices are:

* Specify via dialog — the Color value parameter appears on the dialog box.

1-357

1 Blocks — Alphabetical List

* Input port — the Color port appears on the block.

Color value

Specify the intensity or color of the text. This parameter is visible if, for the Color
source parameter, you select Specify via dialog. Tunable.

The following table describes how to format the color of the text character vectors,
which depend on the block input and the number of character vectors you want to
insert. Color values for a floating-point data type input image must be between 0 and
1. Color values for an 8-bit unsigned integer data type input image must between 0

and 255.

Text Character Vector Color Values

Block Input

Intensity image

Color image

Location source

One Text Character Multiple Text Character
Vector Vectors

Color value parameter or Color value parameter or

the input to the Color the input to the Color

port specified as a scalar port specified as a vector

intensity value of intensity values whose
length is equal to the
number of character
vectors.

Color value parameter or Color value parameter or

the input to the Color the input to the Color

port specified as an RGB port specified as an M-

triplet that defines the by-3 matrix of color

color of the text values, where M
represents the number of
character vectors.

Indicate where you want to specify the text location. Your choices are:

* Specify via dialog — the Location [x y] parameter appears on the dialog

box.

* Input port — the Location port appears on the block.

1-358

Insert Text

Location [x y]

Specify the text location. This parameter is visible if, for the Location source
parameter, you select Specify via dialog. Tunable.

The following table describes how to format the location of the text character vectors
depending on the number of character vectors you specify to insert. You can specify
more than one location regardless of how many text character vectors you specify, but
the only way to get a different text character vector at each location is to use the %s
option for the Text parameter to specify a set of text character vectors. You can enter
negative values or values that exceed the dimensions of the input image or video
frame, but the text might not be visible.

Location Parameter Text Character Vector Insertion

Parameter

One Instance of
One Text Character
Vector

Multiple Instances of
the Same Text
Character Vector

Multiple Instances of
Unique Text Character
Vector

Location [x y]
parameter setting
or the input to the
Location port

Two-element vector of
the form [x y] that
indicates the top-left
corner of the text
bounding box.

M-by-2 matrix, where M
represents the number of
locations at which to
display the text . Each
row contains the
coordinates of the top-left
corner of the text
bounding box for the
character vector, e.g., [X;

Y1 X2 Y2l

M-by-2 matrix, where M
represents the number
of text character vectors.
Each row contains the
coordinates of the top-
left corner of the text
bounding box for the
character vector, e.g.,

[X1 y1; X2 y2l.

Opacity source

Indicate where you want to specify the text's opaqueness. Your choices are:

* Specify via dialog — the Opacity parameter appears on the dialog box.

* Input port — the Opacity port appears on the block.

Opacity

Specify the opacity of the text. This parameter is visible if, for the Opacity source
parameter, you select Specify via dialog. Tunable.

The following table describes how to format the opacity of the text character vectors
depending on the number of character vectors you want to insert.

1-359

1 Blocks — Alphabetical List

1-360

Text String Opacity Values

Parameter One Text String Multiple Text Strings

Opacity parameter Scalar value between © Vector whose length is

setting or the input to the and 1, where 0 is equal to the number of

Opacity port translucent and 1 is character vectors
opaque

Use the Image signal parameter to specify how to input and output a color video
signal:

* One multidimensional signal — the block accepts an M-by-N-by-P color
video signal, where P is the number of color planes, at one port.
* Separate color signals — additional ports appear on the block. Each port
accepts one M-by-N plane of an RGB video stream.
Image signal

Specify how to input and output a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P color video signal,
where P is the number of color planes, at one port. If you select Separate color
signals, additional ports appear on the block. Each port accepts one M-by-N plane
of an RGB video stream.

Input image is transposed (data order is row major)

When you select this check box, the block assumes that the input buffer contains data
elements from the first row first, then data elements from the second row second, and
so on through the last row.

Font face

Specify the font of your text. The block populates this list with the fonts installed on
your system. On Windows, the block searches the system registry for font files. On
UNIX, the block searches the X Server's font path for font files.

Font size (points)
Specify the font size.
Anti-aliased

Select this check box if you want the block to smooth the edges of the text. This can
be computationally expensive. If you want your model to run faster, clear this check
box.

Insert Text

Examples

* “Annotate Video Files with Frame Numbers”

See Also
Draw Shapes Computer Vision Toolbox
Draw Markers Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced in R2013a

1-361

1 Blocks — Alphabetical List

Label

Label connected components in binary images

Label
By Label
Count

Label

Library

Morphological Operations

visionmorphops

Description

The Label block labels the objects in a binary image, BW. The background is represented
by pixels equal to 0 (black) and objects are represented by pixels equal to 1 (white). At
the Label port, the block outputs a label matrix that is the same size as the input matrix.
In the label matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object, and so on. At the
Count port, the block outputs a scalar value that represents the number of labeled

of labeled objects

objects.
Complex
Port Input/Output Supported Data Types Values
Supported
BW Vector or matrix that represents a |Boolean No
binary image
Label Label matrix * 8-, 16-, and 32-bit unsigned No
integer
Count Scalar that represents the number |Same as Label port No

1-362

Use the Connectivity parameter to define which pixels are connected to each other. If
you want a pixel to be connected to the other pixels located on the top, bottom, left, and

Label

right, select 4. If you want a pixel to be connected to the other pixels on the top, bottom,
left, right, and diagonally, select 8.

Consider the following 3-by-3 image. If, for the Connectivity parameter, you select 4, the
block considers the white pixels marked by black circles to be connected.

If, for the Connectivity parameter, you select 8, the block considers the white pixels
marked by black circles to be connected.

Use the Output parameter to determine the block's output. If you select Label matrix
and number of labels, ports Label and Count appear on the block. The block outputs
the label matrix at the Label port and the number of labeled objects at the Count port. If
you select Label matrix, the Label port appears on the block. If you select Number of
labels, the Count port appears on the block.

Use the Output data type parameter to set the data type of the outputs at the Label and
Count ports. If you select Automatic, the block calculates the maximum number of
objects that can fit inside the image based on the image size and the connectivity you
specified. Based on this calculation, it determines the minimum output data type size that
guarantees unique region labels and sets the output data type appropriately. If you select
uint32, uintl6, or uint8, the data type of the output is 32-, 16-, or 8-bit unsigned
integers, respectively. If you select uint16, or uint8, the If label exceeds data type
size, mark remaining regions using parameter appears in the dialog box. If the
number of found objects exceeds the maximum number that can be represented by the

1-363

1 Biocks — Alphabetical List

1-364

output data type, use this parameter to specify the block's behavior. If you select
maximum value of the output data type, the remaining regions are labeled with
the maximum value of the output data type. If you select zero, the remaining regions are
labeled with zeroes.

Parameters

Connectivity

Specify which pixels are connected to each other. If you want a pixel to be connected
to the pixels on the top, bottom, left, and right, select 4. If you want a pixel to be
connected to the pixels on the top, bottom, left, right, and diagonally, select 8.

Output

Determine the block's output. If you select Label matrix and number of
labels, the Label and Count ports appear on the block. The block outputs the label
matrix at the Label port and the number of labeled objects at the Count port. If you
select Label matrix, the Label port appears on the block. If you select Number of
labels, the Count port appears on the block.

Output data type

Set the data type of the outputs at the Label and Count ports. If you select
Automatic, the block determines the appropriate data type for the output. If you
select uint32, uint16, or uint8, the data type of the output is 32-, 16-, or 8-bit
unsigned integers, respectively.

If label exceeds data type size, mark remaining regions using

Use this parameter to specify the block's behavior if the number of found objects
exceeds the maximum number that can be represented by the output data type. If you
select maximum value of the output data type, the remaining regions are
labeled with the maximum value of the output data type. If you select zero, the
remaining regions are labeled with zeroes. This parameter is visible if, for the Output
data type parameter, you choose uint16 or uint8.

See Also
Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software

Label

Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Opening Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
bwlabel Image Processing Toolbox software
bwlabeln Image Processing Toolbox software

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-365

1 Blocks — Alphabetical List

Median Filter

Perform 2-D median filtering

edian
Filter

Median Filter

Library
Filtering and Analysis & Enhancement
visionanalysis

visionfilter

Description

The Median Filter block replaces the central value of an M-by-N neighborhood with its
median value. If the neighborhood has a center element, the block places the median
value there, as illustrated in the following figure.

The block has a bias toward the upper-left corner when the neighborhood does not have
an exact center. See the median value placement in the following figure.

1-366

Median Filter

The block pads the edge of the input image, which sometimes causes the pixels within
[M/2 N/2] of the edges to appear distorted. The median value is less sensitive than the
mean to extreme values. As a result, the Median Filter block can remove salt-and-pepper
noise from an image without significantly reducing the sharpness of the image.

Complex
Port Input/Output Supported Data Types Values
Supported
I Matrix of intensity values * Double-precision floating point No
* Single-precision floating point
* Fixed point
* Boolean
* 8-, 16-, 32-bit signed integer
* 8-, 16-, 32-bit unsigned integer
Val Scalar value that represents the |Same as I port No
constant pad value
Output Matrix of intensity values Same as I port No

If the data type of the input signal is floating point, the output has the same data type.
The data types of the signals input to the I and Val ports must be the same.

Fixed-Point Data Types

The information in this section is applicable only when the dimensions of the
neighborhood are even.

For fixed-point inputs, you can specify accumulator and output data types as discussed in
“Parameters” on page 1-368. Not all these fixed-point parameters apply to all types of
fixed-point inputs. The following table shows the output and accumulator data type used
for each fixed-point input.

1-367

1 Biocks — Alphabetical List

Fixed-Point Input Output Data Type Accumulator Data Type
Even M X X

Odd M X

Odd M and complex X X

Even M and complex X X

1-368

When M is even, fixed-point signals use the accumulator and output data types. The
accumulator data type store the result of the sum performed while calculating the
average of the two central rows of the input matrix. The output data type stores the total
result of the average.

Complex fixed-point inputs use the accumulator parameters. The calculation for the sum
of the squares of the real and imaginary parts of the input occur, before sorting input
elements. The accumulator data type stores the result of the sum of the squares.

Parameters

Neighborhood size

Specify the size of the neighborhood over which the block computes the median.

* Enter a scalar value that represents the number of rows and columns in a square
matrix.

* Enter a vector that represents the number of rows and columns in a rectangular
matrix.

Output size
This parameter controls the size of the output matrix.

* Ifyouchoose Same as input port I, the output has the same dimensions as
the input to port I. The Padding options parameter appears in the dialog box.
Use the Padding options parameter to specify how to pad the boundary of your
input matrix.

» Ifyou select Valid, the block only computes the median where the neighborhood
fits entirely within the input image, with no need for padding. The dimensions of
the output image are, output rows = input rows - neighborhood rows +
1,
and

Median Filter

output columns = input columns - neighborhood columns + 1.

Padding options
Specify how to pad the boundary of your input matrix.
* Select Constant to pad your matrix with a constant value. The Pad value source
parameter appears in the dialog box
» Select Replicate to pad your input matrix by repeating its border values.
* Select Symmetric to pad your input matrix with its mirror image.
* Select Circular to pad your input matrix using a circular repetition of its
elements. This parameter appears if, for the Qutput size parameter, you select
Same as input port I.
For more information on padding, see the Image Pad block reference page.
Pad value source
Use this parameter to specify how to define your constant boundary value.
* Select Specify via dialog to enter your value in the block parameters dialog
box. The Pad value parameter appears in the dialog box.
* Select Input port to specify your constant value using the Val port. This
parameter appears if, for the Padding options parameter, you select Constant.
Pad value
Enter the constant value with which to pad your matrix. This parameter appears if, for
the Pad value source parameter, you select Specify via dialog. Tunable.
Rounding mode
Select the rounding mode for fixed-point operations.
Overflow mode
Select the overflow mode for fixed-point operations.

Note Only certain cases require the use of the accumulator and output parameters.
Refer to “Fixed-Point Data Types” on page 1-367 for more information.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting
from a complex-complex multiplication in the block:

1-369

1 Biocks — Alphabetical List

1-370

When you select Same as input, these characteristics match the related input to
the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in
bits, and the slope of the accumulator. This block requires power-of-two slope and
a bias of 0.

Output

Choose how to specify the output word length and fraction length:

When you select Same as input, these characteristics match the related input to
the block.

When you select Binary point scaling, you can enter the word length and the
fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in

bits, and the slope of the output. This block requires power-of-two slope and a bias
of 0.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types
you specify on the block mask. For more information, see fxptdlg, a reference page
on the Fixed-Point Tool in the Simulink documentation.

References

[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 2002.

See Also

2-D Convolution Computer Vision Toolbox
2-D FIR Filter Computer Vision Toolbox
medfilt2 Image Processing Toolbox

Median Filter

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

1-371

1 Biocks — Alphabetical List

Opening

Perform morphological opening on binary or intensity images

|
Open
Mhood

Opening

Library

Morphological Operations

visionmorphops

Description

The Opening block performs an erosion operation followed by a dilation operation using a
predefined neighborhood or structuring element. This block uses flat structuring

elements only.

Complex
ort Input/Output Supported Data Types Values
Supported
Vector or matrix of intensity values |* Double-precision floating point No
* Single-precision floating point
* Fixed point
* Boolean
* 8-, 16-, and 32-bit signed integer
* 8-, 16-, and 32-bit unsigned integer
Nhood Matrix or vector of ones and zeros |Boolean No

that represents the neighborhood
values

1-372

Opening

Complex
ort Input/Output Supported Data Types Values
Supported
yutput Scalar, vector, or matrix of intensity |Same as I port No
values that represents the opened
image

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to specify how to
enter your neighborhood or structuring element values. If you select Specify via
dialog, the Neighborhood or structuring element parameter appears in the dialog
box. If you select Input port, the Nhood port appears on the block. Use this port to
enter your neighborhood values as a matrix or vector of 1s and 0s. You can only specify a
structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the
block moves throughout the image. Specify a neighborhood by entering a matrix or vector
of 1s and Os. Specify a structuring element with the strel function from the Image
Processing Toolbox. If the structuring element is decomposable into smaller elements, the
block executes at higher speeds due to the use of a more efficient algorithm.

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select
Specify via dialog to enter the values in the dialog box. Select Input port to
use the Nhood port to specify the neighborhood values. You can only specify a
structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1s
and Os. If you are specifying a structuring element, use the strel function from the
Image Processing Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify via dialog.

1-373

1 Biocks — Alphabetical List

1-374

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat Computer Vision Toolbox software
Closing Computer Vision Toolbox software
Dilation Computer Vision Toolbox software
Erosion Computer Vision Toolbox software
Label Computer Vision Toolbox software
Top-hat Computer Vision Toolbox software
imopen Image Processing Toolbox software
strel Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

Optical Flow

Optical Flow

Estimate object velocities

Optical Flow

=
(Hnrn-Schund(jI l

T

Optical Flow

Library

Analysis & Enhancement

visionanalysis

Description

The Optical Flow block estimates the direction and speed of object motion from one
image to another or from one video frame to another using either the Horn-Schunck or

the Lucas-Kanade method.

Complex
Port Output Supported Data Types Values
Supported
/11 Scalar, vector, or matrix of * Double-precision floating point No
intensity values + Single-precision floating point
* Fixed point (supported when the
Method parameter is set to Lucas -
Kanade)
12 Scalar, vector, or matrix of Same as I port No
intensity values
[V|~2 |Matrix of velocity magnitudes |Same as I port No

1-375

1 Blocks — Alphabetical List

Complex
Port Output Supported Data Types Values
Supported
\Y% Matrix of velocity components |Same as I port Yes
in complex form

1-376

To compute the optical flow between two images, you must solve the following optical
flow constraint equation:

Lu+Iyv+I;=0

Iy, Iy, and I; are the spatiotemporal image brightness derivatives.

* u is the horizontal optical flow.
* v is the vertical optical flow.

Horn-Schunck Method

By assuming that the optical flow is smooth over the entire image, the Horn-Schunck
method computes an estimate of the velocity field, [y V]T, that minimizes this equation:

E= ff(Ixu +va+It)2dxdy+aff{(g_z)2 n (%)2 N (g_:)z N (g—;)z}dxdy

In this equation, g—z and g—; are the spatial derivatives of the optical velocity component,

u, and a scales the global smoothness term. The Horn-Schunck method minimizes the
previous equation to obtain the velocity field, [u v], for each pixel in the image. This
method is given by the following equations:

1 _ =k Ix[Ixﬂkx, y + vakx,y + It]

K+
UX, =UX’ -
y v @+ I+ 1
LILaS, o+ 1,75, o+ 1]
vkl gk XE xy TP xy Tt
X,y X,y

2.2
a?+ I+

Optical Flow

In these equations, [uf , v§ ,] is the velocity estimate for the pixel at (x,y), and [ﬂ,’ﬁ v v y]
is the neighborhood average of [uf , v§ ,|. For k = 0, the initial velocity is 0.

To solve u and v using the Horn-Schunck method:

1 Compute I, and I}, using the Sobel convolution kernel, [-1 -2 —-1; 0 0 0; 1 2 1], and
its transposed form, for each pixel in the first image.

2 Compute I; between images 1 and 2 using the [-1 1] kernel.

3 Assume the previous velocity to be 0, and compute the average velocity for each pixel
using [0 1 0; 1 0 1; 0 1 0] as a convolution kernel.

4 Iteratively solve for u and v.

Lucas-Kanade Method

To solve the optical flow constraint equation for u and v, the Lucas-Kanade method
divides the original image into smaller sections and assumes a constant velocity in each
section. Then, it performs a weighted least-square fit of the optical flow constraint

equation to a constant model for [u v]T in each section Q. The method achieves this fit by
minimizing the following equation:

S WLu + Ly + I[)*
X €EQN

W is a window function that emphasizes the constraints at the center of each section. The
solution to the minimization problem is

SWAE S WALL,
Swin, Swi

S WAL

S WAL

u

Lucas-Kanade Difference Filter

When you set the Temporal gradient filter to Difference filter [-1 1],uandv
are solved as follows:

1-377

1 Blocks — Alphabetical List

1-378

Compute I, and Iy, using the kernel [-1 8 0 —8 1]/12 and its transposed form.

If you are working with fixed-point data types, the kernel values are signed fixed-
point values with word length equal to 16 and fraction length equal to 15.

Compute I; between images 1 and 2 using the [—1 1] kernel.

Smooth the gradient components, I, Iy, and I;, using a separable and isotropic 5-by-5

element kernel whose effective 1-D coefficients are [1 4 6 4 1]/16. If you are working
with fixed-point data types, the kernel values are unsigned fixed-point values with
word length equal to 8 and fraction length equal to 7.

Solve the 2-by-2 linear equations for each pixel using the following method:

ta=laP] 2 SWAIE S WAL,
h - 2 272
bel |Swr, Swi
) 2
Then the eigenvalues of A are 4; = & ; ¢ vib +2(a —9i-1,2
))
In the fixed-point diagrams, P = & -2|- €Q= 40 +2(a —0)

* The eigenvalues are compared to the threshold, T, that corresponds to the value
you enter for the threshold for noise reduction. The results fall into one of the
following cases:

Casel:Ay=ztandAy =71

A is nonsingular, the system of equations are solved using Cramer's rule.

Case2: Ay =ztand Ay < T

A is singular (noninvertible), the gradient flow is normalized to calculate u and v.
Case 3: Ay <tand Ay <T

The optical flow, u and v, is 0.

Optical Flow

Derivative of Gaussian

If you set the temporal gradient filter to Derivative of Gaussian, u and v are solved
using the following steps. You can see the flow chart for this process at the end of this
section:

1 Compute Iy and Iy using the following steps:

Use a Gaussian filter to perform temporal filtering. Specify the temporal filter
characteristics such as the standard deviation and number of filter coefficients
using the Number of frames to buffer for temporal smoothing parameter.

Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image
using spatial filtering. Specify the standard deviation and length of the image
smoothing filter using the Standard deviation for image smoothing filter
parameter.

2 Compute I; between images 1 and 2 using the following steps:

Use the derivative of a Gaussian filter to perform temporal filtering. Specify the
temporal filter characteristics such as the standard deviation and number of
filter coefficients using the Number of frames to buffer for temporal
smoothing parameter.

Use the filter described in step 1b to perform spatial filtering on the output of the
temporal filter.

3 Smooth the gradient components, Iy, I, and I;, using a gradient smoothing filter. Use

the Standard deviation for gradient smoothing filter parameter to specify the
standard deviation and the number of filter coefficients for the gradient smoothing
filter.

Solve the 2-by-2 linear equations for each pixel using the following method:

SWAIE S WL,
SwWiL Swi

ab
bc

IfA=

2
Then the eigenvalues of A are A; = a ; ¢4 4b"+(a-c

When the block finds the eigenvalues, it compares them to the threshold, 7, that
corresponds to the value you enter for the Threshold for noise reduction
parameter. The results fall into one of the following cases:

2
=12

1-379

1 Biocks — Alphabetical List

Case l: Ay =ztand Ay =71
A is nonsingular, so the block solves the system of equations using Cramer's rule.
Case2: Ay =zTtand Ay <T

A is singular (noninvertible), so the block normalizes the gradient flow to calculate
u and v.

Case3: Ay <tandAy <t

The optical flow, u and v, is 0.

Ll x sGradFilt x :'::
@ > . sFilt — ¥l
= l’@ > XY Smoothing
Temporal XY Spatial M il
> » ot ilter
[’@ B Filter g i Waxx
21 I »
2 o x sFilt XY Smoothing —fm
y: sGradFilt bey Filter Wh(y 22 Liner
XY Spatial System

= Solver
il G i
by Filter Walyy | Computation)
x sFilt XY Smoothing _E
y: sFilt bt Filter WaIxt
XY Spatial

Filter k XY Smoothing
Tyt Filter lel

tGradFilt

Temporal
Filter

v

YvYyYYy ¢

tFilt = Coefficients of Gaussian Filter
tGradFilt = Coefficients of the Derivative of a Gaussian Filter

sFilt = Coefficients of Gaussian Filter
sGradFilt = Coefficients of the Derivative of a Gaussian Filter

Fixed-Point Data Type Diagram
The following diagrams shows the data types used in the Optical Flow block for fixed-

point signals. The block supports fixed-point data types only when the Method parameter
is set to Lucas-Kanade.

1-380

Optical Flow

Data type diagram for Optical Flow block’s overall algorithm

Gradient Gradient Accumulator gg